
Carry and Borrow

Young W. Lim

2023-07-01 Sat

Young W. Lim Carry and Borrow 2023-07-01 Sat 1 / 59



Outline

1 Based on

2 Carry and Borrow
Carry and Overflow
Borrow and Subtraction
ADC and SBB instructions
INC and DEC instructions

Young W. Lim Carry and Borrow 2023-07-01 Sat 2 / 59



Based on

1 "Self-service Linux: Mastering the Art of Problem Determination",
Mark Wilding

1 "Computer Architecture: A Programmer’s Perspective", Bryant &
O’Hallaron

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim Carry and Borrow 2023-07-01 Sat 3 / 59



Compling 32-bit program on 64-bit gcc

gcc -v

gcc -m32 t.c

sudo apt-get install gcc-multilib

sudo apt-get install g++-multilib

gcc-multilib

g++-multilib

gcc -m32

objdump -m i386

Young W. Lim Carry and Borrow 2023-07-01 Sat 4 / 59



Carry and Overflow

Young W. Lim Carry and Borrow 2023-07-01 Sat 5 / 59



Carry Flag (1)

When numbers are added and subtracted,
carry flag CF represents

9th bit, if 8-bit numbers added
17th bit, if 16-bit numbers added
33rd bit, if 32-bit numbers added and so on.

With addition, the carry flag CF records
a carry out of the high order bit. For example,
mov al, -1 ; AL = 0x1111111
add al, 1 ; AL = 0x0000000, ZF and CF flags are set to 1

http://www.c-jump.com/CIS77/ASM/Flags/F77_0030_carry_flag.htm

Young W. Lim Carry and Borrow 2023-07-01 Sat 6 / 59



Carry Flag (2)

When a larger number is subtracted from the smaller one,
the carry flag CF indicates a borrow. For example,
mov al, 6 ; AL = 0x00000110
sub al, 9 ; AL = -3, SF and CF flags are set to 1

; 0x00000110 (6)
; 0x00001001 (9) 0x11110111 (-9)
; 0x11111101 (6-9) 0x00000011 (3)

The result is -3, represented internally
as 0FDh (binary 11111101).

http://www.c-jump.com/CIS77/ASM/Flags/F77_0030_carry_flag.htm

Young W. Lim Carry and Borrow 2023-07-01 Sat 7 / 59



Overflow Fslag (1)

Overflow occurs with respect to the size of the data type
that must accommodate the result.

Overflow indicates that the result was
too large, if positive
too small, if negative

to fit in the original data type

http://www.c-jump.com/CIS77/ASM/Flags/F77_0040_overflow.htm

Young W. Lim Carry and Borrow 2023-07-01 Sat 8 / 59



Overflow Flag (2)

When two signed 2’s complement numbers are added,
the overflow flag OF indicates one of the following:

both operands are positive and the result is negative
both operands are negative and the result is positive

When two unsigned numbers are added,
the carry flag CF indicates an overflow

there is a carry out of the leftmost (most significant) bit.

http://www.c-jump.com/CIS77/ASM/Flags/F77_0040_overflow.htm

Young W. Lim Carry and Borrow 2023-07-01 Sat 9 / 59



Overflow Flag (3)

Computers don’t differentiate
between signed and unsigned binary numbers.

This makes logic circuits fast.

programmers must distinguish
between signed and unsigned

must distinguish them
when detecting an overflow after addition or subtraction.

http://www.c-jump.com/CIS77/ASM/Flags/F77_0040_overflow.htm

Young W. Lim Carry and Borrow 2023-07-01 Sat 10 / 59



Overflow Flag (4)

correct approach to detect the overflow
Overflow when adding signed numbers
is indicated by the overflow flag, OF
Overflow when adding unsigned numbers
is indicated by the carry flag, CF

http://www.c-jump.com/CIS77/ASM/Flags/F77_0040_overflow.htm

Young W. Lim Carry and Borrow 2023-07-01 Sat 11 / 59



Overflow Flag (5)

.DATA
mem8 BYTE 39 ; 0010 0111 27

;
.CODE

; Addition + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
; signed unsigned binary hex 2’s complement

mov al, 26 ; 26 26 0001 1010 1A
inc al ; +1 +1 0000 0001 01

; ---- ----
; 27 27 0001 1011 1B

add al, 76 ; +76 +76 0100 1100 4C
; ---- ----
; 103 103 0110 0111 67

add al, [mem8] ; +39 +39 0010 0111 27
; ---- ----

mov ah, al ; -114 142 1000 1110 8E (OF) (SF) 0111 0010
add al, ah ; + -114 +142 1000 1110 8E 0111 0010

