
Summary & Conclusion

Lecture 10 Survey Research & Design in Psychology James Neill, 2015 Creative Commons Attribution 4.0

Overview

- 1. Survey research
- 2. Survey design
- 3. Descriptives & graphing
- 4. Correlation
- 5. Psychometric instrument development
- 6. Multiple linear regression
- 7. Power & effect sizes

Types of research

- Types of research:
 - Experimental
 - Quasi-experimental
 - Non-experimental
- Surveys are used in all types.

What is a survey?

- What is a survey?
 - A standardised stimulus for converting fuzzy psychological phenomenon into hard data.
- History
 - Survey research has developed into a popular research method since the 1920s.

3

Purposes of research

- Purposes/goals of research:
 - Info gathering
 - Exploratory
 - Descriptive
 - Theory testing/building
 - Explanatory
 - Predictive

6

2

Survey research

Survey research

Pros include:

- Ecological validity
- Cost efficiency
- · Can obtain lots of data
- Cons include:
- Low compliance
- Reliance on self-report

Survey design (Lecture 2)

Survey types

Self-administered

-Pros:

Cost

- Opposite for interviewadministered surveys
- demand characteristics
- · access to representative sample
- anonymity
- -Cons:
 - Non-response
 - adjustment to cultural differences, special needs

9

11

7

Survey questions

- 1. Objective vs. subjective questions
 - 1. Objective there is a verifiably true answer
 - 2. Subjective based on perspective of respondent
- 2. Open vs. closed
 - 1. Open empty space for answer
 - 2. Closed pre-set response format options

10

8

Level of measurement

1. Categorical/Nominal

- 1. Arbitrary numerical labels
- 2. Could be in any order

2. Ordinal

- 1. Ordered numerical labels
- 2. Intervals may not be equal

3. Interval

1. Ordered numerical labels 2. Equal intervals

4. Ratio

- 1. Data are continuous
- 2. Meaningful 0

Response formats

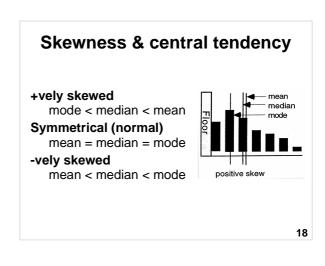
- 1. Dichotomous and Multichotomous
- 2. Multiple response
- 3. Verbal frequency scale (Never... Often)
- 4. Ranking (in order \rightarrow Ordinal)
- 5. Likert scale (equal distances \rightarrow Interval, typically with 3 to 9 options)
- 6. Graphical rating scale (e.g., line)
- 7. Semantic differential (opposing words)
- 8. Non-verbal (idiographic)

Sampling 1. Key terms	
1. (Target) population	
2. Sampling frame	Descriptives &
3. Sample	•
2. Sampling	graphing
1. Probability 2. Probability	(Lecture 3)
1. Simple (random) 1. Convenience	(, , , , , , , , , , , , , , , , , , ,
2. Systematic 2. Purposive	
3. Stratified 3. Snowball	
13	

Steps with data

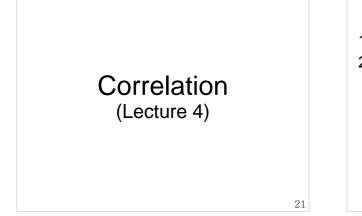
Spend '**quality time**' investigating (exploring and describing) your data

- 1. Get intimate (don't be afraid)
- 2. Check and screen the data
- 3. Explore, describe, and graph
- 4. Clearly report the data's main features


15

Descriptive statistics

- Level of measurement and normality determines whether data can be treated as parametric
- What is the central tendency?
 –Frequencies, Percentages
 –Mode, Median, Mean
- What is the **variability**?
 - -Min, Max, Range, Quartiles
 - -Standard Deviation, Variance


Principles of graphing

- Clear purpose
- Maximise clarity
- Minimise clutter
- Cleveland's hierarchy
 - Allow visual comparison

Univariate graphical techniques

- Bar graph / Pie chart
- Histogram
- Stem & leaf plot
- Box plot (Box & whisker)
- Data plot / Error bar

19

Covariation

- 1. The world is made of covariations.
- 2. Covariations are the building blocks of more complex relationships which can be analysed through the use of:
 - 1. factor analysis
 - 2. reliability analysis
 - 3. multiple regression

22

20

Purpose of correlation

- 1. Correlation is a standardised measure of the covariance (extent to which two phenomenon corelate).
- 2. Correlation does not prove causation – may be opposite causality, bi-directional, or due to other variables.

Types of correlation

- Nominal by nominal: Phi (Φ) / Cramer's V, Chi-squared
- Ordinal by ordinal: Spearman's rank / Kendall's Tau b
- Dichotomous by interval/ratio: Point bi-serial *r*_{pb}
- Interval/ratio by interval/ratio: Product-moment or Pearson's *r*

Correlation steps

- Choose measure of correlation and graphs based on levels of measurement.
- 2. Check graphs (e.g., scatterplot):
 - -Linear or non-linear?
 - -Outliers?
 - -Homoscedasticity?
 - -Range restriction?
 - -Sub-samples to consider?

