Summary & Conclusion

Lecture 10 Survey Research & Design in Psychology James Neill, 2016
Creative Commons Attribution 4.0

Overview

- 1. Survey research and design

 - Survey research
 Survey design
- 2. Univariate and bivariate
 - Descriptives & graphing
 Correlation
- Psychometrics
 Exploratory factor analysis
 Psychometric instrument development
- 4. Multiple linear regression

 - 1. MLR I 2. MLR II
- 5. Power & summary

 - Power & effect sizes
 Summary and conclusion

2

Questions

- Last chance to ask questions along the way as we review what the unit has covered
- No such thing as a silly question

Survey research (Lecture 1)

4

Types of research

- Surveys are used in all types of research:
 - Experimental
 - Quasi-experimental
 - Non-experimental

5

What is a survey?

- · What is a survey?
 - A standardised stimulus for converting fuzzy psychological phenomenon into hard data.
- History
 - Survey research has developed into a popular social science research method since the 1920s.

ı			
6			

Purposes of research • Purposes of research: Information gathering Exploratory Descriptive Theory testing & building Explanatory Predictive 7 Survey research Pros include: Ecological validity Cost efficiency · Can obtain lots of data Cons include: · Low compliance • Reliance on self-report 8

Survey design (Lecture 2)

S

Survey types

Self-administered

Pros:

- cost

Opposite for interview-administered surveys

- demand characteristics
- access to representative sample
- anonymity

Cons:

- non-response
- adjustment to cultural differences, special needs

10

Survey questions

- Objective versus subjective questions:
 - Objective there is a verifiably true answer
 - Subjective based on perspective of respondent
- Open versus closed questions:
 - Open empty space for answer
 - Closed pre-set response format options

11

Level of measurement

1. Categorical/Nominal

- 1. Arbitrary numerical labels
- 2. Could be in any order

2. Ordinal

- 1. Ordered numerical labels
- 2. Intervals may not be equal

3. Interval

- 1. Ordered numerical labels
- 2. Equal intervals

4. Ratio

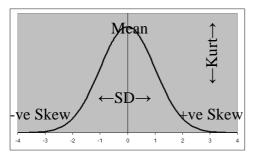
- 1. Data are continuous
- 2. Meaningful 0

Response formats 1. Dichotomous and Multichotomous 2. Multiple response 3. Verbal frequency scale (Never ... Often) 4. Ranking (in order → Ordinal) 5. Likert scale (equal distances → Interval, typically with 3 to 9 options) 6. Graphical rating scale (e.g., line) 7. Semantic differential (opposing words) 8. Non-verbal (idiographic) 13 Sampling 1. Key terms 1. (Target) population 2. Sampling frame 3. Sample 2. Sampling 1. Probability 2. Non-probability 1. Simple (random) 1. Convenience 2. Systematic 2. Purposive 3. Stratified 3. Snowball 14 Descriptives & graphing (Lecture 3)

Steps with data

Spend 'quality time' investigating your data:

- Don't be afraid you can't break data get to know the data
- 2. Check and screen the data
- 3. Explore, describe, and graph
- 4. Clearly report the data's main features
- 5. Answer research questions and test hypotheses


16

Descriptive statistics

- Level of measurement and **normality** determines how data can be described.
- What is the **central tendency**?
 - -Frequencies, Percentages (Non-para)
 - -Mode, Median, Mean (Para)
- What is the variability?
 - -Min, Max, Range, Quartiles (Non-para)
 - -Standard Deviation, Variance (Para)

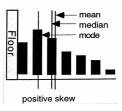
17

Normal distribution

Rule of thumb
Skewness and kurtosis in the range of -1 to +1 can be treated as approx. normal

Skewness & central tendency

+vely skewed


mode < median < mean

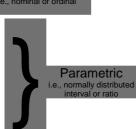
Symmetrical (normal)

mean = median = mode

mean = median = mo

-vely skewed
 mean < median < mode</pre>

19


Principles of graphing

- Clear purpose
- Maximise clarity
- Minimise clutter
- Allow visual comparison

20

Univariate graphs

- Bar graph
- Pie chart
- Histogram
- Stem & leaf plot
- Data plot / Error bar
- Box plot

