

 1

Statically scheduled, 2-way superscalar CPU
with flag stack and decomposed branches

Christian Bering Bøgh - s952606@student.dtu.dk

Abstract

Performance enhancing features for statically scheduled

CPU architectures are proposed in this project.

The main goal is to develop and evaluate these features,

which necessitates the development of a prototype CPU, a

computer platform to plug it into and an assembler to

develop code for it.

Additional characteristics and a secondary goal of the

designed CPU includes a small code footprint - meaning

code density is high since each bundle of two instructions is

packed in only 32 bits.

A 32-bit, 4-stage, statically scheduled, 2-way superscalar

CPU has been designed using VHDL. A platform,

including memory, UART and VGA has also been

developed.

The complete system has been synthesized using Altera

Quartus II v13.0.1 and tested on a Terasic DE0 FPGA

prototyping board. The FPGA is an Altera Cyclone III

EP3C16F484C6.

An assembly language has been defined and an assembler

has been written in Java and used for writing test programs,

including a Mandelbrot fractal renderer.

Introduction

Increasing CPU performance, by going superscalar,

obviously exacerbates any difficulties in keeping the

pipeline(s) filled.

This is due to hazards incurring their penalties across

several pipelines instead of just one. For instance, a single

branch delay slot will become two slots in a dual-issue

pipeline - making the compiler's job of filling these slots

with useful work even harder. Same goes for load delay

slots.

To some degree, control hazards can be overcome through

prediction, speculation and buffering, removing the need

for ISA defined branch delay slots. ISA enhancements, like

predication, further limits the loss of useful work from

mispredicts, by simplifying control flow.

Data hazards can either be attacked through out-of-order

execution and dynamic scheduling, or through an increase

in the scope for code optimization and static scheduling

(big ISA visible register files).

Common for these approaches is that they seek to mask the

existing hazards, while in some cases, making the

underlying hazards worse due to lengthening of the

pipeline.

The proposed architecture takes a different approach.

Instead of masking the effects of hazards, they are either

removed entirely, or moved such that they can be overcome

more easily with just static scheduling.

The decomposition of branches into a push-target-address-

on-stack instruction and a branching bit, present in every

32-bit instruction bundle, makes the actual branching so

fast that the need for a branch delay slot can be eliminated.

Arranging condition flags as a stack, makes powerful

multi-operand flag logic operations feasible, which can

eliminate conditional branches.

Despite register operand fields only taking three bits, 16

registers are available in a split register file.

Besides doubling the number of registers, the splitting into

8 integer and 8 pointer registers and limiting the available

pointer operations has the added benefit of simplifying

forwarding such that effective address calculation can be

done in the decode stage.

This in turn allows memory access to be moved to the

execute stage, thus shortening the pipeline and avoiding the

need for a load delay slot.

Branch decomposition

Branch target caches and call-return stacks are

enhancements added to modern architectures to mask

control hazards and even achieve zero-cycle branches when

correctly predicted.

Some ISAs have hints in their branch instructions, telling

whether the BTB should be used or not, but usually it isn't

ISA visible.

 2

In the proposed architecture, branches are split into two

instructions.

One is a push instruction, which pushes the branch target

address onto an 8 entry circular branch target stack,

abbreviated BTS in the following.

Push instructions execute in the decode stage with full

forwarding to the branch unit in the fetch stage. While this

requires more hardware, it eliminates the control hazard.

The other instruction is the actual branch, and because it

gets the target address from the top of the BTS, it can be

very small and fast. In fact, it's only a single bit, and it's

checked during instruction fetch.

In other words, there is no branch instruction. It has been

reduced to a single control bit, present in every 32-bit

instruction bundle.

This is particularly beneficial if the top of BTS can be

reused, effectively giving zero cost branches.

The basic structure or "pattern" of a loop with counting

variable is illustrated in the following example:

 push pc, @loop_begin + 1 & ... # Address 0x800

 set i0 = count - 1 # Address 0x804

loop_begin:

 sub.f i0 = i0, 1 & ... # Address 0x808

 ... & ... # Address 0x80C

loop ... & ... # Address 0x810

In the first bundle, instruction slot 0 pushes the 32-bit value

0x809 onto the BTS. The least significant two bits aren't

used for addressing, since the 32-bit bundles are naturally

aligned.

Instead they tell the branch unit how to behave:

00
Unconditional branch. Pops the top of the BTS. Doesn't

touch the flag stack

01
Branch on flag = 0. Only pops the BTS if not taken - e.g.

on loop exit. Pops the top flag of the flag stack

10
Branch on flag = 0. Always pops the BTS - e.g. if-then-

else. Pops the top flag of the flag stack

11 Reserved

The push instruction adds the PC-relative (indicated by

“@”) value of "loop_begin" plus 1 to the program counter

and pushes it. The instruction's immediate field is 9 bits,

which allows for offsets between -64 and 63 bundles.