; ---- ----
; 28 28 0001 1100 1C (OF) (CF)

http://www.c-jump.com/CIS77/ASM/Flags/F77_0040_overflow.htm

Young W. Lim Carry and Borrow 2023-07-01 Sat 12 / 59



Overflow Flag (6)

; Subtraction- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
; signed unsigned binary hex 2’s complement

mov al, 95 ; 95 95 0101 1111 5F
dec al ; - 1 - 1 1111 1111 FF 0000 0001

; ---- ----
; 94 94 0101 1110 5E

sub al, 23 ; - 23 - 23 1110 1001 E9 0001 0111
; ---- ----
; 71 71 0100 0111 47

mov [mem8],122 ;
sub al, [mem8] ; - 122 - 122 1000 0110 7A 0111 1010

; ---- ----
; -51 205 1100 1101 CD (SF) (CF) 0011 0011

mov ah, 119 ;
sub al, ah ; - 119 - 119 1000 1001 77 0111 0111

; ---- ----
; 86 86 0101 0110 56 (OF)

http://www.c-jump.com/CIS77/ASM/Flags/F77_0040_overflow.htm

Young W. Lim Carry and Borrow 2023-07-01 Sat 13 / 59



Overflow Flag (7)

assume 8-bit data registers are used

(OF) overflow flag :
the result is too large to fit in the 8-bit destination operand

the sum of two positive signed operands exceeds 127
interpreted as a negative number
the difference of two negative operands is less than -128
interpreted as a positive number

http://www.c-jump.com/CIS77/ASM/Flags/F77_0040_overflow.htm

Young W. Lim Carry and Borrow 2023-07-01 Sat 14 / 59



Overflow Flag ()

assume 8-bit data registers are used

(CF) carry flag
the sum of two unsigned operands exceeded 255

(SF) sign flag
result goes below 0

http://www.c-jump.com/CIS77/ASM/Flags/F77_0040_overflow.htm

Young W. Lim Carry and Borrow 2023-07-01 Sat 15 / 59



Borrow and Subtraction

Young W. Lim Carry and Borrow 2023-07-01 Sat 16 / 59



Logical operator ! and bitwise complement operator ~

Output values
logical operator (!) returns either 1 or 0
bitwise complement operator (~) returns 1’s complement

Input values
in C, any non-zero value is considered as True
in C, only zero value is considered as False

---------------------------------------------------
b = 0x00110011 (True) C = 0x00000001 (True)

~b = 0x11001100 (True) ~C = 0x11111110 (True)
!b = 0x00000000 (False) !C = 0x00000000 (False)

---------------------------------------------------
b = 0x00000000 (False) C = 0x00000000 (False)

~b = 0x11111111 (True) ~C = 0x11111111 (True)
!b = 0x00000001 (True) !C = 0x00000001 (True)

---------------------------------------------------

Young W. Lim Carry and Borrow 2023-07-01 Sat 17 / 59



Assumption on a, b, and C

two operands a and b are n-bit (8, 16, or 32-bit)
the carry flag C is 1-bit

to negate n-bit b, use ~b

to negate 1-bit C, use !C

1 - C = !C

Young W. Lim Carry and Borrow 2023-07-01 Sat 18 / 59



Transformed addition

given 2’s complement,
a subtraction operation can be
transformed into an addition operation:

z = a - b
= a + (-b)
= a + ~b + 1

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc

Young W. Lim Carry and Borrow 2023-07-01 Sat 19 / 59



Carry-out of the transformed addition

the carry out Cout is set / reset according to
the transformed addition a + ~b +1
of a - b subtraction operation

Cout = 0 : when borrow (a < b)
Cout = 1 : when no borrow (a ≥ b)

z = 0 - 1 borrow occurs since 0 < 1
= 0 + fffffffe + 1 the transformed addition

Cout:z = 0:ffffffff Cout = 0 (carry-out clear)
z = 0 - 0 no borrow occurs since 0 >= 0

