Correlation

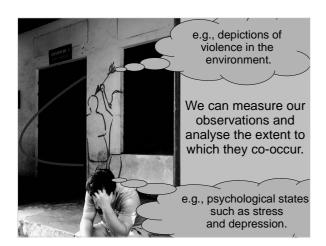
Lecture 4

Survey Research & Design in Psychology James Neill, 2017 Creative Commons Attribution 4.0

Readings Howitt & Cramer (2014)

- Ch 7: Relationships between two or more variables: Diagrams and tables
- Ch 8: Correlation coefficients: Pearson correlation and Spearman's rho
- Ch 11: Statistical significance for the correlation coefficient: A practical introduction to statistical inference
- Ch 15: Chi-square: Differences between samples of frequency data
- Note: Howitt and Cramer doesn't cover point bi-serial correlation2

Overview



- 1. Covariation
- 2. Purpose of correlation
- 3. Linear correlation
- 4. Types of correlation
- 5. Interpreting correlation
- 6. Assumptions / limitations

Covariation 4 e.g., pollen and bees e.g., study and grades

The world is made of co-variations

e.g., nutrients and growth

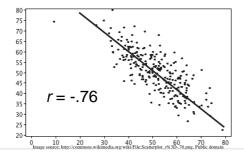
Co-variations are the basis of more complex models.	
Purpose of correlation	
Purpose of correlation The underlying purpose of correlation is to help address the question: What is the • relationship or • association or • shared variance or • co-relation between two variables?	

Purpose of correlation

Other ways of expressing the underlying correlational question include:

To what extent do variables

- covary?
- depend on one another?
- explain one another?


10

Linear correlation

11

Linear correlation

Extent to which two variables have a simple **linear** (straight-line) relationship.

Linear correlation

The linear relation between two variables is indicated by a correlation:

- **Direction:** Sign (+ / -) indicates direction of relationship (+ve or -ve slope)
- **Strength:** Size indicates strength (values closer to -1 or +1 indicate greater strength)
- **Statistical significance:** *p* indicates likelihood that the observed relationship could have occurred by chance

13

Types of relationships

- No relationship (r ~ 0)
 (X and Y are independent)
- Linear relationship (X and Y are dependent)
 - -As X \uparrow s, so does Y (r > 0)
 - $-As X \uparrow s, Y \downarrow s (r < 0)$
- Non-linear relationship

14

Types of correlation

To decide which type of correlation to use, consider the **levels of measurement** for each variable.

Types of correlation

- Nominal by nominal: Phi (Φ) / Cramer's V, Chi-square
- Ordinal by ordinal: Spearman's rank / Kendall's Tau b
- Dichotomous by interval/ratio: Point bi-serial r_{pb}
- Interval/ratio by interval/ratio: Product-moment or Pearson's r

16

Ordinal Int/Ratio Clustered bar Clustered barchart or chart scatterplot Nominal Chi-square, \leftarrow Recode Point bi-serial Phi (φ) or Cramer's *V* correlation (r_{pb}) Clustered bar chart or scatterplot Spearman's **仁**↑Recode Ordinal

Rho or Kendall's Tau

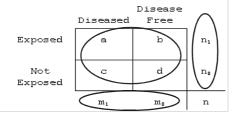
Scatterplot Product-

Types of correlation and LOM

moment correlation (17)

Interval/Ratio

Nominal by nominal


Nominal by nominal correlational approaches

- Contingency (or cross-tab) tables
 - Observed frequencies
 - Expected frequencies
 - Row and/or column %s
 - Marginal totals
- Clustered bar chart
- Chi-square
- Phi (φ) / Cramer's V

19

Contingency tables

- · Bivariate frequency tables
- Marginal totals (blue)
- · Observed cell frequencies (red)

Contingency table: Example

Snoring Do you snore? ${}^{\scriptscriptstyle \Lambda}$ Smokingr Smoking status Crosstabulation

Count

		Smokingr Smo	king status	
		0 Non- smoker	1 Smoker	Total
Snoring Do you snore?	0 yes	50	16	66
	1 no	111		122
Total		161	27	188

