
1 Young Won Lim
4/23/24

Lambda Calculus - Combinators (8A)

2 Young Won Lim
4/23/24

 Copyright (c) 2024 - 2016 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Lambda Calculus (8A) –
Combinators

3 Young Won Lim
4/23/24

In mathematics, a fixed point (fixpoint),

also known as an invariant point,

is a value that does not change under a given transformation.

Specifically, for functions,

a fixed point is an element

that is mapped to itself by the function.

Formally, c is a fixed point of a function f

if c belongs to both the domain and the codomain of f, and

f(c) = c.

https://en.wikipedia.org/wiki/Fixed_point_(mathematics)

Fix point (1)

Lambda Calculus (8A) –
Combinators

4 Young Won Lim
4/23/24

For example, if f is defined on the real numbers by

f(x) = x2 − 3x + 4 ,

then 2 is a fixed point of f, because f(2) = 2.

Not all functions have fixed points: for example,

f(x) = x + 1, has no fixed points,

since x is never equal to x + 1 for any real number.

In graphical terms, a fixed-point x means

the point (x, f(x)) is on the line y = x, or in other words

the graph of f has a point in common with that line.

https://en.wikipedia.org/wiki/Fixed_point_(mathematics)

Fix point (2)

Lambda Calculus (8A) –
Combinators

5 Young Won Lim
4/23/24

Combinatory logic is a notation

to eliminate the need for quantified variables in mathematical logic.

It was introduced by Moses Schönfinke and Haskell Curry,

and has more recently been used in computer science

as a theoretical model of computation

and also as a basis for the design of functional programming languages.

It is based on combinators

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic

Lambda Calculus (8A) –
Combinators

6 Young Won Lim
4/23/24

combinators were introduced by Schönfinkel in 1920

with the idea of providing an analogous way

– to build up functions

– to remove any mention of variables

– particularly in predicate logic.

A combinator is a higher-order function

that uses only function application

earlier defined combinators

to define a result from its arguments.

https://en.wikipedia.org/wiki/Combinatory_logic

Combinator

Lambda Calculus (8A) –
Combinators

7 Young Won Lim
4/23/24

Combinator : A lambda expression containing no free variables.

While this is the most general definition,

the word is usually understood more specifically

to refer to certain combinators of special importance,

in particular the following four:

I = λx . x

K = λx . λy . x

S = λx . λy . λz . x(z)(y(z))

Y = λf . (λu . f(u(u))) (λu . f(u(u)))

https://www.encyclopedia.com/computing/dictionaries-thesauruses-pictures-and-press-releases/combinator

Combinator Definitions (1)

Lambda Calculus (8A) –
Combinators

8 Young Won Lim
4/23/24

The combinators I, K, and S were introduced by Schönfinkel and Curry,

who showed that any λ-expression can essentially be formed

by combining them.

More recently combinators have been applied

to the design of implementations for functional languages.

In particular Y (also called the paradoxical combinator)

can be seen as producing fixed points, since Y(f) reduces to f(Y(f)).

https://www.encyclopedia.com/computing/dictionaries-thesauruses-pictures-and-press-releases/combinator

Combinator Definitions (2)

I = λx . x

K = λx . λy . x

S = λx . λy . λz . x(z)(y(z))

Y = λf . (λu . f(u(u))) (λu . f(u(u)))

Lambda Calculus (8A) –
Combinators

9 Young Won Lim
4/23/24

Lambda calculus is concerned with objects called lambda-terms,

which can be represented by the following three forms of strings:

 v

 λv. E
1

 (E
1
 E

2
)

where v is a variable name drawn

from a predefined infinite set of variable names,

and E
1
 and E

2
 are lambda-terms.

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (1)

Lambda Calculus (8A) –
Combinators

10 Young Won Lim
4/23/24

 Terms of the form λv. E
1
 are called abstractions.

The variable v is called the formal parameter of the abstraction,

and E
1
 is the body of the abstraction.

The term λv. E
1
 represents the function

applied to an argument,

binds the formal parameter v to the argument

computes the resulting value of E
1

returns E
1
, with every occurrence of v replaced by the argument.

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (2)

 v

 λv. E
1

 (E
1
 E

2
)

Lambda Calculus (8A) –
Combinators

11 Young Won Lim
4/23/24

Terms of the form (E
1
 E

2
) are called applications.

applications model function invocation or execution:

the function represented by E
1
 is to be invoked,

with E
2
 as its argument, and the result is computed.