= 0 + ffffffff + 1 the transformed addtion
Cout:z = 1:00000000 Cout = 1 (carry-out set)

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc

Young W. Lim Carry and Borrow 2023-07-01 Sat 20 / 59



Inverted carry of the transformed addition

the carry out Cout is set / reset according to
the transformed addition a + ~b + 1
of a - b subtraction operation

inverted carry C = !Cout
C = 1 : when borrow (a < b)
C = 0 : when no borrow (a ≥ b)

z = 0 - 1 borrow occurs since 0 < 1
= 0 + fffffffe + 1 the transformed addition

Cout:z = 0:ffffffff C = 1 (inverted carry set)
z = 0 - 0 no borrow occurs since 0 >= 0

= 0 + ffffffff + 1 the transformed addtion
Cout:z = 1:00000000 C = 0 (inverted carry clear)

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc

Young W. Lim Carry and Borrow 2023-07-01 Sat 21 / 59



Binary adder

the transformed addition is performed
by a n-bit binary adder
inputs

n-bit augend X
n-bit addend Y
1-bit carry in Cin

outputs
1-bit carry out Cout
n-bit sum S

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc

Young W. Lim Carry and Borrow 2023-07-01 Sat 22 / 59



Multi-word addition

for 4n-bit addition

using 4 n-bit binary adders : 4 hardware replications
Cout0, S0 ← X0 + Y0 + Cin0
Cout1, S1 ← X1 + Y1 + Cin1
Cout2, S2 ← X2 + Y2 + Cin2
Cout3, S3 ← X3 + Y3 + Cin3

serial connection
Cin3 ← Cout2, Cin2 ← Cout1 Cin1 ← Cout0,

using only one n-bit binary adder : 4 software iterations
Cout ,S ← X + Y + Cin

feedback connection
Cin ← Cout

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc

Young W. Lim Carry and Borrow 2023-07-01 Sat 23 / 59



Transformed addition with Cin

the carry out Cout is set / reset according to
the transformed addition a + ~b + Cin
which is a + ~b + Cout in a multi-word addition

in the inverted carry sytem
C = !Cout : inverted carry
Cin = !C : double negation (Cin ← Cout)
then a + ~b + Cout becomes a + ~b + !C

in the normal carry sytem
C = Cout : normal carry
Cin = C : simple feedback (Cin ← Cout)
then a + ~b + Cout becomes a + ~b + C

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc

Young W. Lim Carry and Borrow 2023-07-01 Sat 24 / 59



Transformed addition in a multi-word operation

the carry out Cout is set / reset according to
the transformed addition a + ~b + Cin
which is a + ~b + Cout in a multi-word addition

in the inverted carry sytem
a + ~b + Cout becomes a + ~b + !C
a + ~b + !C = a + ~b + 1 - C = a - b - C
therefore, a - b + !C is the transformed addition
of a - b - C subtraction operation

in the normal carry sytem
a + ~b + Cout becomes a + ~b + C
a + ~b + C = a + ~b + 1 - !C = a - b - !C
therefore, a - b + C is the transformed addition
of a - b - !C subtraction operation

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc

Young W. Lim Carry and Borrow 2023-07-01 Sat 25 / 59



Borrow operation in a multi-word operation

the carry out Cout is set / reset according to
the transformed addition a + ~b + Cin
which is a + ~b + Cout in a multi-word addition

in the inverted carry sytem
a + ~b + Cout becomes a + ~b + !C
a - b - C subtraction operation
C is considered as a borrow flag

in the normal carry sytem
a + ~b + Cout becomes a + ~b + C
a - b - !C subtraction operation
!C is considered as a borrow flag

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc

Young W. Lim Carry and Borrow 2023-07-01 Sat 26 / 59



Inverted carry and normal carry systems

SBB (subtract with borrow, x86 instruction)

a + ~b + Cout !Cout as borrow
C = !Cout inverted carry
Cin = !C double negation (Cin ← Cout)
a + ~b + !C subtract with borrow (a - b - C)
B = C borrow flag (= C)

SBC (subtract with carry, ARM instruction)

a + ~b + Cout Cout as carry
C = Cout normal carry
Cin = C simple feedback (Cin ← Cout)
a + ~b + C subtract with carry (a - b - !C)
B = !C borrow flag (= !C)