BLUE = Marginal totals RED = Cell frequencies

ر 1

Contingency table: Example

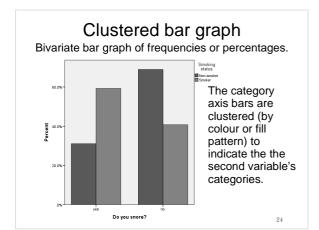
 χ^2 = sum of ((observed – expected)²/ expected)

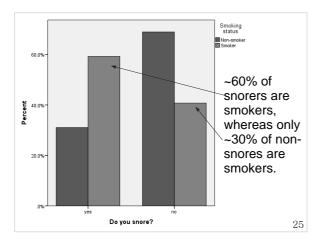
Snoring Do you snore? * Smokingr Smoking status Crosstabulation

			Smokingr Smo	king status	
			0 Non- smoker 2	1 Smoker 2	Total
Snoring Do you snore?	0 yes	Count	(- 50)	(-16)	66
		Expected Count	56.5	9.5	66.0
	1 no	Count	(111)	(11)	122
		Expected Count	104.5	17.5	122.0
Total		Count	161	27	188
		Expected Count	161.0	27.0	188.0

- •Expected counts are the cell frequencies that should occur if the variables are not correlated.
- •Chi-square is based on the squared differences between the actual and expected cell counts.

22


Cell percentages


Row and/or column cell percentages can also be useful e.g., ~60% of smokers snore, whereas only ~30% of non-smokers snore.

Snoring Do you snore? * Smokingr Smoking status Crosstabulation

% within Smokingr Smoking status

			Smekingr/Smoking status		
		0 Non smoker	1 Smoker	Total	
Snoring Do you snore?	0 yes	31.1%	59.3%	35.1%	
	1 no	68.9%	40.7%	64.9%	
Total		100.0%	100.0%	100.0%	

Pearson chi-square test

The value of the test-statistic is

$$X^2 = \sum rac{(O-E)^2}{E},$$

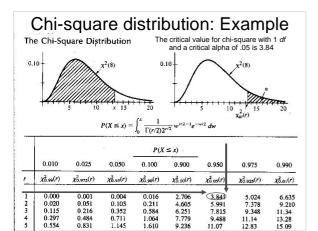
where

 $oldsymbol{X}^2$ = the test statistic that approaches a χ^2 distribution.

O = frequencies observed;

 \emph{E} = frequencies expected (asserted by the null hypothesis).

26


Pearson chi-square test: Example

Smoking (2) x Snoring (2)

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	(8.073°)		(.004)	
Continuity Correction ^b	6.883	1	.009		
Likelihood Ratio	7.694	1	.006		
Fisher's Exact Test				.008	.005
Linear-by-Linear Association	8.030	1	.005		
N of Valid Cases	188	•			

Write-up: χ^2 (1, 188) = 8.07, p = .004

Phi (φ) & Cramer's V

(non-parametric measures of correlation)

Phi (φ)

• Use for 2 x 2, 2 x 3, 3 x 2 analyses e.g., Gender (2) & Pass/Fail (2)

Cramer's V

 Use for 3 x 3 or greater analyses e.g., Favourite Season (4) x Favourite Sense (5)

29

Phi (φ) & Cramer's V: Example

Symmetric Measures

		Value	Approximate Significance
Nominal by Nominal	Phi	-207	004
	Cramer's V	.207	.004
N of Valid Cases		188	

$$\chi^2$$
 (1, 188) = 8.07, p = .004, ϕ = .21

Note that the sign is ignored here (because nominal coding is arbitrary, the researcher should explain the direction of the relationship)

Ordinal by ordinal

31

Ordinal by ordinal correlational approaches

- Spearman's rho (r_s)
- Kendall tau (τ)
- Alternatively, use nominal by nominal techniques (i.e., recode the variables or treat them as having a lower level of measurement)

