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In mathematics, a fixed point (fixpoint), 

also known as an invariant point, 

is a value that does not change under a given transformation. 

Specifically, for functions, 

a fixed point is an element 

that is mapped to itself by the function. 

Formally, c is a fixed point of a function f 

if c belongs to both the domain and the codomain of f, and 

f(c) = c.

https://en.wikipedia.org/wiki/Fixed_point_(mathematics)

Fix point (1)
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For example, if f is defined on the real numbers by

f(x) = x2 − 3x + 4 ,

then 2 is a fixed point of f, because f(2) = 2.

Not all functions have fixed points: for example, 

f(x) = x + 1, has no fixed points, 

since x is never equal to x + 1 for any real number. 

In graphical terms, a fixed-point x means 

the point (x, f(x)) is on the line y = x, or in other words 

the graph of f has a point in common with that line. 

https://en.wikipedia.org/wiki/Fixed_point_(mathematics)

Fix point (2)
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Combinatory logic is a notation 

to eliminate the need for quantified variables in mathematical logic. 

It was introduced by Moses Schönfinke and Haskell Curry, 

and has more recently been used in computer science 

as a theoretical model of computation 

and also as a basis for the design of functional programming languages. 

It is based on combinators

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic 
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combinators were introduced by Schönfinkel in 1920 

with the idea of providing an analogous way 

– to build up functions

– to remove any mention of variables 

– particularly in predicate logic. 

A combinator is a higher-order function 

that uses only function application 

earlier defined combinators 

to define a result from its arguments. 

https://en.wikipedia.org/wiki/Combinatory_logic

Combinator
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Combinator  : A lambda expression containing no free variables. 

While this is the most general definition, 

the word is usually understood more specifically 

to refer to certain combinators of special importance, 

in particular the following four:

I = λx . x

K = λx . λy . x

S = λx . λy . λz . x(z)(y(z))

Y = λf . (λu . f(u(u))) (λu . f(u(u)))

https://www.encyclopedia.com/computing/dictionaries-thesauruses-pictures-and-press-releases/combinator

Combinator Definitions (1)
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The combinators I, K, and S were introduced by Schönfinkel and Curry, 

who showed that any λ-expression can essentially be formed 

by combining them. 

More recently combinators have been applied 

to the design of implementations for functional languages. 

In particular Y (also called the paradoxical combinator) 

can be seen as producing fixed points, since Y(f) reduces to f(Y(f)).

https://www.encyclopedia.com/computing/dictionaries-thesauruses-pictures-and-press-releases/combinator

Combinator Definitions (2)

I = λx . x

K = λx . λy . x

S = λx . λy . λz . x(z)(y(z))

Y = λf . (λu . f(u(u))) (λu . f(u(u)))
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Lambda calculus is concerned with objects called lambda-terms, 

which can be represented by the following three forms of strings:

    v 

    λv. E
1
 

    (E
1
 E

2
) 

where v is a variable name drawn 

from a predefined infinite set of variable names, 

and E
1
 and E

2
 are lambda-terms.

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (1)
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 Terms of the form λv. E
1
 are called abstractions. 

The variable v is called the formal parameter of the abstraction, 

and E
1
 is the body of the abstraction. 

The term λv. E
1
 represents the function 

applied to an argument, 

binds the formal parameter v to the argument 

computes the resulting value of E
1
 

returns E
1
, with every occurrence of v replaced by the argument.

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (2)

    v 

    λv. E
1
 

    (E
1
 E

2
) 
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Terms of the form (E
1
  E

2
)  are called applications. 

applications model function invocation or execution: 

the function represented by E
1
  is to be invoked, 

with E
2
  as its argument, and the result is computed. 

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (3-1)
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If E
1
 (the applicand) is an abstraction, the term may be reduced: 

E
2
, the argument, may be substituted into the body of E

1
 

in place of the formal parameter v of E
1
, 

and the result is a new lambda term which is equivalent to the old one. 

If a lambda term contains no subterms of the form ((λv. E
1
) E

2
) 

then it cannot be reduced, and is said to be in normal form. 

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (3-2)
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The motivation for this definition of reduction is 

that it captures the essential behavior of all mathematical functions. 

For example, consider the function 

that computes the square of a number. We might write

    The square of x is x * x (using * to indicate multiplication.) 

x here is the formal parameter of the function. 

To evaluate the square for a particular argument, say 3, 

we insert it into the definition in place of the formal parameter:

    The square of 3 is 3 * 3

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (4)
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To evaluate the resulting expression 3 * 3, we would have to resort 

to our knowledge of multiplication and the number 3. 

Since any computation is simply a composition of 

the evaluation of suitable functions 

on suitable primitive arguments, 

this simple substitution principle suffices 

to capture the essential mechanism of computation. 

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (5)
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Moreover, in lambda calculus, notions such as '3' and '*' 

can be represented without any need for externally defined 

primitive operators or constants. 

It is possible to identify terms in lambda calculus, 

which, when suitably interpreted, behave like the number 3 

and like the multiplication operator *,  q.v. Church encoding. 