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc

Young W. Lim Carry and Borrow 2023-07-01 Sat 27 / 59



Carry updating in subtraction only

subtract without borrowing operation a - b
the x86 uses inverted carry system

subtraction without borrowing : a - b - 0 = a - b - C (C=0)
the transformed addition : a + ~b + 1 = a + ~b + !C
carry C is the inverted carry out of the transformed addition
carry C is set when a < b (borrow occurs)

the ARM uses normal carry system
subtraction without borrowing : a - b - 0 = a - b - !C (C=1)
the transformed addition : a + ~b + 1 = a + ~b + C
carry C is the normal carry out of the transformed addition
carry C is clear when a < b (borrow occurs)

x86 inverted carry
new C = 1 when a < b borrow
new C = 0 when a ≥ b
ARM normal carry
new C = 0 when a < b borrow
new C = 1 when a ≥ b

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc
Young W. Lim Carry and Borrow 2023-07-01 Sat 28 / 59



Carry updating in subtraction with borrowing

subtract with borrowing operation a - b - 1
the x86 uses inverted carry system

subtraction with borrowing : a - b - 1 = a - b - C (C=1)
the transformed addition : a + ~b + 0 = a + ~b + !C
carry C is the inverted carry out of the transformed addition
carry C is set when a < (b+C) (borrow occurs)

the ARM uses normal carry system
subtraction with borrowing : a + b - 1 = a - b - !C (C=0)
the transformed addition : a + ~b + 0 = a + ~b + C
carry C is the normal carry out of the transformed addition
carry C is clear when a < (b+!C) (borrow occurs)

x86 inverted carry
new C = 1 when a < (b+C) borrow
new C = 0 when a ≥ (b+C)
ARM normal carry
new C = 0 when a < (b+!C) borrow
new C = 1 when a ≥ (b+!C)

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc
Young W. Lim Carry and Borrow 2023-07-01 Sat 29 / 59



Performing a borrow operation in x86 and ARM

borrow operation a - b - BORROW

x86 inverted carry system C = inverted carry = borrow
SBB subtraction with borrow a - b - C (borrow = C)

the transformed addition = a + ~b + !C

ARM normal carry system C = normal carry = not(borrow)
SBC subtraction with carry a - b - !C (borrow = !C)

the transformed addition = a + ~b + C

x86 inverted carry
new C = 1 when a < (b+C) borrow
new C = 0 when a ≥ (b+C)
ARM normal carry
new C = 0 when a < (b+!C) borrow
new C = 1 when a ≥ (b+!C)

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc

Young W. Lim Carry and Borrow 2023-07-01 Sat 30 / 59



The same transformed addition in x86 and ARM

borrow operation a - b - BORROW
x86 SBB subtraction with borrow inverted carry system

borrow = inverted carry C1

a - b - C1 = a + ~b + !C1

substitute C1 with !C2 substitute C1 with !C2

a - b - !C2 = a + ~b + C2

ARM SBC subtract with carry normal carry system
borrow = not (carry) = !C2

a - b - !C2 = a + ~b + C2

x86 inverted carry C1 (= !C2)
new C1 = 1 when a < (b+C) borrow
new C1 = 0 when a ≥ (b+C)
ARM normal carry C2 (= !C1)
new C2 = 0 when a < (b+!C) borrow
new C2 = 1 when a ≥ (b+!C)

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc
Young W. Lim Carry and Borrow 2023-07-01 Sat 31 / 59



x86 addition / subtraction instructions

add add src, dest dest + src → dest
subtract sub src, dest dest – src → dest
add with carry adc src, dest dest + src + CF → dest
subtract with borrow sbb src, dest dest – src – CF → dest

https://en.wikibooks.org/wiki/X86_Assembly/Arithmetic

Young W. Lim Carry and Borrow 2023-07-01 Sat 32 / 59



ARM addition / subtraction instructions

Add ADD Rd, Rn, Op2 Rd ← Rn + Op2
Subtract SUB Rd, Rn, Op2 Rd ← Rn – Op2
Add with Carry ADC Rd, Rn, Op2 Rd ← Rn + Op2 + C
Subtract with Carry SBC Rd, Rn, Op2 Rd ← Rn – Op2 – !C
Reverse Subtract RSB Rd, Rn, Op2 Rd ← Op2 – Rn
Reverse Subtract wiht Carry RSC Rd, Rn, 0 Rd ← Op2 – Rn – !C

https://www.davespace.co.uk/arm/introduction-to-arm/arithmetic.html

Young W. Lim Carry and Borrow 2023-07-01 Sat 33 / 59



(1) Subtraction and transformed addition

SBB (subtract with borrow, x86 instruction)
a - b - C = a + ~b + 1 - C = a + ~b + !C

a - b - C (subtraction)
C is used as the borrow of a previous subtraction
a + ~b + !C (transformed addition)
!C is the carry-in of the transformed addition