32

Graphing ordinal by ordinal data

- Ordinal by ordinal data is difficult to visualise because its non-parametric, with many points.
- Consider using:
 - -Non-parametric approaches (e.g., clustered bar chart)
 - -Parametric approaches(e.g., scatterplot with line of best fit)

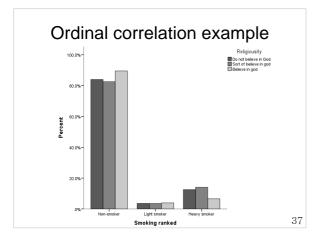
Spearman's rho (r_s) or Spearman's rank order correlation

- For ranked (ordinal) data
 - -e.g., Olympic Placing correlated with World Ranking
- Uses product-moment correlation formula
- Interpretation is adjusted to consider the underlying ranked scales

34

Kendall's Tau (τ)

- Tau a
 - -Does not take joint ranks into account
- Tau b
 - -Takes joint ranks into account
 - -For square tables
- Tau c
 - -Takes joint ranks into account
 - -For rectangular tables


35

Ordinal correlation example Godranked Religiousity

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	0 Do not believe in God	56	29.5	29.5	29.5
l	1 Sort of believe in god	57	30.0	30.0	59.5
	2 Believe in god	77	40.5	40.5	100.0
I	Total	190	100.0	100.0	

Smokingranked Smoking ranked

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	0 Non-smoker	162	85.3	85.7	85.7
	1 Light smoker	7	3.7	3.7	89.4
	2 Heavy smoker	20	10.5	10.6	100.0
	Total	189	99.5	100.0	
Missing	System	1	.5		
Total		190	100.0		

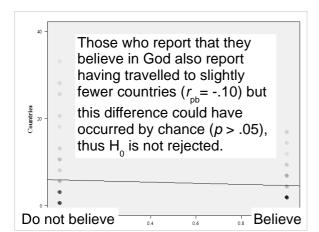
Ordinal correlation example

Correlations

			Godranked Religiousity	Smokingrank ed Smoking ranked
Kendall's tau_b	Godranked Religiousity	Correlation Coefficient	1.000	071
		Sig. (2-tailed)		298
		N	190	189
	Smokingranked Smoking	Correlation Coefficient	071	1.000
	ranked	Sig. (2-tailed)	.298	
		N	189	189

$$T_b = -.07, p = .298$$

38


Dichotomous by scale (interval/ratio)

Point-biserial correlation (r_{pb})

- One dichotomous & one interval/ratio variable
 - -e.g., belief in god (yes/no) and number of countries visited
- Calculate as for Pearson's product-moment r
- Adjust interpretation to consider the direction of the dichotomous scales

40

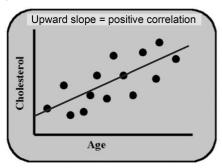
42

Point-biserial correlation (r_{pb}) : Example

Correlations

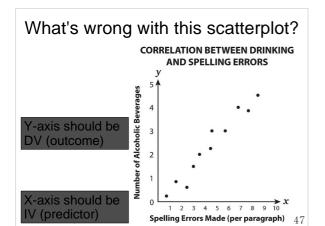
		b4r God	b8 Countries
b4r God	Pearson Correlation	1	095
0 = No	Sig. (2-tailed)		.288
1 = Yes	N	127	127
b8 Countries	Pearson Correlation	095	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
	Sig. (2-tailed)	.288	
	N	127	190
	·		

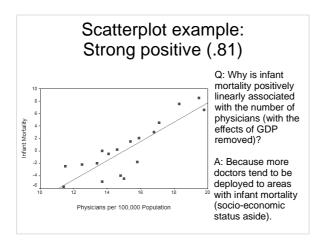
Scale (interval/ratio) by Scale (interval/ratio)

