Wright State University Lake Campus/2018-9/Phy2410/Equation sheet

lintHint

Also available as File:Wsul file pdf 04.pdf

T1

2.5 Electric charges and fields (https://cnx.org/contents/eg-XcBxE@14.1:Ai7EWAra@5/Introduction)

$$\varepsilon_0 = 8.85 \times 10^{-12} \, \text{F/m} = \text{vacuum permittivity}.$$

$$ec{E}=\intrac{dq}{r^2}\hat{r}$$
 where $dq=\lambda d\ell=\sigma da=
ho dV$

e = 1.602×10^{-19} C: negative (positive) charge for electrons (protons)

 $E=rac{\sigma}{2arepsilon_0}$ = field above an infinite plane of charge.

$$k_e = \frac{1}{4\pi\epsilon_0} = 8.99 \times 10^9 \,\mathrm{m/F}$$

$$ec{F} = Q ec{E}$$
 where $ec{E} = rac{1}{4\piarepsilon_0} \sum_{i=1}^N rac{q_i}{r_{Pi}^2} \hat{r}_{Pi}$

Find E

 $\vec{E}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^N \frac{\widehat{\mathcal{R}}_i Q_i}{|\vec{\mathcal{R}}_i|^2} = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^N \frac{\vec{\mathcal{R}}_i Q_i}{|\vec{\mathcal{R}}_i|^3} \text{ is the electric field at the field point, } \vec{r}, \text{ due to point charges at the source points,} \vec{r}_i$, and $\vec{\mathcal{R}}_i = \vec{r} - \vec{r}_i$, points from source points to the field point.

T2

2.6 Gauss's law (https://cnx.org/contents/eg-XcBxE@14.1:xakXl9gb@5/Introduction):

$$\Phi = ec{E} \cdot ec{A}
ightarrow \int ec{E} \cdot dec{A} = \int ec{E} \cdot \hat{n} \, dA$$
 = electric flux

$$d\operatorname{Vol} = dxdydz = r^2drdA$$
 where $dA = r^2d\phi d\theta$

$$q_{enclosed} = arepsilon_0 igotdef ec{E} \cdot dec{A}$$

$$A_{
m sphere} = r^2 \int_0^\pi \sin heta d heta \int_0^{2\pi} d\phi = 4\pi r^2$$

Surface Integrals

Calculating
$$\int f dA$$
 and $\int f dV$ with angular symmetry

Cyndrical:
$$dA=2\pi r\,dz;\,dV=dA\,dr.$$
 Spherical: $\int dA=4\pi r^2,\,dV=4\pi r^2\,dr$

More Gauss Law

Calculating
$$\int f dA$$
 and $\int f dV$ with angular symmetry

Cyndrical:
$$dA=2\pi r\,dz;\,dV=dA\,dr.$$
 Spherical: $\int dA=4\pi r^2,\,dV=4\pi r^2\,dr$

2.7 Electric potential (https://cnx.org/contents/eg-XcBxE@14.1:bMxnTeM5@6/Introduction) The alpha-particle is made up of two protons and two neutrons.

$$\Delta V_{AB} = V_A - V_B = -\int_A^B ec{E} \cdot dec{\ell}$$
 = electric potential

Electron (proton) mass =
$$9.11 \times 10^{-31} \text{kg}$$
 (1.67× 10^{-27}kg).
Elementary charge = $e = 1.602 \times 10^{-19} \text{C}$.

$$ec{E} = -rac{\partial V}{\partial x} \hat{i} - rac{\partial V}{\partial y} \hat{j} - rac{\partial V}{\partial z} \hat{k} = -ec{
abla} V$$

$$K = \frac{1}{2}mv^2 = \underline{\text{kinetic energy}}$$
. 1 $\underline{\text{eV}} = 1.602 \times 10^{-19} \underline{\text{J}}$

 $q\Delta V$ = change in potential energy (or simply U = qV)

$$V(r)=krac{q}{r}$$
 near isolated point charge

$$Power = rac{\Delta U}{\Delta t} = rac{\Delta q}{\Delta t}V = IV = erac{\Delta N}{\Delta t}$$

Many charges:
$$V_P = k \sum_1^N rac{q_i}{r_i}
ightarrow k \int rac{dq}{r}.$$

2.8 Capacitance (https://cnx.org/contents/eg-XcBxE@14.1:FYJxWFC_@6/8-1-Capacitors-and-Capacitance)

$$Q = CV$$
 defines capacitance.

$$u=rac{1}{2}QV=rac{1}{2}CV^2=rac{1}{2C}Q^2$$
 = stored energy

 $C=arepsilon_0rac{A}{d}$ where A is area and d<<A^{1/2} is gap length of parallel $u_E=rac{1}{2}arepsilon_0E^2$ = energy density plate capacitor

$$u_E=rac{1}{2}arepsilon_0 E^2$$
 = energy density

Series: $\frac{1}{C_c} = \sum \frac{1}{C_i}$. Parallel: $C_P = \sum C_i$.