The 2nd bundle is occupied by a single extended

instruction. The immediate field is a 16-bit signed value. If

count-1 is 7 or less, a normal small set instruction can be

used.

The 3rd bundle's slot 0 updates the loop counter and pushes

the resulting sign bit onto the flag stack. It's the ".f" suffix

which tells the assembler to set the bundle's flag generate

bit.

The flag generation is placed two bundles before the

branch. This is because the moving of the branching

decision to the fetch stage means flag forwarding from the

execute stage can't reach the branch unit in the same cycle.

Essentially, the control hazard has been converted to a data

hazard. But this hazard is much easier to deal with.

The 5th bundle uses the loop keyword to tell the assembler

to set the bundle's branch bit. The jump, call, return or

branch keywords could also have been used. They are all

synonymous and exist purely for convenience and code

readability.

What if the loop body is only two bundles? It would seem

there's no room for a flag-generate-to-branch delay slot -

causing a single cycle stall of the fetch stage on every

iteration.

There's a trick to avoiding stalls without resorting to loop

unrolling:

 push pc, @loop_begin + 1 & flag 0b00000000

 set i0 = count - 2

loop_begin:

 ... & ...

loop sub.f i0 = i0, 1 & ...

 flag.pop 0b11001100 & ...

A loop prologue is added to push a '0' flag onto the flag

stack. This is necessary because flag generation is now one

iteration behind.

Similarly, an epilogue is added to pop the excess flag after

loop exit.

Note that in bundle 4, loop causes a flag to be popped,

while at the same time, a new flag is generated and pushed

- effectively just overwriting the old flag.

What if the loop body is only a single bundle?

This trick leverages the structure of the flag stack, which is

really just a 32-bit shift register. Of course, this puts a tight

limit on the magnitude of count.

 ... & flag 0b11111111

 push pc, @loop_begin + 1 & shiftl fr = fr, count - 1

loop_begin:

loop ... & ...

First a '1' flag (stop bit) is pushed, then count-1 zeroes are

pushed by left shifting the flag register.

 3

Only the first iteration experiences a stall, which is due to

the shift instruction writing the flags right before the loop.

If possible, put another bundle in between, to avoid this

stall.

The pattern for a subroutine call:

 push pc, @subroutine

call push pc, 4 & ...

The extended push instruction has a 24-bit signed

immediate field giving an offset of +/- 8Mbyte.

For larger offsets or absolute addresses, a pointer register

can be initialized and pushed.

The return address is pushed simultaneously with the

popping of the subroutine address - effectively overwriting

it.

Making the call conditional:

 push pc, @subroutine + 2

call push pc, 8 & ...

 ... & add sp, 4

Adding 4 bytes to the BTS stack pointer has the effect of

popping the unused return address on call-not-taken.

As per tradition, the stack grows downwards.

Smallest possible stall free if-then-else construct:

 copy.f i3 = i3 & ...

 push pc, @else_label + 2 & ...

branch push pc, @end_if_label & ...

branch ... & ... # Then-bundle

else_label:

branch ... & ... # Else-bundle

end_if_label:

A zero test is performed on integer register 3. If zero, the

then-clause is executed.

Note that the else-clause also branches to end_if_label.

This is just a cheap way of popping the BTS.

Also note that 3 instruction slots in the beginning need to

be filled with useful work. If only one instruction can be

found, the copy and first push may as well be put in the

same bundle.

That will cause a stall, but save two nops - i.e. one bundle.

Now imagine what it would look like without decomposed

branches:

 copy.f i3 = i3 & ...

 branch.c @else_label & ...

 ... & ...

 branch @end_if_label & ... # Then-bundle 1

 ... & ... # Then-bundle 2

else_label:

 ... & ... # Else-bundle

end_if_label:

The push instructions are replaced by conventional (but

imagined) branch instructions with one branch delay slot.

The bundle count goes from 5 to 6. Half a bundle goes to

the then-clause, which may be excellent if 3 instructions are

exactly what are needed.

The problem is the first branch delay slot, which means 4

instead of just 3 useful instructions must be found. If only

two can be found, there's no option of trading a bundle for a

stall.

A limitation of the BTS is that only one value can be

pushed per cycle. If two push instructions are in the same

bundle, only the one in slot 1 will execute.

Another limitation is that only instruction slot 1 can push

pointer registers and modify the stack pointer.

Direct manipulation of the BTS stack pointer through

adding/subtracting of offsets takes precedence over other

attempted stack pointer movements.

Modifying the previous subroutine call example:

 push pc, @subroutine

call push pc, 4 & sub sp, 4

The difference is that now the return address doesn't

overwrite the subroutine address - making reuse possible.