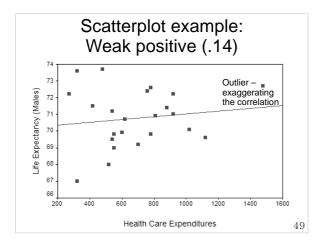

43

Scatterplot

- Plot each pair of observations (X, Y)
 - -x = predictor variable (independent; IV)
 - -y = criterion variable (dependent; DV)
- By convention:
 - -IV on the x (horizontal) axis
 - -DV on the y (vertical) axis
- Direction of relationship:
 - -+ve = trend from bottom left to top right
 - --ve = trend from top left to bottom right


44


Scatterplot showing relationship between age & cholesterol with line of best fit



Line of best fit

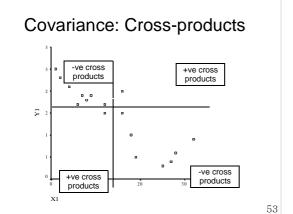
- The correlation between 2 variables is a measure of the degree to which pairs of numbers (points) cluster together around a best-fitting straight line
- Line of best fit: y = a + bx
- Check for:
 - outliers
 - linearity

Scatterplot example: Moderately strong negative (-.76) Q: Why is there 32 a strong negative correlation Breast Cancer Rate 30 between solar radiation and 28 breast cancer? 26 A: Having sufficient Vitamin D (via sunlight) lowers risk of cancer. However, UV light exposure increases risk of skin cancer. Solar Radiation 50

Pearson product-moment correlation (r)

 The product-moment correlation is the standardised covariance.

$$r_{X,Y} = \frac{\text{cov}(X,Y)}{S_X S_Y}$$


Covariance

• Variance shared by 2 variables

$$Cov_{XY} = \frac{\Sigma(X - \overline{X})(Y - \overline{Y})}{N - 1}$$
 Cross products
 $N - 1$ for the sample; N for the population

- Covariance reflects the direction of the relationship:
 - +ve cov indicates +ve relationship -ve cov indicates -ve relationship
- •Covariance is unstandardised.

52

Covariance → **Correlation**

- Size depends on the measurement scale → Can't compare covariance across different scales of measurement (e.g., age by weight in kilos <u>versus</u> age by weight in grams).
- Therefore, standardise covariance (divide by the cross-product of the SDs) → correlation
- Correlation is an effect size i.e., standardised measure of strength of linear relationship

Covariance, *SD*, and correlation: Example quiz question

The covariance between *X* and *Y* is 1.2. The *SD* of *X* is 2 and the *SD* of *Y* is 3. The correlation is:

a. 0.2

b. 0.3

c. 0.4

d. 1.2

Answer: $1.2 / 2 \times 3 = 0.2$

55

Hypothesis testing

Almost all correlations are not 0. So, hypothesis testing seeks to answer:

- What is the **likelihood** that an observed relationship between two variables is "true" or "real"?
- What is the **likelihood** that an observed relationship is simply due to chance?

56

Significance of correlation

- Null hypothesis (H₀): ρ = 0 i.e., no "true" relationship in the population
- Alternative hypothesis (H₁): $\rho <> 0$ i.e., there is a real relationship in the population
- Initially, assume H₀ is true, and then evaluate whether the data support H₁.
- **ρ** (**rho**) = *population* product-moment correlation coefficient

How to test the null hypothesis

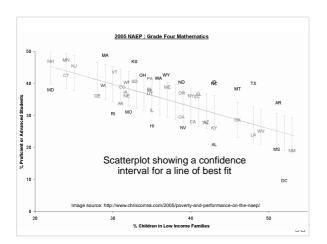
- Select a critical value (alpha (α)); commonly .05
- Use a 1- or 2-tailed test; 1-tailed if hypothesis is directional
- Calculate correlation and its *p* value. Compare to the critical alpha value.
- If p < critical alpha, correlation is statistically significant, i.e., there is less than critical alpha chance that the observed relationship is due to random sampling variability.

58

59

Correlation - SPSS output

Correlations				
		Cigarette Consumption per Adult per Day	CHD Mortali ty per 10,000	
Cigarette Consumption per Adult per Day	Pearson Correlation Sig. (2-tailed) N			
CHD Mortality per 10,000	Pearson Correlation Sig. (2-tailed) N	.000)	


*. Correlation is significant at the 0.01 level (2-tailed).