SBC (subtract with carry, ARM instruction)
a - b - !C = a + ~b + 1 - !C = a + ~b + C

a - b - !C (subtraction)
!C is used as the borrow of a previous subtraction
a + ~b + C (transformed addition)
C is the carry-in of the transformed addition

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc

Young W. Lim Carry and Borrow 2023-07-01 Sat 34 / 59



(2) Carry in and carry out of an adder

SBB (subtract with borrow, x86 instruction)
a - b - C = a + ~b + 1 - C
= a + ~b + !C : the transformed addition

C is the inverted carry-out of the transformed addition
!C is the carry-in of the transformed addition
C is updated as a result of the transformed addition
C is used as a borrow flag

SBC (subtract with carry, ARM instruction)
a - b - !C = a + ~b + 1 - !C
= a + ~b + C : the transformed addition

C is the normal carry-out of the transformed addition
C is the carry-in of the transformed addition
C is updated as a result of the transformed addition
!C is used as a borrow flag

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc

Young W. Lim Carry and Borrow 2023-07-01 Sat 35 / 59



(3) Borrow operation

SBB (subtract with borrow, x86 instruction)
a - b - C = a + ~b + !C

C = borrow
!C = Cin of the transformed addition

if read old C = 0 no borrow perform a - b - 0 = a + ~b + 1
if read old C = 1 borrow perform a - b - 1 = a + ~b + 0

SBC (subtract with carry, ARM instruction)
a - b - !C = a + ~b + C

!C = borrow
C = Cin of the transformed addition

if read old C = 0 borrow perform a - b - 1 = a + ~b + 0
if read old C = 1 no borrow perform a - b - 0 = a + ~b + 1

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc

Young W. Lim Carry and Borrow 2023-07-01 Sat 36 / 59



(4) Carry updating U

SBB (subtract with borrow, x86 instruction)
a - b - C = a + ~b + !C

new C = inverted Cout of the transformed addition
new C = borrow for the next stage

write new C = 0 no borrow if a ≥ (b + old C)
write new C = 1 borrow if a < (b + old C)

SBC (subtract with carry, ARM instruction)
a - b - !C = a + ~b + C

new C = normal Cout of the transformed addition
new !C = borrow for next stage

write new C = 0 borrow if a < (b + old !C)
write new C = 1 no borrow if a ≥ (b + old !C)

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc

Young W. Lim Carry and Borrow 2023-07-01 Sat 37 / 59



(5) SBB and SBC instructions ~

SBB (subtract with borrow, x86 instruction)
borrow is carry (CF)

sbb src, dest (dest - src - CF → dest)

new carry is set to the inverted carry of the transformed addition
write new CF = 0 no borrow if dest ≥ (src + old CF)
write new CF = 1 borrow if dest < (src + old CF)

SBC (subtract with carry, ARM instruction)
borrow is not carry (!C)

SBC Rd, Rn, Op2 (Rd ← Rn - Op2 - !C)

new carry is set to the normal carry of thelP transformed addition
write new CF = 0 borrow if Rn < (Op2 + old !C)
write new CF = 1 no borrow if Rn ≥ (Op2 + old !C)

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc

Young W. Lim Carry and Borrow 2023-07-01 Sat 38 / 59



SBB, SBC, and SUB instructions

1 Subtract with borrow (SBB, x86, inverted carry, borrow=C)

a - b - C = a + ~b + 1 - C = a + ~b + !C

C = 0 no borrow a + ~b + 1
C = 1 borrow a + ~b + 0 (B = C)