Correlation steps

- 3. Consider
 - -Effect size (e.g., Φ , Cramer's V, r, r²) -Direction
 - -Inferential test (p)
- 4. Interpret/Discuss
 - -Relate back to hypothesis
 - -Size, direction, significance
 - -Limitations e.g.,
 - Heterogeneity (sub-samples)
 Range restriction
 - Range resti
 Causality?
 - Causality?

26

Interpreting correlation

- Coefficient of determination
 - -Correlation squared

-Indicates % of shared variance

<u>Strength</u>	<u>r</u>	<u>r</u> ²
Weak:	.13	1 – 10%
Moderate:	.35	10 - 25%
Strong:	> .5	> 25%

27

25

Assumptions & limitations Levels of measurement Normality Linearity Effects of outliers Non-linearity Homoscedasticity No range restriction Homogenous samples

7. Correlation is not causation

28

Dealing with several correlations

- Correlation matrix
- Scatterplot matrix

Exploratory factor analysis (Lecture 5)

29

What is factor analysis?

- Factor analysis is a family of multivariate correlational data analysis methods for summarising clusters of covariance.
- FA summarises correlations amongst items.
- The common clusters (called factors) are summary indicators of underlying fuzzy constructs.

31

AO

33

Assumptions

- Sample size
 - 5+ cases per variables (ideally 20+ cases per variable) - N > 200
- Bivariate & multivariate outliers
- Factorability of correlation matrix (Measures of Sampling Adequacy)
- Normality enhances the solution

32

Steps / process

- 1. Test assumptions
- 2. Select type of analysis
- 3. Determine no. of factors (Eigen Values, Scree plot, % variance explained)
- 4. Select items (check factor loadings to identify which items belong in which factor; drop items one by one; repeat)
- 5. Name and define factors
- 6. Examine correlations amongst factors
- 7. Analyse internal reliability | Lecture
- 8. Compute composite scores 6

Types of FA

- **PAF** (Principal Axis Factoring): Best for theoretical data exploration –uses shared variance
- PC (Principal Components): Best for data reduction

 uses all variance
- Consider trying both ways –Are solutions different? Why?

34

36

Rotation

- Orthogonal (Varimax)
 perpendicular (uncorrelated) factors
- Oblique (Oblimin)
 - angled (correlated) factors
- Consider trying both ways
 - Are solutions different? Why?

Factor extraction

How many factors to extract?

- Inspect EVs

 look for > 1 or sudden drop (inspect scree plot)
- % of variance explained - aim for 50 to 75%
- Interpretability

 does each factor 'make sense'?
- Theory

 does the model fit with theory?

Item selection

An EFA of a good measurement instrument ideally has:

- a simple factor structure (each variable loads strongly (> +.50) on only one factor)
- each factor has at least 3 strongly loading variables (more loadings → greater reliability)
- factor loadings are high (> .6) or low (< .3) , with few intermediate values (.3 to .6).

37

FAQ

What is psychometrics?

- 1. Science of psychological measurement
- 2. Goal: Validly measure individual psychosocial differences
- 3. Design and test psychological measures e.g., using
 - 1. Factor analysis
 - 2. Reliability and validity

39

41

Concepts & their measurement

- 1. Concepts name common elements
- 2. Hypotheses identify relations between concepts
- 3. Brainstorm indicators of a concept
- 4. Define the concept
- 5. Draft measurement items
- 6. Pre-test and pilot test
- 7. Examine psychometric properties
- 8. Redraft/refine and re-test

40

38

Measurement error

- 1. Deviation of measure from true score
- 2. Sources:
 - 1. Non-sampling (e.g., paradigm, respondent bias, researcher bias)
 - 2. Sampling (e.g., non-representativeness)

3. How to minimise:

- 1. Well-designed measures
- 2. Reduce demand effects
- 3. Representative sampling
- 4. Maximise response rate
- 5. Ensure administrative accuracy

Reliability

- 1. Consistency or reproducability
- 2. Types
 - Internal consistency
 Test-retest reliability
- 3. Rule of thumb
 - 1. > .6 OK
 - 2. > .8 Very good
- 4. Internal consistency
 - 1. Split-half
 - 2. Odd-even
 - 3. Cronbach's alpha

42

Psychometrics instrument development (Lecture 6)

Validity

- 1. Extent to which a measure measures what it is intended to measure
- 2. Multifaceted
 - 1. Correlations with similar measures
 - 2. Performance in relation to other variables
 - 3. Predicts future

43

47

Composite scores

Ways of creating composite (factor) scores:

- 1. Unit weighting
 - Total of items or
 Average of items (recommended for lab report)
- 2. Regression weighting
 - Each item is weighted by its importance to measuring the underlying factor (based on regression weights)

Writing up instrument development

1. Introduction

- 1. Review constructs & previous structures
- 2. Generate research question

2. Method

1. Explain measures and their development

3. Results

- 1. Factor analysis
- 2. Reliability of factors
- 3. Descriptive statistics for composite scores
- 4. Correlations between factors

