Wright State University Lake Campus/20189/Phy2410/Equation sheet

Also available as File:Wsul file pdf 04.pdf

T1

2.5 Electric charges and fields (https://cnx.org/contents/eg-XcBxE@14.1:Ai7EWAra@5/Introduction)

$\varepsilon_{0}=8.85 \times 10^{-12} \underline{\mathrm{~F}} / \mathrm{m}=$ vacuum permittivity.
$\vec{E}=\int \frac{d q}{r^{2}} \hat{r}$ where $d q=\lambda d \ell=\sigma d a=\rho d V$
$\mathrm{e}=1.602 \times 10^{-19} \mathrm{C}$: negative (positive) charge for electrons (protons)
$E=\frac{\sigma}{2 \varepsilon_{0}}=$ field above an infinite plane of charge.
$k_{e}=\frac{1}{4 \pi \varepsilon_{0}}==8.99 \times 10^{9} \mathrm{~m} / \mathrm{F}$
$\vec{F}=Q \vec{E}$ where $\vec{E}=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i=1}^{N} \frac{q_{i}}{r_{P i}^{2}} \hat{r}_{P i}$
Find E
$\vec{E}(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i=1}^{N} \frac{\widehat{\mathcal{R}}_{i} Q_{i}}{\left|\overrightarrow{\mathcal{R}}_{i}\right|^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i=1}^{N} \frac{\overrightarrow{\mathcal{R}}_{i} Q_{i}}{\left|\overrightarrow{\mathcal{R}}_{i}\right|^{3}}$ is the electric field at the field point, \vec{r}, due to point charges at the source points, \vec{r}_{i}, and $\overrightarrow{\mathcal{R}}_{i}=\vec{r}-\vec{r}_{i}$, points from source points to the field point.

T2
2.6 Gauss's law (https://cnx.org/contents/eg-XcBxE@14.1:xakXl9gb@5/Introduction):
$\Phi=\vec{E} \cdot \vec{A} \rightarrow \int \vec{E} \cdot d \vec{A}=\int \vec{E} \cdot \hat{n} d A=$ electric flux
$q_{\text {enclosed }}=\varepsilon_{0} \oint \vec{E} \cdot d \vec{A}$
$d \mathrm{Vol}=d x d y d z=r^{2} d r d A$ where $d A=r^{2} d \phi d \theta$
$A_{\text {sphere }}=r^{2} \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} d \phi=4 \pi r^{2}$

Surface Integrals
Calculating $\int f d A$ and $\int f d V$ with angular symmetry
Cyndrical: $d A=2 \pi r d z ; d V=d A d r$. Spherical: $\int d A=4 \pi r^{2}, d V=4 \pi r^{2} d r$
More Gauss Law
Calculating $\int f d A$ and $\int f d V$ with angular symmetry
Cyndrical: $d A=2 \pi r d z ; d V=d A d r$. Spherical: $\int d A=4 \pi r^{2}, d V=4 \pi r^{2} d r$

T3

2.7 Electric potential (https://cnx.org/contents/eg-XcBxE@14.1:bMxnTeM5@6/Introduction) The alpha-particle is made up of two protons and two neutrons.
$\Delta V_{A B}=V_{A}-V_{B}=-\int_{A}^{B} \vec{E} \cdot d \vec{\ell}=$ electric potential
Electron (proton) mass $=9.11 \times 10^{-31} \mathrm{~kg}\left(1.67 \times 10^{-27} \mathrm{~kg}\right)$.
Elementary charge $=\mathrm{e}=1.602 \times 1 \mathrm{O}^{-19} \mathrm{C}$.
$\vec{E}=-\frac{\partial V}{\partial x} \hat{i}-\frac{\partial V}{\partial y} \hat{j}-\frac{\partial V}{\partial z} \hat{k}=-\vec{\nabla} V$

$V(r)=k \frac{q}{r}$ near isolated point charge
Power $=\frac{\Delta U}{\Delta t}=\frac{\Delta q}{\Delta t} V=I V=e \frac{\Delta N}{\Delta t}$
Many charges: $V_{P}=k \sum_{1}^{N} \frac{q_{i}}{r_{i}} \rightarrow k \int \frac{d q}{r}$.

2.8 Capacitance (https://cnx.org/contents/eg-XcBxE@14.1:FYJxWFC_@6/8-1-Capacitors-and-Capacitance)

$Q=C V$ defines capacitance.
$C=\varepsilon_{0} \frac{A}{d}$ where A is area and $\mathrm{d} \ll \mathrm{A}^{1 / 2}$ is gap length of parallel plate capacitor

Series : $\frac{1}{C_{S}}=\sum \frac{1}{C_{i}} . \quad$ Parallel: $C_{P}=\sum C_{i}$.