T4

2.9 Current and resistors (https://cnx.org/contents/eg-XcBxE@14.10:WS3a1YbB@5/Introduction)

Electric current: 1 Amp (A) = 1 Coulomb (C) per second (s)

$$ec{m{E}} = m{
ho} ec{m{J}}$$
 = electric field where $m{
ho}$ = resistivity

Current=
$$I=dQ/dt=nqv_dA$$
, where

$$ho=
ho_0\left[1+lpha(T-T_0)
ight]$$
 , and $R=R_0\left[1+lpha\Delta T
ight]$,

$$(n, q, v_d, A)$$
 = (density, charge, speed, Area)

where
$$R = \rho \frac{L}{A}$$
 is resistance

$$I = \int ec{J} \cdot dec{A}$$
 where $ec{J} = n q ec{v}_d$ = current density.

$$V=IR$$
 and Power= $P=IV=I^2R=V^2/R$

2.10 Direct current circuits (https://cnx.org/contents/eg-XcBxE@14.1:BRLHpZ5e@6/Introduction)

 $V_{terminal} = \varepsilon - Ir_{eq}$ where r_{eq} =internal resistance and ε =emf.

$$R_{series} = \sum_{i=1}^{N} R_i$$
 and $R_{parallel}^{-1} = \sum_{i=1}^{N} R_i^{-1}$

Charging an RC (resistor-capacitor) circuit:
$$q(t) = Q\left(1 - e^{t/\tau}\right)$$
 and $I = I_0 e^{-t/\tau}$ where $\tau = RC$ is RC time, $Q = \varepsilon C$ and $I_0 = \varepsilon / R$.

Kirchhoff Junction:
$$\sum I_{in} = \sum I_{out}$$
 and Loop: $\sum V = 0$

Discharging an RC circuit:
$$q(t) = Qe^{-t/ au}$$
 and $I(t) = -rac{Q}{RC}e^{-t/ au}$

$$ec{a} imes ec{b} ert = ab \sin heta \Leftrightarrow \ (ec{a} imes ec{b})_x = (a_y b_z - a_z b_y), \ (ec{a} imes ec{b})_y = (a_z b_x - a_x b_z),$$

$$(\vec{a} imes \vec{b})_z = (a_x b_y - a_y b_x)$$

Magnetic force:
$$ec{F} = q ec{v} imes ec{B}$$

Magnetic force:
$$\vec{F} = q\vec{v} \times \vec{B}$$

Hall effect

$$d\vec{F} = I\overrightarrow{d\ell} \times \vec{B}$$
.

$$ec{v}_d = ec{E} imes ec{B}/B^2$$
=EXB drift velocity

Circular motion (uniform B field): $r = \frac{mv}{aB}$. Period= $T = \frac{2\pi m}{aB}$.

2.12 Sources of magnetic fields (https://cnx.org/contents/eg-XcBxE@14.1:BDvPdDpp@5/Introduction)

Free space permeability
$$\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$$

Force between parallel wires $\frac{F}{I} = \frac{\mu_0 I_1 I_2}{I_1}$

Force between parallel wires
$$\frac{F}{\ell} = \frac{\mu_0 I_1 I_2}{2\pi r}$$

$$\underline{\text{Biot-Savart law}} \, \vec{B} = \frac{\mu_0}{4\pi} \int_{\textit{wire}} \frac{Id\vec{\ell} \times \hat{r}}{r^2}$$

$$\underline{\text{Ampère's Law}} \colon \oint \; \vec{B} \cdot d\vec{\ell} = 4\pi \mu_0 I_{enc}$$

Magnetic field inside solenoid with paramagnetic material = $B = \mu nI$ where $\mu = (1 + \chi)\mu_0$ = permeability

(we skip T6 because it was a review of previous chapters)

T7

2.13 Electromagnetic induction (https://cnx.org/contents/eg-XcBxE@14.1:az4UJL6l@6/Introduction)

Magnetic flux
$$\Phi_m = \int_{\sigma} \vec{B} \cdot \hat{n} dA$$

Motional $arepsilon = B \ell v$ if $ec{v} \perp ec{B}$

Electromotive "force" (volts)
$$\varepsilon = -N \frac{d\Phi_m}{dt} = \oint \vec{E} \cdot d\vec{\ell}$$

rotating coil $\varepsilon = NBA\omega \sin \omega t$

2.14 Inductance (https://cnx.org/contents/eg-XcBxE@14.1:gBxAb 6h@6/Introduction)

Unit of inductance = Henry (H)=
$$1\underline{V}\cdot\underline{s}/\underline{A}$$