Non-parametric

Correlation (Lecture 4)

22

Covariation

- 1. The world is made of covariations.
- 2. Covariations are the building blocks of more complex relationships which can be analysed through the use of:
 - 1. factor analysis
 - 2. reliability analysis
 - 3. multiple regression

23

Purpose of correlation

The underlying purpose of correlation is to help address the question:

What is the

- **relationship** or
- association or
- shared variance or
- co-relation

between two variables?

^

What is correlation?	
 Standardised covariance Ranges between -1 and +1, with more extreme values indicating stronger relationships Correlation does not prove causation – may be opposite causality, bi-directional, or due to other variables. 	
25	
Types of correlation	
 Nominal by nominal: Phi (Φ) / Cramer's V, Chi-squared Ordinal by ordinal: Spearman's rank / Kendall's Tau b 	
• Dichotomous by interval/ratio: Point bi-serial r_{pb}	
 Interval/ratio by interval/ratio: Product-moment or Pearson's r 	
26	
Correlation steps	
Choose measure of correlation and graphs based on levels of measurement.	
2. Check graphs (e.g., scatterplot): -Linear or non-linear?	
-Outliers? -Homoscedasticity?	
–Range restriction?	

27

-Sub-samples to consider?

Correlation steps 3. Consider -Effect size (e.g., Φ, Cramer's V, r, r²) -Direction -Inferential test (p) 4. Interpret/Discuss -Relate back to hypothesis -Size, direction, significance -Limitations e.g., Heterogeneity (sub-samples) Range restriction Causality? 28 Interpreting correlation • Coefficient of determination -Correlation squared -Indicates % of shared variance **Strength** <u>r</u> <u>r</u>2 1 – 10% Weak: .1 - .3 Moderate: .3 - .5 10 - 25% Strong: > .5 > 25% 29 **Assumptions & limitations** 1. Levels of measurement 2. Normality 3. Linearity 1. Effects of outliers 2. Non-linearity

30

4. Homoscedasticity5. No range restriction6. Homogenous samples

7. Correlation is not causation

Exploratory factor analysis (Lecture 5)

31

What is factor analysis?

- Factor analysis is a family of multivariate correlational data analysis methods for summarising clusters of covariance.
- FA summarises correlations amongst items into a smaller number of underlying fuzzy constructs (called factors).

32

Assumptions

- Sample size
 - 5+ cases per variables(ideally 20+ cases per variable)
 - -N > 200
- Bivariate & multivariate outliers
- Factorability of correlation matrix (Measures of Sampling Adequacy)
- Normality enhances the solution

Steps / process	
1. Test assumptions	
2. Select type of analysis	
3. Determine no. of factors (Eigen Values, Scree plot, % variance explained)	
4. Select items (check factor loadings to identify which items belong in which factor; drop items one by one; repeat)	
5. Name and define factors	
6. Examine correlations amongst factors	
7. Analyse internal reliability Lecture	
8. Compute composite scores 6 34	
Types of FA	
PAF (Principal Axis Factoring): Best for theoretical data exploration	
uses shared variance	
• PC (Principal Components):	
Best for data reduction	
-uses all variance	
35	
Dotation	
Rotation	
Orthogonal (Varimax)	
perpendicular (uncorrelated) factors	
Oblique (Oblimin)	
- angled (correlated) factors	
Consider trying both ways	
– Are solutions different? Why?	

Factor extraction

How many factors to extract?

FAQ

- Inspect EVs
 - look for > 1 or sudden drop (inspect scree plot)
- % of variance explained
 - aim for 50 to 75%
- Interpretability
 - does each factor 'make sense'?
- Theory
 - does the model fit with theory?