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (6)
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Lambda calculus is known to be computationally equivalent 

in power to many other plausible models for computation 

(including Turing machines); 

that is, any calculation that can be accomplished 

in any of these other models can be expressed in lambda calculus, 

and vice versa. 

According to the Church-Turing thesis, 

both models can express any possible computation. 

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (7)
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lambda-calculus can represent any conceivable computation 

using only the simple notions 

of function abstraction and application 

based on simple textual substitution of terms for variables. 

abstraction is not even required. 

Combinatory logic is 

a model of computation equivalent to lambda calculus, 

but without abstraction. 

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (8-1)
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Combinatory logic is 

a model of computation equivalent to lambda calculus, 

but without abstraction. 

The advantage of this is that 

evaluating expressions in lambda calculus is quite complicated 

because the semantics of substitution must be specified 

with great care to avoid variable capture problems. 

evaluating expressions in combinatory logic is much simpler, 

because there is no notion of substitution. 

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (8-2)
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abstraction is the only way to manufacture functions 

in the lambda calculus

Instead of abstraction, 

combinatory calculus provides a limited set of primitive functions 

out of which other functions may be built. 

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Calculus 
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A combinatory term has one of the following forms:

Syntax Name Description

x Variable A character or string representing a combinatory term.

P Primitive function One of the combinator symbols I, K, S.

(M N) Application Applying a function to an argument. M and N are combinatory terms.

 

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Terms  (1)



Lambda Calculus (8A) – 
Combinators

21 Young Won Lim
4/23/24

The primitive functions are combinators, or functions that, 

when seen as lambda terms, contain no free variables.

To shorten the notations, a general convention is that ( E
1
 E

2
 E

3
 . . . E

n
 ), 

or even E
1
 E

2
 E

3
 . . . E

n
, denotes the term ( . . . ( ( E

1
 E

2
 ) E

3
 ) . . . E

n
 ) . 

This is the same general convention (left-associativity) 

as for multiple application in lambda calculus. 

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Terms  (2)
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In combinatory logic, each primitive combinator comes 

with a reduction rule of the form

    (P x
1
 ... x

n
) = E

where E is a term mentioning only variables from the set {x
1
 ... x

n
}. 

It is in this way that primitive combinators behave as functions. 

https://en.wikipedia.org/wiki/Combinatory_logic

Reductions in Combinatory Logic 
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The simplest example of a combinator is I, the identity combinator, 

defined by

    (I x) = x for all terms x. 

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (1-1)
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Another simple combinator is K,  

which manufactures constant functions: 

(K x) is the function which, for any argument, returns x, so we say

    ((K x) y) = x for all terms x and y. 

Or, following the convention for multiple application,

    (K x y) = x

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (1-2)
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A third combinator is S, which is a generalized version of application:

    (S x y z) = (x z (y z))

S applies x to y 

after first substituting z into each of them (x and y)

x is applied to y 

inside the environment z.

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (2-1)
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Given S and K, I itself is unnecessary, 

since it can be built from the other two:

    ((S K K) x)

        = (S K K x)

        = (K x (K x))

        = x

for any term x.

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (2-2)
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 Note that although ((S K K) x) = (I x) for any x, 

(S K K) itself is not equal to I. 

We say the terms are extensionally equal. 

Extensional equality captures the mathematical notion 

of the equality of functions: 

that two functions are equal 

if they always produce the same results for the same arguments. 

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (3-1)
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In contrast, the terms themselves, 

together with the reduction of primitive combinators, 

capture the notion of intensional equality of functions: 

that two functions are equal 

only if they have identical implementations 

up to the expansion of primitive combinators. 

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (3-2)
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There are many ways to implement an identity function; 

(S K K) and I are among these ways. 

(S K S) is yet another. 

We will use the word equivalent to indicate extensional equality, 

reserving equal for identical combinatorial terms. 

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (3-3)
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A more interesting combinator is the fixed point combinator or Y combinator, which can be used 

to implement recursion.

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (4)
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In combinatory logic for computer science, 

a fixed-point combinator (or fixpoint combinator), denoted fix, 

is a higher-order function (which takes a function as argument) 

that returns some fixed point (a value that is mapped to itself) 

of its argument function, if one exists.

Formally, if the function f has one or more fixed points, then

    fix f = f (fix f),

and hence, by repeated application,

    fix f = f (f (… f (fix f) … ) )   

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (1)



Lambda Calculus (8A) – 
Combinators

32 Young Won Lim
4/23/24

Every recursively defined function can be seen 

as a fixed point of some suitably defined function 

closing over the recursive call with an extra argument, 

and therefore, using Y, every recursively defined function 

can be expressed as a lambda expression. 

In particular, we can now cleanly define 

the subtraction, multiplication and comparison predicate 

of natural numbers recursively.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Fix-point combinator (1111)
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In the classical untyped lambda calculus, every function has a fixed point.

A particular implementation of fix is Curry's paradoxical combinator Y, represented by

    Y = λ f .   ( λ x . f   ( x   x ) )   ( λ x . f   ( x   x ) )   . {\displaystyle {\textsf {Y}}=\lambda f.\ (\

lambda x.f\ (x\ x))\ (\lambda x.f\ (x\ x))\ .}[2]: 131 [note 1][note 2]

In functional programming, the Y combinator can be used to formally define recursive functions in 

a programming language that does not support recursion.