1 Subtract with carry (SBC, ARM, normal carry, borrow=!C)

a - b - !C = a + ~b + 1 - !C = a + ~b + C

C = 0 borrow a + ~b + 0 (B = !C)
C = 1 no borrow a + ~b + 1

1 Subtract without carry and borrow
a - b = a + ~b + 1

https://en.wikipedia.org/wiki/Carry_flag

Young W. Lim Carry and Borrow 2023-07-01 Sat 39 / 59



Subtraction with borrowing

SBB (x86) SBC (ARM)
inverted carry C normal carry C
Borrow when old C=1 Borrow when old C=0

subtraction a - b - C a - b - !C
old C = 0 a - b - 0 a - b - 1 (B)
old C = 1 a - b - 1 (B) a - b - 0
implementation a + ~b + !C a + ~b + C
old C = 0 a + ~b + 1 a + ~b + 0 (B)
old C = 1 a + ~b + 0 (B) a + ~b + 1
carry updating a < (b + C) a ≥ (b + !C)
new C = 0 a ≥ (b + old C) a < (b + old !C)
new C = 1 a < (b + old C) a ≥ (b + old !C)

old C is to be read for a subtraction with borrowing operation

new C is to be written as a result of a subtraction operation

https://en.wikipedia.org/wiki/Carry_flag

Young W. Lim Carry and Borrow 2023-07-01 Sat 40 / 59



Subtraction only

SUB (x86) SUB (ARM)
inverted carry C normal carry C
no Borrow, old C=0 no Borrow, old C=1

subtraction a - b - C a - b - !C
old C = 0 a - b - 0 (nB)
old C = 1 a - b - 0 (nB)
implementation a + ~b + !C a + ~b + C
old C = 0 a + ~b + 1 (nB)
old C = 1 a + ~b + 1 (nB)
carry updating a < b a ≥ b
new C = 0 a ≥ b a < b
new C = 1 a < b a ≥ b

SUB is compatible with SBB when old C=0 (x86)

SUB is compatible with SBC when old C=1 (ARM)

https://en.wikipedia.org/wiki/Carry_flag

Young W. Lim Carry and Borrow 2023-07-01 Sat 41 / 59



x86 SBB - Subtraction with borrowing

a SBB (SuBtract with Borrow) x86 instruction
the inverted carry C is used as a borrow flag
a - b - C

replace a - b with a + ~b + 1, then
(a + ~b + 1) - C = a + ~b + (1 - C)

in an ALU adder implentation,
a + ~b + !C is computed

the carry out of the ALU adder is inverted (inverted carry C)
inverted carry C is negated to be used as a carry input (!C)

the carry bit is updated
C = 0 if a >= (b+C) (no borrow)
C = 1 if a < (b+C) (borrow)

https://en.wikipedia.org/wiki/Carry_flag

Young W. Lim Carry and Borrow 2023-07-01 Sat 42 / 59



x86 SUB - Subtraction only

a SUB x86 instruction
performs a - b = a - b - 0 = a - b - C
as if the borrow bit were clear (C = 0)

computes a - b as
a + ~b + 1 = a + ~b + !0 = a + ~b + !C

the carry bit is updated
C = 0 if a >= b (no borrow)
C = 1 if a < b (borrow)

https://en.wikipedia.org/wiki/Carry_flag

Young W. Lim Carry and Borrow 2023-07-01 Sat 43 / 59



ARM SBC - Subtraction with borrowing

a SBC (SuBtract with Carry) ARM instruction
the normal carry C is negated to be used as a borrow flag (!C)
a - b - !C

replace a - b with a + ~b + 1, then
(a + ~b + 1) - !C = a + ~b + (1 - !C)

in an ALU adder implentation,
a + ~b + C is computed

the carry out of the ALU adder is used directly (normal carry C)
normal carry C is used directly as a carry input (C)

the carry bit is updated
C = 0 if a < (b+!C) (borrow)
C = 1 if a >= (b+!C) (no borrow)

https://en.wikipedia.org/wiki/Carry_flag

Young W. Lim Carry and Borrow 2023-07-01 Sat 44 / 59



ARM SUB - Subtraction only

a SUB ARM instruction
performs a - b = a - b - 0 = a - b - !C
as if the borrow bit were clear (!C = 0)

computes a - b as
a + ~b + 1 = a + ~b + C

the carry bit is updated
C = 0 if a < b (borrow)
C = 1 if a >= b (!B = C, no borrow)

https://en.wikipedia.org/wiki/Carry_flag

Young W. Lim Carry and Borrow 2023-07-01 Sat 45 / 59



Subtraction methods of various processors (1)

the first approach : subtract with borrow
The 8080, 6800, Z80, 8051, x86 and 68k families (among others)
use a borrow bit.

