Correlation

Lecture 4

Survey Research & Design in Psychology James Neill, 2015 Creative Commons Attribution 4.0

Overview

- 1. Covariation
- 2. Purpose of correlation
- 3. Linear correlation
- 4. Types of correlation
- 5. Interpreting correlation
- 6. Assumptions / limitations
- 7. Dealing with several correlations

2

Readings Howitt & Cramer (2011/2014)

- Ch 6/7: Relationships between two or more variables: Diagrams and tables
- Ch 7/8: Correlation coefficients: Pearson correlation and Spearman's rho
- Ch 10/11: Statistical significance for the correlation coefficient: A practical introduction to statistical inference
- Ch 14/15: Chi-square: Differences between samples of frequency data
- Note: Howitt and Cramer doesn't cover point bi-serial correlation 3

Covariation 4 e.g., pollen and bees

The world is made of covariations

e.g., study and grades

e.g., nutrients and growth

Covariations are the basis of more complex models.	
Purpose of correlation	
Purpose of correlation The underlying purpose of correlation is to help address the question: What is the • relationship or • association or • shared variance or • co-relation between two variables?	

Purpose of correlation

Other ways of expressing the underlying correlational question include:

To what extent do variables

- covary?
- depend on one another?
- explain one another?

10

Linear correlation

11

Linear correlation

The extent to which two variables have a simple **linear** (straight-line) relationship.

Linear correlation

Linear relations between variables are indicated by correlations:

- **Direction:** Correlation sign (+ / -) indicates direction of linear relationship
- **Strength:** Correlation size indicates strength (ranges from -1 to +1)
- **Statistical significance:** *p* indicates likelihood that the observed relationship could have occurred by chance

13

What is the linear correlation? Types of answers

- No relationship (r = 0)
 (X and Y are independent)
- Linear relationship (X and Y are dependent)
 - As $X \uparrow s$, so does Y(r > 0)
 - $-As X \uparrow s, Y \downarrow s (r < 0)$
- Non-linear relationship

14

Types of correlation

To decide which type of correlation to use, consider the **levels of measurement** for each variable.

Types of correlation

- Nominal by nominal:
 Phi (Φ) / Cramer's V, Chi-squared
- Ordinal by ordinal: Spearman's rank / Kendall's Tau b
- Dichotomous by interval/ratio: Point bi-serial r_{pb}
- Interval/ratio by interval/ratio: Product-moment or Pearson's *r*

16

Types of correlation and LOM Ordinal Int/Ratio Clustered bar-Scatterplot, bar chart Point bi-serial correlation chart, Nominal Chi-square, \leftarrow Recode Phi (φ) or Cramer's *V* Scatterplot or clustered bar chart Spearman's $\leftarrow 1$ Recode Ordinal Rho or Kendall's Tau Scatterplot Product-Int/Ratio moment correlation (17)

Nominal by nominal

Nominal by nominal correlational approaches

- Contingency (or cross-tab) tables
 - Observed
 - Expected
 - Row and/or column %s
 - Marginal totals
- Clustered bar chart
- Chi-square
- Phi/Cramer's V

19

Contingency tables

- · Bivariate frequency tables
- Cell frequencies (red)
- · Marginal totals (blue)

Contingency table: Example

b2 Do you snore? * b3r Smoker Crosstabulation

Count				
		b3r Sr		
		0 No	1 Yes	Total
b2 Do you	0 yes	50	16	66
sn ore?	1 no	111	9	120
Total		161	25	186

RED = Contingency cells BLUE = Marginal totals

Contingency table: Example

b2 Doyou snore? * b3r Smoker Crosstabulation

			b3r Sn	noker	
			0 No	1 Yes	Total
b2 Do you 0 snore?	0 yes	Count	50	16	66
		Expected Count	57.1	8.9	66.0
	1 no	Count	111	9	120
		Expected Count	103.9	16.1	120.0
Total		Count	161	25	186
		Expected Count	161.0	25.0	186.0

Chi-square is based on the differences between the actual and expected cell counts.

23

b2 Do you snore? * b3r Smoker Crosstabulation

%	within	b2	Do :	you	snore?

		b3r Sr	moker	
		0 No	1 Yes	Total
b2 Do you	0 yes	75.8%	24.2%	100.0%
sn ore?	1 no	92.5%	7.5%	100.0%
Total		86.6%	13.4%	100.0%

Row and/or column cell percentages may also

aid interpretation e.g., ~2/3rds of smokers snore, whereas only ~1/3rd of non-smokers snore.
b2 Do you snore? * b3r \smoker Crosstabulation

% within b3r Smoker

70 11 11 10 11 10 01	ementer			
		b3r S	moker	
		0 No	1 Yes	Total
b2 Do you	0 yes	31.4%	64.0%	35.5%
sn ore?	1 no	68.9%	▲36.0%	64.5%
Total		100.0%	100.0%	100.0%

Clustered bar graph
Bivariate bar graph of frequencies or percentages.