37

Item selection

An EFA of a good measurement instrument ideally has:

- a simple factor structure (each variable loads strongly (> +.50) on only one factor)
- each factor has multiple loading variables (more loadings → greater reliability)
- target factor loadings are high (> .6) and cross-loadings are low (< .3), with few intermediate values (.3 to .6).

38

Psychometrics instrument development (Lecture 6)

Psychometrics

- Science of psychological measurement
- 2. Goal: Validly measure individual psychosocial differences
- 3. Develop and test psychological measures e.g., using
 - 1. Factor analysis
 - 2. Reliability and validity

40

Concepts & their measurement

- 1. Concepts name common elements
- 2. Hypotheses identify relations between concepts
- 3. Brainstorm indicators of a concept
- 4. Define the concept
- 5. Draft measurement items
- 6. Pre-test and pilot test
- 7. Examine psychometric properties
- 8. Redraft/refine and re-test

41

Measurement error

- 1. Deviation of measure from true score
- 2. Sources:
 - 1. Non-sampling (e.g., paradigm, respondent bias, researcher bias)
 - 2. Sampling (e.g., non-representativeness)
- 3. How to minimise:
 - 1. Well-designed measures
 - 2. Reduce demand effects
 - 3. Representative sampling
 - 4. Maximise response rate
 - 5. Ensure administrative accuracy

_			
_			
_			
_			
-			
_			
-			
-			
_			
_			
-			
-			
_			
-			

Reliability	
1. Consistency or reproducibility	
2. Types1. Internal consistency2. Test-retest reliability	
3. Rule of thumb	
1. > .6 OK 2. > .8 Very good	
4. Internal consistency1. Split-half2. Odd-even	
3. Cronbach's alpha 43	
Validity	
Extent to which a measure measures	
what it is intended to measure	
 Multifaceted Correlations with similar measures 	-
Correlations with similar measures Performance in relation to other variables	
3. Predicts future	
44	
Composite scores	
Ways of creating composite (factor) scores:	
1. Unit weighting	
1.Total of items or	
Average of items (recommended for lab report)	
2. Regression weighting	
1. Each item is weighted by its	
importance to measuring the underlying factor (based on regression weights) 45	

Writing up instrument development

- 1. Introduction
 - 1. Review constructs & previous structures
 - 2. Generate research question
- 2. Method
 - 1. Explain measures and their development
- 3. Results
 - 1. Factor analysis
 - 2. Reliability of factors
 - 3. Descriptive statistics for composite scores
 - 4. Correlations between factors
- 4. Discussion
 - 1. Theory? / Measure? / Recommendations?

46

Multiple linear regression (Lectures 7 & 8)

47

Linear regression

- 1. Best-fitting straight line for a scatterplot of two variables
- 2. Y = bX + a + e
 - 1. Predictor (X; IV)
 - 2. Outcome (Y; DV)
- 3. Least squares criterion
- Residuals are the vertical distance between actual and predicted values

Level of measurement and dummy coding	
 Levels of measurement DV = Continuous (Likert or ratio + normal) IV = Continuous or dichotomous 	
2. Dummy coding1. Convert complex variable into series of	
dichotomous IVs	
49	
Multiple linear regression 1. Multiple IVs to predict a single DV:	
$Y = b_1x_1 + b_2x_2 + \dots + b_ix_i + a + e$ 2. Overall fit: R , R^2 , and Adjusted R^2	
3. Coefficients1. Relation between each IV and the DV, adjusted for the other IVs	
2. B, β, t, p, and sr24. Types1. Standard	
Hierarchical Stepwise / Forward / Backward 50	
General steps	
 Develop model and hypotheses Check assumptions 	
3. Choose type4. Interpret output	
5. Develop a regression equation (if needed)	
51	

Summary:	
Semi-partial correlation ((sr

- 1. In MLR, *sr* is labelled "part" in the regression coefficients table SPSS output
- 2. sr² is the unique % of the DV variance explained by each IV