This is because the "sub sp" instruction both ignores the

pop of the call and executes before the push.

As a general rule, there should be no instruction

interdependence within a bundle, but here a common data

structure is structurally modified by 3 instructions

(including the branch) in the same bundle.

The chosen behavior is the one that seems the most useful

and intuitive, while also not being expensive to implement.

The flag stack

With such very simple branches, the question arises; which

flag should a conditional branch test?

The answer is; the top of the flag stack - i.e. the LSB of the

32-bit flag register.

 4

This limitation would likely be troublesome on deep

pipelines with long penalties. They use their flat flag file to

calculate flags well in advance of them being needed -

often speculatively.

But the proposed ISA enhancements are meant to

particularly benefit short in-order pipeline architectures.

On the plus side, a stack makes advanced flag manipulation

possible, even with tiny 15-bit instructions.

Such manipulation can significantly reduce the overall

number of branches.

The flag instruction contains 8 bits of truth-table plus a pop

enable bit, which tells whether the used flags should be

popped off the stack.

The truth-table is applied to the 3 top-of-stack flags - i.e.

the 3 LSBs of the flag register.

When popping is enabled, it would be very unhelpful if it

was always 3 flags that got popped.

Suppose one wanted to perform an or-operation on two

flags, pop them and then push the result.

This instruction would do that:

 flag.pop 0b11101110

No matter what the value of the 3rd flag is, it has no impact

on the result. This is clearly seen from the repeating pattern

of the truth-table.

The flag unit sees this too and only pops two flags. A

minimum of one flag is popped when popping is enabled.

If a bundle contains two flag instructions, both are executed

and process the same 3 flags. Conceptually, the result from

instruction slot 1 is pushed first, then slot 0.

The instruction wanting to pop the most flags gets its way.

A branch, wanting to pop one flag, is included in this max

calculation.

Another example:

 flag.pop 0b11110000

This one pops 3 flags and pushes the 3rd flag back on the

stack. Effectively just removing the two top flags.

To see how flag-operations can cut down on the number of

branches, here is an example code snippet from the

Mandelbrot renderer:

branch add.f i3 = i6, i7 & add i2 = i2, i4

 neg i2 = i2 & nop

positive_xy:

 sub.f p2 = p2, 1 & rotatel i3 = i3, 4

 and.f i3 = i3, 0xF & add i2 = i2, i1

 nop & flag.pop 0b11111101

For each pixel, the inner loop of the renderer iterates a

formula until one of two exit conditions is met.

To test these, 3 flags are generated by the 3 instructions

with ".f" suffixes.

One can see how they are mixed with unrelated instructions

and how they are combined by a flag instruction into a

single loop control flag.

Another example is from the multiply demo:

 sub.f i0 = i0, 48

 sub.f i1 = i0, 10

 add.f i3 = i3, i0 & nop

 flag.pop 0b11111011 & nop

After a new input character has been received from the user

over the UART, some input validation needs to be

performed.

Is the character between ASCII '0' and '9'? Is an overflow

generated when updating the value currently being input by

the user?

Finally, branches can sometimes be eliminated completely:

 copy i6 = p3 & flag.pop 0b11101110

 shiftr i6 = i6, 16-6 & and i4 = fr, 1

 add i6 = i6, i5 & shiftl i4 = i4, 16+6

 mul.u pi4 = i2, i0 & add i6 = i6, i4

This snippet is from the Mandelbrot renderer. Logic, shift

and rotate instructions in slot 1 can access the flags as a 32-

bit register.

Slot 0 can only access the flag register directly in one way,

namely the shift amount of a shift right instruction can be

the flag register.

This makes possible the easy application of 32 entry truth-

tables:

 ... & load i0 = p7, truthtable-vars

 shiftr.f i1 = i0, fr & rotatel fr = fr, 32 - 5

In the above example, a 32-bit truth-table is loaded into i0

and shifted according to the 5 top flags of the flag stack.

The bit ending up in position zero is pushed to the flag

stack, but only AFTER the 5 flags are popped by rotating

the flag register.

Note that slot 1 can only shift or rotate left, thus a shift

right needs to be emulated as shown.

 5

The conceptual order in which results are written to the flag

register is:

1. Stack movement due to popping.

2. Push result from slot 1 "flag" instruction.

3. Push result from slot 0 "flag" instruction.

4. Direct flag register write by slot 1 instruction.

5. Push result from slot 0 flag generation - i.e. instruction

with ".f" suffix.

Note that a slot 0 flag-instruction can take the ".f" suffix,

causing it to generate a flag equal to its ordinary result.

This can be used to either push two identical flags or make

the result survive a direct flag register write by slot 1.