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (3-1)

Lambda Calculus (8A) –
Combinators

12 Young Won Lim
4/23/24

If E
1
 (the applicand) is an abstraction, the term may be reduced:

E
2
, the argument, may be substituted into the body of E

1

in place of the formal parameter v of E
1
,

and the result is a new lambda term which is equivalent to the old one.

If a lambda term contains no subterms of the form ((λv. E
1
) E

2
)

then it cannot be reduced, and is said to be in normal form.

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (3-2)

Lambda Calculus (8A) –
Combinators

13 Young Won Lim
4/23/24

The motivation for this definition of reduction is

that it captures the essential behavior of all mathematical functions.

For example, consider the function

that computes the square of a number. We might write

 The square of x is x * x (using * to indicate multiplication.)

x here is the formal parameter of the function.

To evaluate the square for a particular argument, say 3,

we insert it into the definition in place of the formal parameter:

 The square of 3 is 3 * 3

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (4)

Lambda Calculus (8A) –
Combinators

14 Young Won Lim
4/23/24

To evaluate the resulting expression 3 * 3, we would have to resort

to our knowledge of multiplication and the number 3.

Since any computation is simply a composition of

the evaluation of suitable functions

on suitable primitive arguments,

this simple substitution principle suffices

to capture the essential mechanism of computation.

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (5)

Lambda Calculus (8A) –
Combinators

15 Young Won Lim
4/23/24

Moreover, in lambda calculus, notions such as '3' and '*'

can be represented without any need for externally defined

primitive operators or constants.

It is possible to identify terms in lambda calculus,

which, when suitably interpreted, behave like the number 3

and like the multiplication operator *, q.v. Church encoding.

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (6)

Lambda Calculus (8A) –
Combinators

16 Young Won Lim
4/23/24

Lambda calculus is known to be computationally equivalent

in power to many other plausible models for computation

(including Turing machines);

that is, any calculation that can be accomplished

in any of these other models can be expressed in lambda calculus,

and vice versa.

According to the Church-Turing thesis,

both models can express any possible computation.

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (7)

Lambda Calculus (8A) –
Combinators

17 Young Won Lim
4/23/24

lambda-calculus can represent any conceivable computation

using only the simple notions

of function abstraction and application

based on simple textual substitution of terms for variables.

abstraction is not even required.

Combinatory logic is

a model of computation equivalent to lambda calculus,

but without abstraction.

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (8-1)

Lambda Calculus (8A) –
Combinators

18 Young Won Lim
4/23/24

Combinatory logic is

a model of computation equivalent to lambda calculus,

but without abstraction.

The advantage of this is that

evaluating expressions in lambda calculus is quite complicated

because the semantics of substitution must be specified

with great care to avoid variable capture problems.

evaluating expressions in combinatory logic is much simpler,

because there is no notion of substitution.

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (8-2)

Lambda Calculus (8A) –
Combinators

19 Young Won Lim
4/23/24

abstraction is the only way to manufacture functions

in the lambda calculus

Instead of abstraction,

combinatory calculus provides a limited set of primitive functions

out of which other functions may be built.

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Calculus

Lambda Calculus (8A) –
Combinators

20 Young Won Lim
4/23/24

A combinatory term has one of the following forms:

Syntax Name Description

x Variable A character or string representing a combinatory term.

P Primitive function One of the combinator symbols I, K, S.

(M N) Application Applying a function to an argument. M and N are combinatory terms.

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Terms (1)

Lambda Calculus (8A) –
Combinators

21 Young Won Lim
4/23/24

The primitive functions are combinators, or functions that,

when seen as lambda terms, contain no free variables.

To shorten the notations, a general convention is that (E
1
 E

2
 E

3
 . . . E

n
),

or even E
1
 E

2
 E

3
 . . . E

n
, denotes the term (. . . ((E

1
 E

2
) E

3
) . . . E

n
) .

This is the same general convention (left-associativity)

as for multiple application in lambda calculus.

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Terms (2)

Lambda Calculus (8A) –
Combinators

22 Young Won Lim
4/23/24

In combinatory logic, each primitive combinator comes

with a reduction rule of the form

 (P x
1
 ... x

n
) = E

where E is a term mentioning only variables from the set {x
1
 ... x

n
}.

It is in this way that primitive combinators behave as functions.

https://en.wikipedia.org/wiki/Combinatory_logic

Reductions in Combinatory Logic

Lambda Calculus (8A) –
Combinators

23 Young Won Lim
4/23/24

The simplest example of a combinator is I, the identity combinator,

defined by

 (I x) = x for all terms x.

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (1-1)

Lambda Calculus (8A) –
Combinators

24 Young Won Lim
4/23/24

Another simple combinator is K,

which manufactures constant functions:

(K x) is the function which, for any argument, returns x, so we say

 ((K x) y) = x for all terms x and y.