52

Residual analysis

- Residuals are the difference between predicted and observed Y values
- 2. MLR assumption is that residuals are normally distributed.
- 3. Examining residuals also helps assess:
 - 1. Normality
 - 2. Linearity
 - 3. Homoscedasticity

53

Interactions

- 1. In MLR, IVs may interact to:
 - 1. Increase effect on DV
 - 2. Decrease effect on DV
- 2. Model interactions with hierarchical MLR:
 - 1. Step 1: Enter IVs
 - 2. Step 2: Enter cross-product of IVs
 - 3. Examine change in R^2

Analysis of change Variance in changes over time can be assessed by: 1. Standard regression 1. Calculate difference scores (Time 2 minus Time 1) and use as DV 2. Hierarchical MLR 1. Step 1: "Partial out" baseline scores 2. Step 2: Enter other IVs to help predict variance in changes over time. 55 Writing up an MLR 1. Introduction: 1. Consider theoretical relationship between possible predictors and the outcome variable of interest 2. One hypothesis per predictor 2. Results: 1. Univariate descriptive statistics 2. Correlations 3. Type of MLR and assumptions 4. Overall model 5. Regression coefficients 56

Power & effect size (Lecture 9)

Significance testing

- 1. Logic At what point do you reject H_0 ?
- 2. History Started in 1920s & became very popular through 2nd half of 20th century
- 3. Criticisms Binary, dependent on $\it N$, ES, and critical $\it \alpha$
- 4. Practical significance
 - 1. Is an effect noticeable?
 - 2. Is it valued?
 - 3. How does it compare with benchmarks?

58

Inferential decision making

		Reality		
		H ₀ False	H ₀ True	
Test	Reject H ₀	Correct rejection H_0 = Power = 1 - β	Type I error = α	
Test	Accept H_0	Type II error	Correct acceptance of H_0	

59

Statistical power

- 1. Power = probability of detecting a real effect as statistically significant
- 2. Increase by:
 - -↑ N
 - -↑ critical α
 - $-\uparrow$ ES
- Power
 - >.8 "desirable"
 - ~.6 is more typical
- Can be calculated prospectively and retrospectively

Effect size 1. Standardised size of difference or strength of relationship 2. Inferential tests should be accompanied by ESs and CIs 3. Common bivariate ESs include: 1. Cohen's d 2. Correlation r • Cohen's d - not in SPSS - use an online effect size calculator 61 Confidence interval 1. Gives 'range of certainty' 2. Can be used for *B*, *M*, ES etc. 3. Can be examined 1. Statistically (upper and lower limits) 2. Graphically (e.g., error-bar graphs) 62 **Publication bias** 1. Tendency for statistically significant studies to be published over nonsignificant studies 2. Indicated by gap in funnel plot \rightarrow file-

63

drawer effect

real effects

sig. effects

publishing:

3. Counteracting biases in scientific

-low-power studies tend to underestimate

-bias towards publish sig. effects over non-

Academic integrity

- Violations of academic integrity are evident and prevalent amongst those with incentives to do so:
 - 1. Students
 - 2. Researchers
 - 3. Commercial sponsors
- 2. Adopt a balanced, critical approach, striving for objectivity and academic integrity

64

Unit outcomes

65

Learning outcomes

- 1. Design and conduct survey-based research in psychology;
- Use SPSS to conduct and interpret data analysis using correlation-based statistics, including reliability, factor analysis and multiple regression analysis;
- 3. Communicate in writing the results of survey-based psychological research

Graduate attributes

- Display initiative and drive, and use organisation skills to plan and manage workload
- 2. Employ up-to-date and relevant knowledge and skills
- 3. Take pride in professional and personal integrity
- Use creativity, critical thinking, analysis and research skills to solve theoretical and real-world problems

Feedback

 Please provide feedback about what worked well and what could be improved via the Unit Satisfaction Survey

68

Open Office Impress

- This presentation was made using Open Office Impress.
- Free and open source software.
- http://www.openoffice.org/product/impress.html