Mutual inductance:
$$M rac{dI_2}{dt} = N_1 rac{d\Phi_{12}}{dt} = -arepsilon_1$$
 where Φ_{12} =flux

through 1 due to current in 2. Reciprocity:
$$M \frac{dI_1}{dt} = -\varepsilon_2$$

Self-inductance:
$$N\Phi_m = LI
ightarrow arepsilon = -Lrac{dI}{dt}$$

$$L_{
m solenoid}pprox \mu_0 N^2 A \ell, \; L_{
m toroid}pprox rac{\mu_0 N^2 h}{2\pi} \lnrac{R_2}{R_1}, \; {
m Stored} \; {
m energy}= rac{1}{2} L I^2$$

$$I(t) = rac{arepsilon}{R} \left(1 - e^{-t/ au}
ight)$$
 in LR circuit where $au = L/R$.

$$q(t)=q_0\cos(\omega t+\phi)$$
 in LC circuit where $\omega=\sqrt{rac{1}{LC}}$

2.15 Alternating current circuits (https://cnx.org/contents/eg-XcBxE@14.1:6uMHjFiO@5/Introduction)

AC voltage and current
$$v = V_0 \sin(\omega t - \phi)$$
 if $i = I_0 \sin \omega t$.

RMS values
$$I_{rms} = \frac{I_0}{\sqrt{2}}$$
 and $V_{rms} = \frac{V_0}{\sqrt{2}}$

$$\underline{\text{Impedance}} \, V_0 = I_0 X$$

Resistor
$$V_0 = I_0 X_R, \ \phi = 0$$
, where $X_R = R$

Capacitor
$$V_0 = I_0 X_C$$
, $\phi = -\frac{\pi}{2}$, where $X_C = \frac{1}{\omega C}$

Inductor
$$V_0 = I_0 X_L$$
, $\phi = +\frac{\pi}{2}$, where $X_L = \omega L$

RLC series circuit
$$V_0 = I_0 Z$$
 where $Z = \sqrt{R^2 + (X_L - X_C)^2}$

and
$$\phi = an^{-1} rac{X_L - X_C}{R}$$

Resonant angular frequency
$$\omega_0 = \sqrt{\frac{1}{LC}}$$

$$\begin{array}{l} \text{Quality factor }Q=\frac{\omega_0}{\Delta\omega}=\frac{\omega_0L}{R}\\ \\ \text{Average power }P_{ave}=\frac{1}{2}I_0V_0\cos\phi=I_{rms}V_{rms}\cos\phi\\ \\ \text{Transformer voltages and currents }\frac{V_S}{V_P}=\frac{N_S}{N_P}=\frac{I_P}{I_S} \end{array}$$

T8

3.2 Geometric optics and image formation (https://cnx.org/contents/rydUIGBQ@10.14:-YlrAoNe@5/Introduction)

 $\frac{1}{S_1} + \frac{1}{S_2} = \frac{1}{f}$ relates the focal length f of the lens, the image distance S_1 , and the object distance S_2 . The figure depicts the situation for which (S_1, S_2, f) are all positive: (1)The lens is converging (convex); (2) The real image is to the right of the lens; and (3) the object is to the left of the lens. If the lens is diverging (concave), then f < o. If the image is to the left of the lens (virtual image), then $S_2 < o$.

Т9

2.16 Electromagnetic waves (https://cnx.org/contents/eg-XcBxE@14.10:-LQJwSU O@6/16-1-Maxwell-s-Equations-and-Electromagnetic-Waves)

Displacement current $I_d = \varepsilon_0 \frac{d\Phi_E}{dt}$ where $\Phi_E = \int \vec{E} \cdot d\vec{A}$ is the electric flux.

Maxwell's equations:
$$\epsilon_0 \mu_0 = 1/c^2$$

$$\oint_{S} \vec{E} \cdot d\vec{A} = \frac{1}{\epsilon_{0}} Q_{in}$$

$$\oint_{S} \vec{B} \cdot d\vec{A} = 0$$

$$\oint_{C} \vec{E} \cdot d\vec{\ell} = -\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{A}$$

$$\oint_{C} \vec{B} \cdot d\vec{\ell} = \mu_{0} I + \epsilon_{0} \mu_{0} \frac{d\Phi_{E}}{dt}$$

$$rac{\partial^2 E_y}{\partial x^2} = arepsilon_0 \mu_0 rac{\partial^2 E_y}{\partial t^2} ext{ and } rac{E_0}{B_0} = c$$

Poynting vector
$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B} =$$
energy flux

Average intensity
$$I=S_{ave}=rac{carepsilon_0}{2}E_0^2=rac{c}{2\mu_0}B_0^2=rac{1}{2\mu_0}E_0B_0$$

Radiation pressure p = I/c (perfect absorber) and p = 2I/c (perfect reflector).