Or, following the convention for multiple application,

 (K x y) = x

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (1-2)

Lambda Calculus (8A) –
Combinators

25 Young Won Lim
4/23/24

A third combinator is S, which is a generalized version of application:

 (S x y z) = (x z (y z))

S applies x to y

after first substituting z into each of them (x and y)

x is applied to y

inside the environment z.

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (2-1)

Lambda Calculus (8A) –
Combinators

26 Young Won Lim
4/23/24

Given S and K, I itself is unnecessary,

since it can be built from the other two:

 ((S K K) x)

 = (S K K x)

 = (K x (K x))

 = x

for any term x.

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (2-2)

Lambda Calculus (8A) –
Combinators

27 Young Won Lim
4/23/24

 Note that although ((S K K) x) = (I x) for any x,

(S K K) itself is not equal to I.

We say the terms are extensionally equal.

Extensional equality captures the mathematical notion

of the equality of functions:

that two functions are equal

if they always produce the same results for the same arguments.

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (3-1)

Lambda Calculus (8A) –
Combinators

28 Young Won Lim
4/23/24

In contrast, the terms themselves,

together with the reduction of primitive combinators,

capture the notion of intensional equality of functions:

that two functions are equal

only if they have identical implementations

up to the expansion of primitive combinators.

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (3-2)

Lambda Calculus (8A) –
Combinators

29 Young Won Lim
4/23/24

There are many ways to implement an identity function;

(S K K) and I are among these ways.

(S K S) is yet another.

We will use the word equivalent to indicate extensional equality,

reserving equal for identical combinatorial terms.

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (3-3)

Lambda Calculus (8A) –
Combinators

30 Young Won Lim
4/23/24

A more interesting combinator is the fixed point combinator or Y combinator, which can be used

to implement recursion.

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (4)

Lambda Calculus (8A) –
Combinators

31 Young Won Lim
4/23/24

In combinatory logic for computer science,

a fixed-point combinator (or fixpoint combinator), denoted fix,

is a higher-order function (which takes a function as argument)

that returns some fixed point (a value that is mapped to itself)

of its argument function, if one exists.

Formally, if the function f has one or more fixed points, then

 fix f = f (fix f),

and hence, by repeated application,

 fix f = f (f (… f (fix f) …))

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (1)

Lambda Calculus (8A) –
Combinators

32 Young Won Lim
4/23/24

Every recursively defined function can be seen

as a fixed point of some suitably defined function

closing over the recursive call with an extra argument,

and therefore, using Y, every recursively defined function

can be expressed as a lambda expression.

In particular, we can now cleanly define

the subtraction, multiplication and comparison predicate

of natural numbers recursively.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Fix-point combinator (1111)

Lambda Calculus (8A) –
Combinators

33 Young Won Lim
4/23/24

In the classical untyped lambda calculus, every function has a fixed point.

A particular implementation of fix is Curry's paradoxical combinator Y, represented by

 Y = λ f . (λ x . f (x x)) (λ x . f (x x)) . {\displaystyle {\textsf {Y}}=\lambda f.\ (\

lambda x.f\ (x\ x))\ (\lambda x.f\ (x\ x))\ .}[2]: 131 [note 1][note 2]

In functional programming, the Y combinator can be used to formally define recursive functions in

a programming language that does not support recursion.

This combinator may be used in implementing Curry's paradox. The heart of Curry's paradox is

that untyped lambda calculus is unsound as a deductive system, and the Y combinator

demonstrates this by allowing an anonymous expression to represent zero, or even many values.

This is inconsistent in mathematical logic.

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (3)

Lambda Calculus (8A) –
Combinators

34 Young Won Lim
4/23/24

Every recursively defined function can be seen as a fixed point of some suitably defined function

closing over the recursive call with an extra argument, and therefore, using Y, every recursively

defined function can be expressed as a lambda expression. In particular, we can now cleanly

define the subtraction, multiplication and comparison predicate of natural numbers recursively.

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (4)

Lambda Calculus (8A) –
Combinators

35 Young Won Lim
4/23/24

Applied to a function with one variable, the Y combinator usually does not terminate. More

interesting results are obtained by applying the Y combinator to functions of two or more

variables. The additional variables may be used as a counter, or index. The resulting function

behaves like a while or a for loop in an imperative language.