The category axis bars are clustered (by colour or fill pattern) to indicate the the second variable's categories.

Pearson chi-square test

The value of the test-statistic is

$$X^2 = \sum \frac{(O-E)^2}{E},$$

where

 X^2 = the test statistic that approaches a χ^2 distribution.

O = frequencies observed;

E = frequencies expected (asserted by the null hypothesis).

26

Pearson chi-square test: Example

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	10.2599	1	.001
Continuity Correction ^a	8.870	1	.003
Likelihood Ratio	9.780	1	.002
Fisher's Exact Test			
Linear-by-Linear Association	10.204	1	.001
N of Valid Cases	186		

Write-up: χ 2 (1, 186) = 10.26, p = .001

Phi (φ) & Cramer's V

(non-parametric measures of correlation)

Phi (φ)

• Use for 2x2, 2x3, 3x2 analyses e.g., Gender (2) & Pass/Fail (2)

Cramer's V

 Use for 3x3 or greater analyses e.g., Favourite Season (4) x Favourite Sense (5)

29

Phi (\$\phi\$) & Cramer's V: Example

Symm etric Measures

		Value	Approx. Sig.
Nominal by	Phi	(235)	(.001)
Nominal	Cramer's V	.235	.001
N of Valid Cases		186	

 χ^2 (1, 186) = 10.26, p = .001, φ = .24

Ordinal by ordinal

Ordinal by ordinal correlational approaches

- Spearman's rho (r_s)
- Kendall tau (τ)
- Alternatively, use nominal by nominal techniques (i.e., recode or treat as lower level of measurement)

32

Graphing ordinal by ordinal data

- Ordinal by ordinal data is difficult to visualise because its non-parametric, yet there may be many points.
- Consider using:
 - -Non-parametric approaches (e.g., clustered bar chart)
 - -Parametric approaches (e.g., scatterplot with binning)

2	•
J	v

Spea	arman	's rho	(r _s)) or
Spearman	's ranl	c orde	r cc	orrelation

- For ranked (ordinal) data
 - -e.g. Olympic Placing correlated with World Ranking
- Uses product-moment correlation formula
- Interpretation is adjusted to consider the underlying ranked scales

34

Kendall's Tau (τ)

- Tau a
 - -Does not take joint ranks into account
- Tau b
 - -Takes joint ranks into account
 - -For square tables
- Tau c
 - -Takes joint ranks into account
 - -For rectangular tables

35

Dichotomous by interval/ratio

Point-biserial correlation (r_{pb})

- One dichotomous & one continuous variable
 - -e.g., belief in god (yes/no) and amount of international travel
- Calculate as for Pearson's product-moment *r*,
- Adjust interpretation to consider the underlying scales

37

Point-biserial correlation (r_{pb}) : Example

Correlations

		b4r God	b8 Countries
b4r God	Pearson Correlation	1	095
0 = No	Sig. (2-tailed)		.288
1 = Yes	N	127	127
b8 Countries	Pearson Correlation	095	1
	Sig. (2-tailed)	.288	
	N	127	190

Interval/ratio by interval/ratio

40

Scatterplot

- Plot each pair of observations (X, Y)
 - -x = predictor variable (independent; IV)
 - -y = criterion variable (dependent; DV)
- By convention:
 - -IV on the x (horizontal) axis
 - -DV on the y (vertical) axis
- Direction of relationship:
 - -+ve = trend from bottom left to top right
 - --ve r= trend from top left to bottom right

41

Scatterplot showing relationship between age & cholesterol with line of best fit

Line of best fit

- The correlation between 2 variables is a measure of the degree to which pairs of numbers (points) cluster together around a best-fitting straight line
- Line of best fit: y = a + bx
- Check for:
 - -outliers
 - -linearity

Scatterplot example: Moderately strong negative (-.76)

Pearson product-moment correlation (r)

 The product-moment correlation is the standardised covariance.

$$r_{X,Y} = \frac{\text{cov}(X,Y)}{S_X S_Y}$$

Covariance

Variance shared by 2 variables

$$Cov_{XY} = \frac{\Sigma(X - \overline{X})(Y - \overline{Y})}{N - 1}$$
 Cross products

 Covariance reflects the direction of the relationship:

+ve cov indicates +ve relationship
-ve cov indicates -ve relationship

49

Covariance: Cross-products

50

Covariance

- Depends on the measurement scale → Can't compare covariance across different scales of measurement (e.g., age by weight in kilos versus age by weight in grams).
- Therefore, standardise covariance (divide by the cross-product of the SDs) → correlation
- Correlation is an effect size i.e., standardised measure of strength of linear relationship

Covariance, SD, and correlation: Example quiz question For a given set of data the covariance between X and Y is 1.20. The SD of X is 2 and the SD of Y is 3. The resulting correlation is: a20 b30 c40 d. 1.20	
Hypothesis testing	
Almost all correlations are not 0, therefore the question is: "What is the likelihood that a relationship between variables is a 'true' relationship - or could it simply be a result of random sampling variability or 'chance'?"	
53	
Cignificance of correlation	
Significance of correlation	-
 Null hypothesis (H₀): ρ = 0: assumes that there is no 'true' relationship (in the population) 	

- Alternative hypothesis (H_1): $\rho <> 0$: assumes that the relationship is real (in the population)
- Initially assume $\mathbf{H_0}$ is true, and evaluate whether the data support $\mathbf{H_1}$.
- ρ (rho) = population product-moment correlation coefficient

How to test the null hypothesis

- Select a critical value (alpha (α)); commonly .05
- Can use a 1 or 2-tailed test
- Calculate correlation and its p value.
 Compare this to the critical value.
- If *p* < critical value, the correlation is statistically significant, i.e., that there is less than a x% chance that the relationship being tested is due to random sampling variability.

55

Correlation - SPSS output

	Correlatio	ons	
		Cigarette Consumption per Adult per Day	CHD Mortali ty per 10,000
Cigarette Consumption per Adult per Day	Pearson Correlation		
	Sig. (2-tailed)		
	N		
CHD Mortality per 10,000	Pearson Correlation	.713*)
	Sig. (2-tailed)	(.000)	
	N	21	

**. Correlation is significant at the 0.01 level

56

Imprecision in hypothesis testing

- Type I error: rejects Ho when it is true
- Type II error: Accepts Ho when it is false
- Significance test result will depend on the power of study, which is a function of:
 - -Effect size (r)
 - -Sample size (N)
 - –Critical alpha level (α_{crit})

Significance of correlation						
df	critical					
<u>(N-2)</u>	p = .05					
5	.67	The size of				
10	.50	correlation				
15	.41					
20	.36	required to be				
25	.32	significant				
30	.30	decreases as N				
50	.23	increases -				
200	.11					
500	.07	why?				
1000	.05	58				

Practice quiz question: Significance of correlation

If the correlation between Age and test Performance is statistically significant, it means that:

- a. there is an important relationship between Age and test Performance
- b. the true correlation between Age and Performance in the population is equal to 0
- c. the true correlation between Age and Performance in the population is not equal to 0
- d. getting older causes you to do poorly on tests
 61

Interpreting correlation

62

Coefficient of Determination (r2)

- CoD = The proportion of variance or change in one variable that can be accounted for by another variable.
- e.g., r = .60, $r^2 = .36$

Interpreting correlation (Cohen, 1988)

- A correlation is an effect size
- Rule of thumb

 Strength
 r
 r²

 Weak:
 .1 - .3
 1 - 10%

 Moderate:
 .3 - .5
 10 - 25%

 Strong:
 >.5
 > 25%

64

Interpreting correlation (Evans, 1996)

<u>Strength</u>	<u>r</u>	<u>r²</u>
very weak	019	(0 to 4%)
weak	.2039	(4 to 16%)
moderate	.4059	(16 to 36%)
strong	.6079	(36% to 64%)
very strong	.80 - 1.00	(64% to 100%)

What do you estimate the correlation of this scatterplot to be?

a. -.5
b. -1
c. 0
d. .5
e. 1

Write-up: Example

"Number of children and marital satisfaction were inversely related (r(48) = -.35, p < .05), such that contentment in marriage tended to be lower for couples with more children. Number of children explained approximately 10% of the variance in marital satisfaction, a small-moderate effect (see Figure 1)."

Assumptions and limitations

(Pearson product-moment linear correlation)

73

Assumptions and limitations

- 1. Levels of measurement
- 2. Normality
- 3. Linearity
 - 1. Effects of outliers
 - 2. Non-linearity
- 4. Homoscedasticity
- 5. No range restriction
- 6. Homogenous samples
- 7. Correlation is not causation

74

Normality

- The X and Y data should be sampled from populations with normal distributions
- Do not overly rely on a single indicator of normality; use histograms, skewness and kurtosis (within -1 and +1)
- Inferential tests of normality (e.g., Shapiro-Wilks) are overly sensitive when sample is large

Effect of outliers

- Outliers can disproportionately increase or decrease *r*.
- Options
 - -compute *r* with & without outliers
 - -get more data for outlying values
 - recode outliers as having more conservative scores
 - -transformation
 - recode variable into lower level of measurement

Non-linear relationships

Check scatterplot Can a linear relationship 'capture' the lion's share of the variance?