Errors in hypothesis testing

- Type I error: decision to reject H_0 when H_0 is true
- Type II error: decision to not reject H₀ when H₀ is false
- A significance test outcome depends on the statistical power which is a function of:
 - -Effect size (r)
 - -Sample size (N)
 - –Critical alpha level (α_{crit})

Significance of correlation							
df	critical						
<u>(N - 2)</u>	p = .05						
5	.67	The higher the					
10	.50	•					
15	.41	N, the smaller					
20	.36	the correlation					
25	.32	required for a					
30	.30	statistically					
50	.23	significant result					
200	.11	•					
500	.07	– why?					
1000	.05	61					

Scatterplot showing a confidence interval for a line of best fit Age

Practice quiz question: Significance of correlation

If the correlation between Age and Performance is statistically significant, it means that:

- a. there is an important relationship between the variables
- b. the true correlation between the variables in the population is equal to 0
- c. the true correlation between the variables in the population is not equal to 0
- d. getting older causes you to do poorly on tests

Interpreting correlation

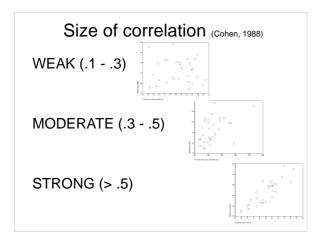
65

Coefficient of Determination (r2)

- CoD = The proportion of variance in one variable that can be accounted for by another variable.
- e.g., r = .60, $r^2 = .36$ or 36% of shared variance

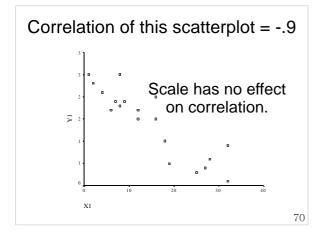
Interpreting correlation (Cohen, 1988)

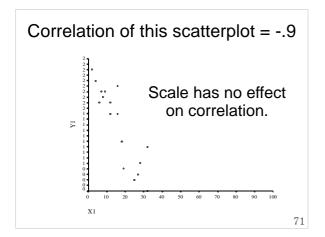
- A correlation is an effect size
- Rule of thumb:

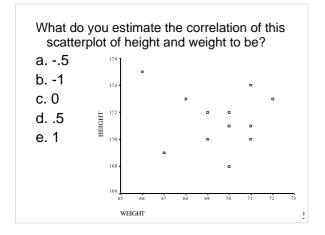

 Strength
 r
 r²

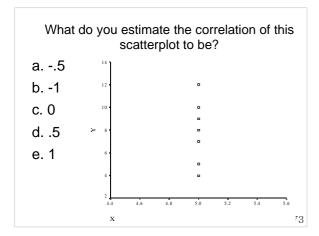
 Weak:
 .1 - .3
 1 - 9%

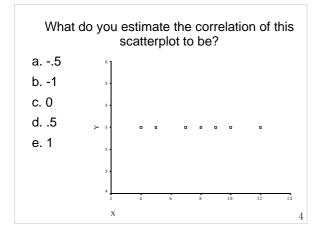
 Moderate:
 .3 - .5
 10 - 25%


 Strong:
 >.5
 > 25%


67




Interpreting correlation (Evans, 1996)


<u>Strength</u>	<u>r</u>	<u>r²</u>
very weak	019	(0 to 4%)
weak	.2039	(4 to 16%)
moderate	.4059	(16 to 36%)
strong	.6079	(36% to 64%)
very strong	.80 - 1.00	(64% to 100%)

Write-up: Example

"Number of children and marital satisfaction were inversely related (r(48) = -.35, p < .05), such that contentment in marriage tended to be lower for couples with more children. Number of children explained approximately 10% of the variance in marital satisfaction, a small-moderate effect."