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (5)

Lambda Calculus (8A) –
Combinators

36 Young Won Lim
4/23/24

Used in this way, the Y combinator implements simple recursion. In the lambda calculus, it is not

possible to refer to the definition of a function inside its own body by name. Recursion though

may be achieved by obtaining the same function passed in as an argument, and then using that

argument to make the recursive call, instead of using the function's own name, as is done in

languages which do support recursion natively. The Y combinator demonstrates this style of

programming.

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (6)

Lambda Calculus (8A) –
Combinators

37 Young Won Lim
4/23/24

An example implementation of Y combinator in two languages is presented below.

Y Combinator in Python

Y=lambda f: (lambda x: f(x(x)))(lambda x: f(x(x)))

Y(Y)

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (7)

Lambda Calculus (8A) –
Combinators

38 Young Won Lim
4/23/24

In logic, extensionality, or extensional equality,

refers to principles that judge objects to be equal

if they have the same external properties.

It stands in contrast to the concept of intensionality,

which is concerned with whether

the internal definitions of objects are the same.

https://en.wikipedia.org/wiki/Extensionality

Extensionality (1)

Lambda Calculus (8A) –
Combinators

39 Young Won Lim
4/23/24

Consider the two functions f and g

mapping from and to natural numbers,

defined as follows:

 To find f(n), first add 5 to n, then multiply by 2.

 To find g(n), first multiply n by 2, then add 10.

These functions are extensionally equal;

given the same input, both functions always produce the same value.

But the definitions of the functions are not equal,

and in that intensional sense the functions are not the same.

https://en.wikipedia.org/wiki/Extensionality

Extensionality (2)

Lambda Calculus (8A) –
Combinators

40 Young Won Lim
4/23/24

Similarly, in natural language

there are many predicates (relations)

that are intensionally different

but are extensionally identical.

For example, suppose that a town has one person named Joe,

who is also the oldest person in the town.

Then, the two predicates "being called Joe",

and "being the oldest person in this town"

are intensionally distinct,

but extensionally equal

for the (current) population of this town.

https://en.wikipedia.org/wiki/Extensionality

Extensionality (3)

Lambda Calculus (8A) –
Combinators

41 Young Won Lim
4/23/24

If you are not skilled in colloquial astronomy,

and I tell you that the morning star is the evening star,

I have given you information—your knowledge has changed.

If I tell you the morning star is the morning star,

you might feel I was wasting your time.

Yet in both cases I have told you the planet Venus was self-identical.

There must be more to it than this.

https://plato.stanford.edu/entries/logic-intensional/

Extensionality (4-1)

Lambda Calculus (8A) –
Combinators

42 Young Won Lim
4/23/24

Naively, we might say the morning star and the evening star

are the same in one way, and not the same in another.

The two phrases, “morning star” and “evening star”

may designate the same object,

but they do not have the same meaning.

Meanings, in this sense, are often called intensions,

and things designated, extensions.

Contexts in which extension is all that matters are, naturally, called extensional,

while contexts in which extension is not enough are intensional.

https://plato.stanford.edu/entries/logic-intensional/

Extensionality (4-2)

Lambda Calculus (8A) –
Combinators

43 Young Won Lim
4/23/24

Mathematics is typically extensional throughout—we happily write “1+4=2+3”

even though the two terms involved may differ in meaning (more about this later).

“It is known that…” is a typical intensional context—“it is known that 1+4=2+3”

may not be correct when the knowledge of small children is involved.

Thus mathematical pedagogy differs from mathematics proper.

https://plato.stanford.edu/entries/logic-intensional/

Extensionality (5-1)

Lambda Calculus (8A) –
Combinators

44 Young Won Lim
4/23/24

Other examples of intensional contexts are

“it is believed that…”, “it is necessary that…”, “it is informative that…”,

“it is said that…”, “it is astonishing that…”, and so on.

Typically a context that is intensional can be recognized

by a failure of the substitutivity of equality when naively applied.

Thus, the morning star equals the evening star;

you know the morning star equals the morning star;

then on substituting equals for equals,

you know the morning star equals the evening star.

https://plato.stanford.edu/entries/logic-intensional/

Extensionality (5-2)

Lambda Calculus (8A) –
Combinators

45 Young Won Lim
4/23/24

Note that this knowledge arises from purely logical reasoning,

and does not involve any investigation of the sky,

which should arouse some suspicion.

Substitution of co-referring terms in a knowledge context

is the problematic move—such a context is intensional, after all.

Admittedly this is somewhat circular.

We should not make use of equality of extensions in an intensional context,

and an intensional context is one in which such substitutivity does not work.

https://plato.stanford.edu/entries/logic-intensional/

Extensionality (5-2)

Lambda Calculus (8A) –
Combinators

46 Young Won Lim
4/23/24

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