T4

2.9 Current and resistors (https://cnx.org/contents/eg-XcBxE@14.10:WS3a1YbB@5/Introduction)

Electric current: $1 \mathrm{Amp}(\mathrm{A})=1$ Coulomb (C) per second (s)
Current $=I=d Q / d t=n q v_{d} A$, where $\left(n, q, v_{d}, A\right)=($ density, charge, speed, Area $)$
$I=\int \vec{J} \cdot d \vec{A}$ where $\vec{J}=n q \vec{v}_{d}=\underline{\text { current density }}$.
$u=\frac{1}{2} Q V=\frac{1}{2} C V^{2}=\frac{1}{2 C} Q^{2}=\underline{\text { stored energy }}$
$u_{E}=\frac{1}{2} \varepsilon_{0} E^{2}=$ energy density

2.10 Direct current circuits (https://cnx.org/contents/eg-XcBxE@14.1:BRLHpZ5e@6/Introduction)

$V_{\text {terminal }}=\varepsilon-I r_{e q}$ where $r_{e q}=\underline{\text { internal resistance }}$ and $\varepsilon=\underline{e m f}$.
$R_{\text {series }}=\sum_{i=1}^{N} R_{i}$ and $R_{\text {parallel }}^{-1}=\sum_{i=1}^{N} R_{i}^{-1}$
Kirchhoff Junction: $\sum I_{i n}=\sum I_{o u t}$ and Loop: $\sum V=0$

Charging an RC (resistor-capacitor) circuit: $q(t)=Q\left(1-e^{t / \tau}\right)$ and $I=I_{0} e^{-t / \tau}$ where $\tau=R C$ is $\underline{\mathrm{RC}}$ time, $Q=\varepsilon C$ and $I_{0}=\varepsilon / R$.

Discharging an RC circuit: $q(t)=Q e^{-t / \tau}$ and $I(t)=-\frac{Q}{R C} e^{-t / \tau}$

2.11 Magnetic forces and fields (https://cnx.org/contents/eg-XcBxE@14.1:-cf9Ogkt@5/Introduction)

$$
\begin{aligned}
& |\vec{a} \times \vec{b}|=a b \sin \theta \Leftrightarrow \\
& (\vec{a} \times \vec{b})_{x}=\left(a_{y} b_{z}-a_{z} b_{y}\right)
\end{aligned}
$$

$(a \times b)_{y}=\left(a_{z} v_{x}-a_{x} v_{z}\right)$,
$(\vec{a} \times \vec{b})_{z}=\left(a_{x} b_{y}-a_{y} b_{x}\right)$
Magnetic force: $\vec{F}=q \vec{v} \times \vec{B}$,
$d \vec{F}=I \overrightarrow{d \ell} \times \vec{B}$.
$\vec{v}_{d}=\vec{E} \times \vec{B} / B^{2}=\mathrm{EXB}$ drift velocity

cross product

Dipole moment $=\vec{\mu}=N I A \hat{n}$. Torque $=$ $\vec{\tau}=\vec{\mu} \times \vec{B}$. Stored energy $=U=\vec{\mu} \cdot \vec{B}$. $\underline{\text { Hall field }}=E=V / \ell=B v_{d}=\frac{I B}{n e A}$

Hall effect

Circular motion (uniform B field):
$r=\frac{m v}{q B} . \underline{\text { Period }}=T=\frac{2 \pi m}{q B}$.

2.12 Sources of magnetic fields (https://cnx.org/contents/eg-XcBxE@14.1:BDvPdDpp@5/Introduction)

Free space permeability $\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \underline{\mathrm{~m}} / \underline{\mathrm{A}}$
Force between parallel wires $\frac{F}{\ell}=\frac{\mu_{0} I_{1} I_{2}}{2 \pi r}$
$\underline{\text { Biot-Savart law }} \vec{B}=\frac{\mu_{0}}{4 \pi} \int_{\text {wire }} \frac{I d \vec{\ell} \times \hat{r}}{r^{2}}$

Ampère's Law: $\oint \vec{B} \cdot d \vec{\ell}=4 \pi \mu_{0} I_{\text {enc }}$
Magnetic field inside solenoid with paramagnetic material $=$ $B=\mu n I$ where $\mu=(1+\chi) \mu_{0}=$ permeability
(we skip T6 because it was a review of previous chapters)

T7

2.13 Electromagnetic induction (https://cnx.org/contents/eg-XcBxE@14.1:az4UJL61@6/Introduction)

Magnetic flux $\Phi_{m}=\int_{S} \vec{B} \cdot \hat{n} d A$
$\underline{\text { rotating coil } \varepsilon=N B A \omega \sin \omega t}$

Motional $\varepsilon=B \ell v$ if $\vec{v} \perp \vec{B}$
$\underline{\text { Electromotive "force" (volts) }} \varepsilon=-N \frac{d \Phi_{m}}{d t}=\oint \vec{E} \cdot d \vec{\ell}$

2.14 Inductance (https://cnx.org/contents/eg-XcBxE@14.1:gBxAb_6h@6/Introduction)

Unit of inductance $=$ Henry $(H)=1 \underline{V} \cdot \underline{s} / \underline{A}$
Mutual inductance: $M \frac{d I_{2}}{d t}=N_{1} \frac{d \Phi_{12}}{d t}=-\varepsilon_{1}$ where $\Phi_{12}=$ flux through 1 due to current in 2 . Reciprocity: $M \frac{d I_{1}}{d t}=-\varepsilon_{2}$