Flag generation

The proposed ISA has no dedicated compare-instructions to

generate flags. Instead it relies on flag generation as a side-

effect of slot 0 arithmetic and logic instructions.

The “.f” suffix tells the assembler to set the flag generate

bit of the bundle.

 Add instructions will generate an overflow flag.

 Sub and neg will generate a flag equal to the true

33’th-bit extended sign. It is more useful than the MSB

of the result, because it can be used directly as a less-

than flag.

 Or, and, xor, not, copy, swap and pointer-pointer

subtraction generates a zero-test flag.

 Shiftr (shift right) generates a flag equal to bit 0 after

shifting. Shiftra (shift right arithmetic) inverts the flag.

 Flag instructions can produce a duplicate of its

ordinary result.

Memory access and addressing modes

Only instruction slot 1 can execute loads and stores. In slot

0, the same opcodes encode SIMD multiply instructions.

Only two addressing modes are available.

 Pointer register + offset adds a 3-bit scaled unsigned

constant to a pointer to get the effective address. Only

naturally aligned access is available.

 Pointer register with scaled post-update uses the

pointer directly, but adds a 3-bit sign-extended

constant to it after access.

The effective address is calculated in the decode stage, to

have it ready for the execute stage where memory access

occurs. This means that more advanced modes, like pointer

register + integer register index are too slow to be

feasible. The whole point of the split register file is to keep

integer registers away from effective-address calculation.

The forwarding network is more than twice as wide for

integers compared to pointers, when looking at the

forwarding multiplexors.

Since both memory access and flag generation is in the

execute stage, forwarding has been moved to the decode

stage. This means decode is by far the most complex stage.

Example of memory access with post-update:

 set i0 = 16-2

 flag 0 & push pc, @palette_copy+1

palette_copy:

 nop & load.+ i1 = p6, 4

loop sub.f i0 = i0, 1 & store.+ i1 -> p5, 4

The code snippet is taken from the Mandelbrot renderer

where the VGA palette is initialized by a small block copy.

Notice how address related offsets are always given in

bytes. The assembler will divide values by 4 and give a

warning if not an even multiple of 4. This is to avoid any

problems that might otherwise arise should byte addressing

instructions be added in the future.

Instruction format

Instructions are organized in 32-bit bundles usually

containing two 15-bit instructions. A branch bit and a flag

generate bit takes up the remaining two bits. Opcodes are 6

bits with one unused bit – i.e. only half the opcode space is

currently used.

31 30 25 24 22 21 19 18 16 15 14 9 8 6 5 3 2 0

B opcode1 D1 B1 A1 F opcode0 D0 B0 A0

Extended instructions like 16-bit immediate add, sub and

set take up an entire bundle:

31 30 16 15 14 9 8 6 5 3 2 0

B Immediate F opcode0 D0 B0 H-S-I

There are several other instruction formats. Some

instructions can only be executed by one of the two

pipelines. In summary:

 6

Pipeline 0:

 Can generate flags.

 Can read the program counter and top of BTS as

arguments to pointer arithmetic.

 Add and subtract constants to the top of BTS.

 SIMD multiplications. Two pairs of 16-bit values

contained in two integer registers are multiplied and

the two 32-bit results are stored in same numbered

integer and pointer registers. Not enough write ports to

write both results to the integer file. Both signed and

unsigned multiply is available.

 Right shifts. Both logic and arithmetic.

Pipeline 1:

 Can directly read and write the flag register using logic

and shift/rotate instructions.

 Can push pointer registers to the BTS.

 Add/subtract offsets to the BTS stack pointer

 Memory access - load/store.

 Left shift and left rotate.

This asymmetry rarely causes any problems when writing

code and is well worth it considering the savings in

hardware.

Common instructions executable by both pipelines:

 Integer logical:

o Or, and, and imm, xor, not.

 Integer arithmetic:

o Add, add imm, sub, sub imm, neg.

 Pointer arithmetic:

o Add int, add imm, sub int, sub imm, sub ptr.

 Push program counter + offset on BTS

 Flag logic

 Copy, swap, set, nop.

Synthesis results

Full design, including main memory, UART and

320x240x16 VGA display. Optimized for speed:

Conclusion

The developed ISA works well for the few applications

hand-written in assembler. It gives very dense code and not

very many nops – e.g. close to a CPI of 0.5 for the

Mandelbrot renderer. But how would a compiler cope?

The ISA seems awkward in the beginning, but one quickly

gets used to it. In this paper a fair bit of focus has been put

on code examples and “pattern” equivalents to traditional

code.

The focus, when writing the VHDL, has solely been on

speed. Simply to see what’s achievable. Rewriting for area

and optimizing for area during synthesis could likely cut

logic usage by 30-40%.