This combinator may be used in implementing Curry's paradox. The heart of Curry's paradox is 

that untyped lambda calculus is unsound as a deductive system, and the Y combinator 

demonstrates this by allowing an anonymous expression to represent zero, or even many values. 

This is inconsistent in mathematical logic. 

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (3)
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Every recursively defined function can be seen as a fixed point of some suitably defined function 

closing over the recursive call with an extra argument, and therefore, using Y, every recursively 

defined function can be expressed as a lambda expression. In particular, we can now cleanly 

define the subtraction, multiplication and comparison predicate of natural numbers recursively.

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (4)
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Applied to a function with one variable, the Y combinator usually does not terminate. More 

interesting results are obtained by applying the Y combinator to functions of two or more 

variables. The additional variables may be used as a counter, or index. The resulting function 

behaves like a while or a for loop in an imperative language. 

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (5)
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Used in this way, the Y combinator implements simple recursion. In the lambda calculus, it is not 

possible to refer to the definition of a function inside its own body by name. Recursion though 

may be achieved by obtaining the same function passed in as an argument, and then using that 

argument to make the recursive call, instead of using the function's own name, as is done in 

languages which do support recursion natively. The Y combinator demonstrates this style of 

programming. 

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (6)
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An example implementation of Y combinator in two languages is presented below.

# Y Combinator in Python

Y=lambda f: (lambda x: f(x(x)))(lambda x: f(x(x)))

Y(Y)

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (7)
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In logic, extensionality, or extensional equality, 

refers to principles that judge objects to be equal 

if they have the same external properties. 

It stands in contrast to the concept of intensionality, 

which is concerned with whether 

the internal definitions of objects are the same. 

https://en.wikipedia.org/wiki/Extensionality

Extensionality (1)
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Consider the two functions f and g 

mapping from and to natural numbers, 

defined as follows:

    To find f(n), first add 5 to n, then multiply by 2.

    To find g(n), first multiply n by 2, then add 10.

These functions are extensionally equal; 

given the same input, both functions always produce the same value. 

But the definitions of the functions are not equal, 

and in that intensional sense the functions are not the same.

https://en.wikipedia.org/wiki/Extensionality

Extensionality (2)
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Similarly, in natural language 

there are many predicates (relations) 

that are intensionally different 

but are extensionally identical. 

For example, suppose that a town has one person named Joe, 

who is also the oldest person in the town. 

Then, the two predicates "being called Joe", 

and "being the oldest person in this town" 

are intensionally distinct, 

but extensionally equal 

for the (current) population of this town. 

https://en.wikipedia.org/wiki/Extensionality

Extensionality (3)
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If you are not skilled in colloquial astronomy, 

and I tell you that the morning star is the evening star, 

I have given you information—your knowledge has changed.

 

If I tell you the morning star is the morning star, 

you might feel I was wasting your time. 

Yet in both cases I have told you the planet Venus was self-identical. 

There must be more to it than this. 

https://plato.stanford.edu/entries/logic-intensional/

Extensionality (4-1)
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Naively, we might say the morning star and the evening star 

are the same in one way, and not the same in another.

 

The two phrases, “morning star” and “evening star” 

may designate the same object, 

but they do not have the same meaning. 

Meanings, in this sense, are often called intensions, 

and things designated, extensions. 

Contexts in which extension is all that matters are, naturally, called extensional, 

while contexts in which extension is not enough are intensional. 

https://plato.stanford.edu/entries/logic-intensional/

Extensionality (4-2)
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Mathematics is typically extensional throughout—we happily write “1+4=2+3” 

even though the two terms involved may differ in meaning (more about this later). 

“It is known that…” is a typical intensional context—“it is known that 1+4=2+3” 

may not be correct when the knowledge of small children is involved. 

Thus mathematical pedagogy differs from mathematics proper.

 

https://plato.stanford.edu/entries/logic-intensional/

Extensionality (5-1)
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Other examples of intensional contexts are 

“it is believed that…”, “it is necessary that…”, “it is informative that…”, 

“it is said that…”, “it is astonishing that…”, and so on. 

Typically a context that is intensional can be recognized 

by a failure of the substitutivity of equality when naively applied. 

Thus, the morning star equals the evening star; 

you know the morning star equals the morning star; 

then on substituting equals for equals, 

you know the morning star equals the evening star. 

https://plato.stanford.edu/entries/logic-intensional/

Extensionality (5-2)
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Note that this knowledge arises from purely logical reasoning, 

and does not involve any investigation of the sky, 

which should arouse some suspicion. 

Substitution of co-referring terms in a knowledge context 

is the problematic move—such a context is intensional, after all. 

Admittedly this is somewhat circular. 

We should not make use of equality of extensions in an intensional context, 

and an intensional context is one in which such substitutivity does not work.

https://plato.stanford.edu/entries/logic-intensional/

Extensionality (5-2)
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