Self-inductance: $N \Phi_{m}=L I \rightarrow \varepsilon=-L \frac{d I}{d t}$
$L_{\text {solenoid }} \approx \mu_{0} N^{2} A \ell, L_{\text {toroid }} \approx \frac{\mu_{0} N^{2} h}{2 \pi} \ln \frac{R_{2}}{R_{1}}$, Stored energy $=$ $\frac{1}{2} L I^{2}$
$I(t)=\frac{\varepsilon}{R}\left(1-e^{-t / \tau}\right)$ in LR circuit where $\tau=L / R$.
$q(t)=q_{0} \cos (\omega t+\phi)$ in LC circuit where $\omega=\sqrt{\frac{1}{L C}}$

2.15 Alternating current circuits (https://cnx.org/contents/eg-XcBxE@14.1:6uMHjFiO@5/Introduction)

AC voltage and current $v=V_{0} \sin (\omega t-\phi)$ if $i=I_{0} \sin \omega t$.
$\underline{\text { RMS values }} I_{r m s}=\frac{I_{0}}{\sqrt{2}}$ and $V_{r m s}=\frac{V_{0}}{\sqrt{2}}$
Impedance $V_{0}=I_{0} X$
Resistor $V_{0}=I_{0} X_{R}, \phi=0$, where $X_{R}=R$
Capacitor $V_{0}=I_{0} X_{C}, \phi=-\frac{\pi}{2}$, where $X_{C}=\frac{1}{\omega C}$
Inductor $V_{0}=I_{0} X_{L}, \phi=+\frac{\pi}{2}$, where $X_{L}=\omega L$
$\underline{\text { RLC series circuit }} V_{0}=I_{0} Z$ where $Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$
and $\phi=\tan ^{-1} \frac{X_{L}-X_{C}}{R}$
Resonant angular frequency $\omega_{0}=\sqrt{\frac{1}{L C}}$
Quality factor $Q=\frac{\omega_{0}}{\Delta \omega}=\frac{\omega_{0} L}{R}$
Average power $P_{\text {ave }}=\frac{1}{2} I_{0} V_{0} \cos \phi=I_{r m s} V_{r m s} \cos \phi$
$\underline{\text { Transformer voltages and currents }} \frac{V_{S}}{V_{P}}=\frac{N_{S}}{N_{P}}=\frac{I_{P}}{I_{S}}$

T8
3.2 Geometric optics and image formation (https://cnx.org/contents/rydUIGBQ@10.14:-YlrAoNe@5/Introductio n)
$\frac{1}{S_{1}}+\frac{1}{S_{2}}=\frac{1}{f}$ relates the focal length f of the lens, the image distance S_{1}, and the object distance S_{2}. The figure depicts the situation for which ($\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{f}$) are all positive: (1)The lens is converging (convex); (2) The real image is to the right of the lens; and (3) the object is to the left of the lens. If the lens is diverging (concave), then $\mathrm{f}<\mathrm{o}$. If the image is to the left of the lens (virtual image), then $S_{2}<0$.

T9

2.16 Electromagnetic waves (https://cnx.org/contents/eg-XcBxE@14.10:-LQJwSUO

 @6/16-1-Maxwell-s-Equations-and-Electromagnetic-Waves)$\underline{\text { Displacement current }} \quad I_{d}=\varepsilon_{0} \frac{d \Phi_{E}}{d t} \quad$ where
$\Phi_{E}=\int \vec{E} \cdot d \vec{A}$ is the electric flux.
Maxwell's equations: $\epsilon_{0} \mu_{0}=1 / c^{2}$
$\oint_{S} \vec{E} \cdot \mathrm{~d} \vec{A}=\frac{1}{\epsilon_{0}} Q_{i n}$
$\frac{\partial^{2} E_{y}}{\partial x^{2}}=\varepsilon_{0} \mu_{0} \frac{\partial^{2} E_{y}}{\partial t^{2}}$ and $\frac{E_{0}}{B_{0}}=c$
Poynting vector $\vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B}=\underline{\text { energy flux }}$
Average
intensity
$I=S_{\text {ave }}=\frac{c \varepsilon_{0}}{2} E_{0}^{2}=\frac{c}{2 \mu_{0}} B_{0}^{2}=\frac{1}{2 \mu_{0}} E_{0} B_{0}$

$\oint_{S} \vec{B} \cdot \mathrm{~d} \vec{A}=0$
$\oint_{C} \vec{E} \cdot \mathrm{~d} \vec{\ell}=-\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot \mathrm{~d} \vec{A}$
Radiation pressure $p=I / c$ (perfect absorber) and $p=2 I / c$ (perfect reflector).
$\oint_{C} \vec{B} \cdot \mathrm{~d} \vec{\ell}=\mu_{0} I+\epsilon_{0} \mu_{0} \frac{\mathrm{~d} \Phi_{E}}{\mathrm{~d} t}$

Retrieved from "https://en.wikiversity.org/w/index.php?title=Wright_State_University_Lake_Campus/20189/Phy2410/Equation_sheet\&oldid=1953216"

This page was last edited on 27 November 2018, at 20:14.
Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy.