the second approach : subtract with carry
The System/360, 6502, MSP430, COP8, ARM and PowerPC
processors use this convention.
The 6502 is a particularly well-known example
because it does not have a subtract without carry operation,
so programmers must ensure that the carry flag is set
before every subtract operation where a borrow is not required.

https://en.wikipedia.org/wiki/Carry_flag

Young W. Lim Carry and Borrow 2023-07-01 Sat 46 / 59



Subtraction methods of various processors (2)

However, there are exceptions in both directions;
the VAX, NS320xx, and Atmel AVR architectures

use the borrow bit convention (inverted carry),
a - b - C = a + ~b + !C operation
is called subtract with carry
(SBWC, SUBC and SBC).

The PA-RISC and PICmicro architectures
use the carry bit convention (normal carry),
a - b - !C = a + ~b + C operation
is called subtract with borrow
(SUBB and SUBWFB).

https://en.wikipedia.org/wiki/Carry_flag

Young W. Lim Carry and Borrow 2023-07-01 Sat 47 / 59



ADC and SBB instructions

Young W. Lim Carry and Borrow 2023-07-01 Sat 48 / 59



ADC instruction (1)

The ADC (add with carry) instruction adds
both a source operand and the contents of the Carry flag
to a destination operand:
ADC op1, op2 ; op1 += op2, op1 += CF

The instruction formats are the same
as for the ADD instruction:
ADC reg, reg
ADC mem, reg
ADC reg, mem
ADC mem, imm
ADC reg, imm

http://www.c-jump.com/CIS77/MLabs/M11arithmetic/M11_0180_sbb_instruction.htm

Young W. Lim Carry and Borrow 2023-07-01 Sat 49 / 59



ADC instruction (2)

The ADC instruction does not distinguish
between signed or unsigned operands.
Instead, the processor evaluates the result
for both data types and sets

OF flag to indicate a carry out from the signed result.
CF flag to indicate a carry out from the unsigned result.

The sign flag SF indicates the sign of the signed result.
The ADC instruction is usually executed
as part of a chained multibyte or multiword addition,
in which an ADD or ADC instruction is followed
by another ADC instruction.

http://www.c-jump.com/CIS77/MLabs/M11arithmetic/M11_0180_sbb_instruction.htm

Young W. Lim Carry and Borrow 2023-07-01 Sat 50 / 59



ADC instruction (3)

The following fragment adds two 8-bit integers (FFh + FFh),
producing a 16-bit sum in DL:AL, which is 01h:FEh.
mov dl, 0
mov al, 0FFh
add al, 0FFh ; AL = FEh, CF = 1
adc dl, 0 ; DL += CF, add "leftover" carry

Similarly, the following instructions add two 32-bit integers
(FFFFFFFFh + FFFFFFFFh).
The result is a 64-bit sum in EDX:EAX, 0000000lh:FFFFFFFEh,
mov edx, 0
mov eax, 0FFFFFFFFh
add eax, 0FFFFFFFFh
adc edx, 0 ; EDX += CF, add "leftover" carry

http://www.c-jump.com/CIS77/MLabs/M11arithmetic/M11_0180_sbb_instruction.htm

Young W. Lim Carry and Borrow 2023-07-01 Sat 51 / 59



ADC instruction (4)

The following instructions add two 64-bit numbers
received in EBX:EAX and EDX:ECX:

The result is returned in EBX:EAX.
Overflow/underflow conditions are indicated by the Carry flag.
add eax, ecx ; add low parts EAX += ECX, set CF
adc ebx, edx ; add high parts EBX += EDX, EBX += CF
; The result is in EBX:EAX
; NOTE: check CF or OF for overflow (*)

The 64-bit subtraction is also simple and similar to the 64-bit addition:
sub eax, ecx ; subtract low parts EAX -= ECX, set CF (borrow)
sbb ebx, edx ; subtract high parts EBX -= EDX, EBX -= CF
; The result is in EBX:EAX
; NOTE: check CF or OF for overflow (*)

The Carry flag CF is normally used for unsigned arithmetic.
The Overflow flag OF is normally used for signed arithmetic.