4. Discussion

1. Theory? / Measure? / Recommendations? 45

Multiple linear regression (Lectures 7 & 8)

46

Linear regression

1. Best-fitting straight line for a scatterplot of two variables

2. Y = bX + a + e

- 1. Predictor (X; IV)
- 2. Outcome (Y; DV)
- 3. Least squares criterion
- 4. Residuals are the vertical distance between actual and predicted values

Level of measurement and dummy coding

- 1. Levels of measurement
 - 1. DV = Continuous
 - 2. IV = Continuous or dichotomous
- 2. Dummy coding
 - 1. Convert complex variable into series of dichotomous IVs

Multiple linear regression

- 1. Multiple IVs to predict a single DV:
 - $Y = b_1 x_1 + b_2 x_2 + \dots + b_i x_i + a + e$
- 2. Overall fit: R, R^2 , and Adjusted R^2 3. Coefficients
 - 1. Relation between each IV and the DV, adjusted for the other IVs
 - 2. B, β , t, p, and r_{p}
- 4. Types
 - 1. Standard
 - 2. Hierarchical
 - 3. Stepwise / Forward / Backward

General steps

- 1. Develop model and hypotheses
- 2. Check assumptions
- 3. Choose type
- 4. Interpret output
- 5. Develop a regression equation (if needed)

50

Summary: Semi-partial correlation (*sr*)

- 1. In MLR, *sr* is labelled "part" in the regression coefficients table SPSS output
- 2. *sr*² is the unique % of the DV variance explained by each IV

51

49

Residual analysis

- 1. Residuals are the difference between predicted and observed Y values
- 2. MLR assumption is that residuals are normally distributed.
- 3. Examining residuals also helps assess:
 - 1. Normality
 - 2. Linearity
 - 3. Homoscedasticity

Interactions

- 1. In MLR, IVs may interact to:
 - 1. Increase effect on DV
 - 2. Decrease effect on DV
- 2. Model interactions with hierarchical MLR:
 - 1. Step 1: Enter IVs
 - 2. Step 2: Enter cross-product of IVs
 - 3. Examine change in R^2

53

Analysis of change

Analysis of changes over time can be assessed by:

- 1. Standard regression
 - 1. Calculate difference scores (Time 2 minus Time 1) and use as DV
- 2. Hierarchical MLR
 - Step 1: "Partial out" baseline scores
 Step 2: Enter other IVs to help predict
 - variance in changes over time.

54

Writing up an MLR

- 1. Introduction:
 - 1. Purpose
 - 2. Describe model and hypotheses
- 2. Results:
 - 1. Univariate descriptive statistics
 - 2. Correlations
 - 3. Type of MLR and assumptions
 - 4. Regression coefficients
 - 5. Equation (if appropriate)

55

59

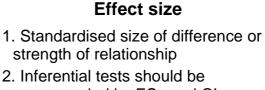
(Lecture 9)

Power & effect size

Significance testing

- 1. Logic At what point do you reject H_0 ?
- 2. History Started 1920s & became popular
- 3. Criticisms Binary, dependent on N, ES, and critical α
- 4. Practical significance
 - 1. Is an effect noticeable?
 - 2. Is it valued?
 - 3. How does it compare with benchmarks? 57

Inferential decision making


		Reality	
		H ₀ False	H ₀ True
Test	Reject H ₀	Correct rejection H_0 \swarrow = Power = 1 - β	Type I error = α
lest	Accept H ₀	Type II error	Correct acceptance \swarrow of H_0

58

56

Statistical power 1. Power = probability of detecting a real effect as statistically significant 2. Increase by: - ↑ N $-\uparrow$ critical α -↑ES Power - >.8 "desirable" ~.6 is more typical · Can be calculated prospectively and

retrospectively

- accompanied by ESs and CIs
- 3. Common bivariate ESs include: 1. Cohen's d 2. Correlation r
- Cohen's *d* not in SPSS use an online effect size calculator

Confidence interval

- 1. Gives 'range of certainty'
- 2. Can be used for B, M, ES
- 3. Can be examined
 - 1. Statistically (upper and lower limits)
 - 2. Graphically (e.g., error-bar graphs)

61

Publication bias

- 1. Tendency for statistically significant studies to be published over non-significant studies
- 2. Indicated by gap in funnel plot \rightarrow file-drawer effect
- 3. Counteracting biases in scientific publishing; tendency:
 - towards low-power studies which underestimate effects
 - -to publish sig. effects over non-sig. effects₆₂

Academic integrity 1. Violations of academic integrity are evident and prevalent amongst those with incentives to do so:

- 1. Students
- 2. Researchers
- 3. Commercial sponsors
- 2. Adopt a balanced, critical approach, striving for objectivity and academic integrity

63

Open Office Impress

- This presentation was made using Open Office Impress.
- Free and open source software.
- <u>http://www.openoffice.org/product/impress.html</u>