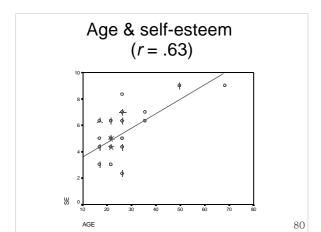
Assumptions and limitations

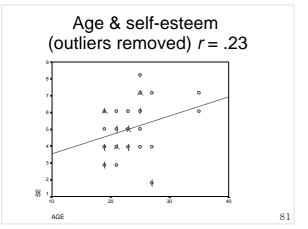
(Pearson product-moment linear correlation)

76

Assumptions and limitations

- 1. Levels of measurement
- 2. Normality
- 3. Linearity
 - 1. Effects of outliers
 - 2. Non-linearity
- 4. Homoscedasticity
- 5. No range restriction
- 6. Homogenous samples
- 7. Correlation is not causation
- 8. Dealing with multiple correlations

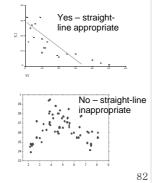

77


Normality

- The X and Y data should be sampled from populations with normal distributions
- Do not overly rely on any single indicator of normality; use histograms, skewness and kurtosis (e.g., within -1 and +1)
- Inferential tests of normality (e.g., Shapiro-Wilks) are overly sensitive when sample is large

Effect of outliers

- Outliers can disproportionately increase or decrease *r*.
- Options
 - -compute r with & without outliers
 - -get more data for outlying values
 - recode outliers as having more conservative scores
 - -transformation
 - recode variable into lower level of measurement and a non-parametric approach

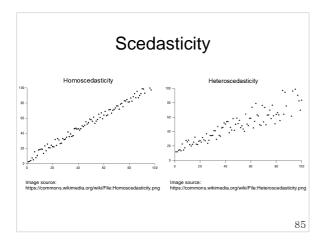


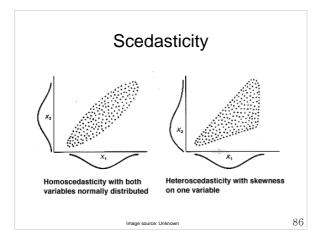
Non-linear relationships

Check scatterplot Can a linear relationship 'capture' the lion's share of the variance?

If so, use r.

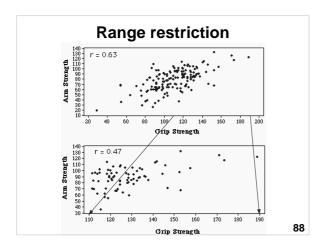
Non-linear relationships

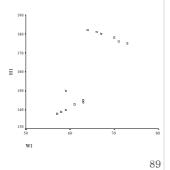

If non-linear, consider:


- Does a linear relation help?
- Use a non-linear mathematical function to describe the relationship between the variables
- Transforming variables to "create" linear relationship

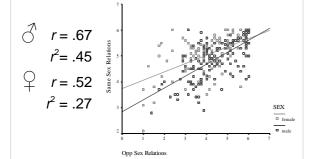
83

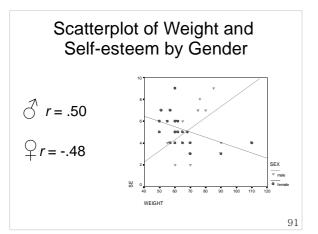
Scedasticity

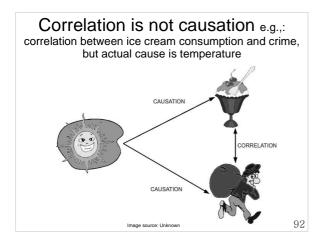

- <u>Homo</u>scedasticity refers to even spread of observations about a line of best fit
- <u>Hetero</u>scedasticity refers to uneven spread of observations about a line of best fit
- Assess visually and with Levene's test

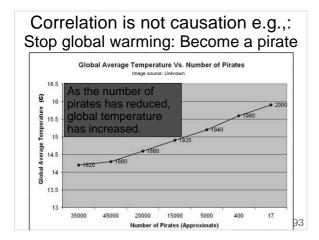

Range restriction

- Range restriction is when the sample contains a restricted (or truncated) range of scores
 - -e.g., level of hormone X and age < 18 might have linear relationship
- If range is restricted, be cautious about generalising beyond the range for which data is available
 - -e.g., level of hormone X may not continue to increase linearly with age after age 18