http://www.c-jump.com/CIS77/MLabs/M11arithmetic/M11_0180_sbb_instruction.htm

Young W. Lim Carry and Borrow 2023-07-01 Sat 52 / 59



SBB instruction (1)

After subtraction, the carry flag CF = 1
indicates a need for a borrow.
The SBB (subtract with borrow) instruction subtracts
both a source operand and the value of the Carry flag CF
from a destination operand:
SBB op1, op2 ; op1 -= op2, op1 -= CF

The possible operands are the same as for the ADC instruction.
The following fragment of code performs 64-bit subtraction:
mov edx, 1 ; upper half
mov eax, 0 ; lower half
sub eax, 1 ; subtract 1 from the lower half, set CF.
sbb edx, 0 ; subtract carry CF from the upper half.

http://www.c-jump.com/CIS77/MLabs/M11arithmetic/M11_0180_sbb_instruction.htm

Young W. Lim Carry and Borrow 2023-07-01 Sat 53 / 59



SBB instruction (2)

The example logic:
Sets EDX:EAX to 00000001h:00000000h
Subtracts 1 from the value in EDX:EAX

1 The lower 32 bits are subtracted first, setting the Carry flag CF
2 The upper 32 bits are subtracted next, including the Carry flag.

http://www.c-jump.com/CIS77/MLabs/M11arithmetic/M11_0180_sbb_instruction.htm

Young W. Lim Carry and Borrow 2023-07-01 Sat 54 / 59



SBB instruction (3)

When an immediate value is used in SBB as an operand,
it is sign-extended to the length of the destination operand.
The SBB instruction does not distinguish
between signed or unsigned operands.
Instead, the processor evaluates the result
for both data types and sets the

OF flag to indicate a borrow in the signed result.
CF flag to indicate a borrow in the unsigned result.

The SF flag indicates the sign of the signed result.
The SBB instruction is usually executed
as part of a chained multibyte or multiword subtraction,
in which a SUB or SBB instruction is
followed by another SBB instruction.

http://www.c-jump.com/CIS77/MLabs/M11arithmetic/M11_0180_sbb_instruction.htm

Young W. Lim Carry and Borrow 2023-07-01 Sat 55 / 59



INC and DEC instructions

Young W. Lim Carry and Borrow 2023-07-01 Sat 56 / 59



INC / DEC (1)

The INC instruction adds one to the destination operand,
while preserving the state of the carry flag CF:

The destination operand can be a register or a memory location.
This instruction allows a loop counter to be updated without disturbing
the CF flag.
(Use ADD instruction with an immediate operand of 1 to perform an
increment operation that does update the CF flag.)

The DEC instruction subtracts one from the destination operand,
while preserving the state of the CF flag.
(To perform a decrement operation that does update the CF flag, use
a SUB instruction with an immediate operand of 1.)

http://www.c-jump.com/CIS77/ASM/Flags/F77_0070_inc_dec.htm

Young W. Lim Carry and Borrow 2023-07-01 Sat 57 / 59



INC / DEC (2)

Especially useful for incrementing and decrementing counters.
A register is the best place to keep a counter.
The INC and DEC instructions

always treat integers as unsigned values
never update the carry flag CF, which would otherwise (i.e. ADD and
SUB) be updated for carries and borrows.

The instructions affect the OF, SF, ZF, AF, and PF flags just like
addition and subtraction of one.

http://www.c-jump.com/CIS77/ASM/Flags/F77_0070_inc_dec.htm

Young W. Lim Carry and Borrow 2023-07-01 Sat 58 / 59



INC / DEC (3)

xor al, al ; Sets AL = 0. XOR instruction always clears OF and CF flags.
mov bl, 0FEh
inc bl ; 0FFh SF = 1, CF flag not affected.
inc bl ; 000h SF = 0, ZF = 1, CF flag not affected.

BL 1111 1110 (OxFE) Carry Flag 0
INC BL 1111 1111 (0xFF) Carry Flag 0
INC BL 0000 0000 (0x00) Carry Flag 0

http://www.c-jump.com/CIS77/ASM/Flags/F77_0070_inc_dec.htm

Young W. Lim Carry and Borrow 2023-07-01 Sat 59 / 59


	Based on
	Carry and Borrow
	Carry and Overflow
	Borrow and Subtraction
	ADC and SBB instructions
	INC and DEC instructions