If so,use r.

Non-linear relationships

If non-linear, consider

- Does a linear relation help?
- Transforming variables to 'create' linear relationship
- Use a non-linear mathematical function to describe the relationship between the variables

80

Scedasticity

- <u>Homo</u>scedasticity refers to even spread about a line of best fit
- <u>Hetero</u>scedasticity refers to uneven spread about a line of best fit
- Assess visually and with Levene's test

Range restriction

- Range restriction is when the sample contains restricted (or truncated) range of scores
 - -e.g., level of hormones and age < 18 might have linear relationship
- If range restriction, be cautious in generalising beyond the range for which data is available
 - -e.g., level of hormones may not continue to increase linearly with age after age 18

ี่ยร

Heterogenous samples

- Sub-samples (e.g., males & females) may artificially increase or decrease overall r.
- Solution calculate separately for subsamples & overall, look for differences

Scatterplot of Same-sex & Opposite-sex Relations by Gender

Scatterplot of Weight and Selfesteem by Gender

$$\int_{0}^{\infty} r = .50$$

$$\Omega r = -.48$$

Dealing with several correlations

91

Dealing with several correlations

Scatterplot matrices organise scatterplots and correlations amongst several variables at once.

However, they are not sufficiently for over for more than about five variables at a time.

Image source: Unknow

92

Correlation matrix: Example of an APA Style Correlation Table

Table 1. Correlations Between Five Life Effectiveness Factors for Adolescents and Adults (N = 3640)

	Time Manage- ment	Social Compet- ence	Achieve- ment Motivation	Intellectual Flexibility	Task Leadership
Time Management		.36	.53	.31	.42
Social Competence			.37	.32	.57
Achievement Motivation				.42	.41
Intellectual Flexibility					.37
Task Leadership					

Summary

95

Summary: Covariation

- 1. The world is made of covariations.
- 2. Covariations are the building blocks of more complex analyses, including
 - 1. factor analysis
 - 2. reliability analysis
 - 3. multiple regression

Summary:						
Purpose of	correlation					

- 1. Correlation is a standardised measure of the extent to which two phenomenon co-relate.
- 2. Correlation does not prove causation may be opposite causality, co-causal, or due to other variables.

97

Summary: Types of correlation

- Nominal by nominal:
 Phi (Φ) / Cramer's V, Chi-squared
- Ordinal by ordinal: Spearman's rank / Kendall's Tau b
- Dichotomous by interval/ratio: Point bi-serial r_{pb}
- Interval/ratio by interval/ratio: Product-moment or Pearson's *r*

98

Summary: Correlation steps

- Choose measure of correlation and graphs based on levels of measurement.
- 2. Check graphs (e.g., scatterplot)

Summary: Correlation steps 3. Consider -Effect size (e.g., Φ, Cramer's V, r, r²) -Direction -Inferential test (p) 4. Interpret/Discuss -Relate back to hypothesis -Size, direction, significance -Limitations e.g., • Heterogeneity (sub-samples) Range restriction Causality? 100 **Summary:** Interpreting correlation · Coefficient of determination -Correlation squared -Indicates % of shared variance **Strength** <u>r</u> <u>r</u>2 1 – 10% Weak: .1 - .3 .3 - .5 10 - 25% Moderate: Strong: > .5 > 25% 101 **Summary: Asssumptions & limitations** 1. Levels of measurement 2. Normality 3. Linearity 1. Effects of outliers 2. Non-linearity

102

4. Homoscedasticity5. No range restriction6. Homogenous samples

7. Correlation is not causation

Summary: Dealing with several correlations

- Correlation matrix
- Scatterplot matrix

103

References

Evans, J. D. (1996). *Straightforward statistics for the behavioral sciences*. Pacific Grove, CA: Brooks/Cole Publishing.

Howell, D. C. (2007). Fundamental statistics for the behavioral sciences. Belmont, CA: Wadsworth.

Howell, D. C. (2010). Statistical methods for psychology (7th ed.). Belmont, CA: Wadsworth.

Howitt, D. & Cramer, D. (2011). *Introduction to statistics in psychology* (5th ed.). Harlow, UK: Pearson.

104

Open Office Impress

- This presentation was made using Open Office Impress.
- Free and open source software.
- http://www.openoffice.org/product/impress.html