Heterogenous samples


- Sub-samples (e.g., males & females) may artificially increase or decrease overall r.
- Solution calculate r separately for subsamples & overall; look for differences



Scatterplot of Same-sex & Opposite-sex Relations by Gender

Dealing with several correlations

Scatterplot matrices organise scatterplots and correlations amongst several variables at once.

However, they are not sufficiently detailed for more than about five variables at a time.

	0.96	0.80	0.40	0.025
		0.76	0.38	0.029
**	*		0.32	0.0046
*	*			0.03

Image source: Unknow

94

Correlation matrix: Example of an APA Style Correlation Table

 $\begin{tabular}{ll} \begin{tabular}{ll} Table 1. \\ \begin{tabular}{ll} Correlations Between Five Life Effectiveness Factors for Adolescents and Adults (N = 3640) \\ \end{tabular}$

	Time Manage- ment	Social Compet- ence	Achieve- ment Motivation	Intellectual Flexibility	Task Leadership
Time Management		.36	.53	.31	.42
Social Competence			.37	.32	.57
Achievement Motivation				.42	.41
Intellectual Flexibility					.37
Task Leadership					
					Q.

Summary

Summary: Correlation	
1. The world is made of covariations.	
Covariations are the building blocks of more complex multivariate relationships.	
3. Correlation is a standardised measure of the covariance (extent to which two phenomenon co-relate).	
4. Correlation does not prove causation - may be opposite causality, bi-directional, or due to other variables. ₉₇	
Summary: Types of correlation	
Nominal by nominal:	
Phi (Φ) / Cramer's <i>V</i> , Chi-square	
Ordinal by ordinal:	
Spearman's rank / Kendall's Tau b	
• Dichotomous by interval/ratio: Point bi-serial r_{ob}	
 Interval/ratio by interval/ratio: Product-moment or Pearson's r 	
98	
Summary	
Summary: Correlation steps	
1. Choose measure of correlation	
and graphs based on levels of measurement.	
2. Check graphs (e.g., scatterplot):	
Linear or non-linear?Outliers?	
Homoscedasticity?Range restriction?	
– Sub-samples to consider?	

Summary: Correlation steps

- 3. Consider
 - -Effect size (e.g., Φ , Cramer's V, r, r^2)
 - -Direction
 - -Inferential test (p)
- 4. Interpret/Discuss
 - -Relate back to hypothesis
 - -Size, direction, significance

 - Limitations e.g.,Heterogeneity (sub-samples)
 - Range restriction
 - Causality?

100

Summary: Interpreting correlation

- · Coefficient of determination
 - -Correlation squared
 - -Indicates % of shared variance

Strength <u>r</u> <u>r</u>2 1 – 10% Weak: .1 - .3 .3 - .5 10 - 25% Moderate: Strong: > .5 > 25%

101

Summary: Asssumptions & limitations

- 1. Levels of measurement
- 2. Normality
- 3. Linearity
- 4. Homoscedasticity
- 5. No range restriction
- 6. Homogenous samples
- 7. Correlation is not causation
- 8. Dealing with multliple correlations

References

Evans, J. D. (1996). *Straightforward statistics for the behavioral sciences*. Pacific Grove, CA: Brooks/Cole Publishing.

Howell, D. C. (2007). Fundamental statistics for the behavioral sciences. Belmont, CA: Wadsworth.

Howell, D. C. (2010). Statistical methods for psychology (7th ed.). Belmont, CA: Wadsworth.

Howitt, D. & Cramer, D. (2011). *Introduction to statistics in psychology* (5th ed.). Harlow, UK: Pearson.

103

Open Office Impress

- This presentation was made using Open Office Impress.
- Free and open source software.
- http://www.openoffice.org/product/impress.html

