
WikiJournal of Science, 2019, 2(1):5
doi: 10.15347/wjs/2019.005
Encyclopedic Review Article

1 of 13 | WikiJournal of Science

Binary search algorithm
Anthony Lin¹* et al.

Abstract
In In computer science, binary search, also known as half-interval search,[1] logarithmic search,[2] or binary
chop,[3] is a search algorithm that finds a position of a target value within a sorted array.[4] Binary search compares
the target value to an element in the middle of the array. If they are not equal, the half in which the target cannot
lie is eliminated and the search continues on the remaining half, again taking the middle element to compare to
the target value, and repeating this until the target value is found. If the search ends with the remaining half being
empty, the target is not in the array.

Binary search runs in logarithmic time in the worst case, making 𝑂(log 𝑛) comparisons, where 𝑛 is the number of
elements in the array, the 𝑂 is ‘Big O’ notation, and 𝑙𝑜𝑔 is the logarithm.[5] Binary search is faster than linear search
except for small arrays. However, the array must be sorted first to be able to apply binary search. There are spe-
cialized data structures designed for fast searching, such as hash tables, that can be searched more efficiently than
binary search. However, binary search can be used to solve a wider range of problems, such as finding the next-
smallest or next-largest element in the array relative to the target even if it is absent from the array.

There are numerous variations of binary search. In particular, fractional cascading speeds up binary searches for
the same value in multiple arrays. Fractional cascading efficiently solves a number of search problems in compu-
tational geometry and in numerous other fields. Exponential search extends binary search to unbounded lists. The
binary search tree and B-tree data structures are based on binary search.

Algorithm

Binary search works on sorted arrays. Binary search be-
gins by comparing an element in the middle of the array
with the target value. If the target value matches the el-
ement, its position in the array is returned. If the target
value is less than the element, the search continues in
the lower half of the array. If the target value is greater
than the element, the search continues in the upper half
of the array. By doing this, the algorithm eliminates the
half in which the target value cannot lie in each itera-
tion.[6]

Procedure

Given an array 𝐴 of 𝑛 elements with values or records
𝐴0, 𝐴1, 𝐴2, … , 𝐴𝑛−1 sorted such that 𝐴0 ≤ 𝐴1 ≤ 𝐴2 ≤
⋯ ≤ 𝐴𝑛−1, and target value 𝑇, the following subroutine
uses binary search to find the index of 𝑇 in 𝐴.[6]

1. Set 𝐿 to 0 and 𝑅 to 𝑛 − 1.

2. While 𝐿 ≤ 𝑅,

1. Set 𝑚 (the position of the middle element) to

the floor of
𝐿+𝑅

2
, which is the greatest integer

less than or equal to
𝐿+𝑅

2
.

2. If 𝐴𝑚 < 𝑇, set 𝐿 to 𝑚 + 1.

3. If 𝐴𝑚 > 𝑇, set 𝑅 to 𝑚 − 1.

4. Else, 𝐴𝑚 = 𝑇; return 𝑚.

3. If the search has not returned a value by the time
While 𝐿 > 𝑅, the search terminates as unsuccessful.

This iterative procedure keeps track of the search
boundaries with the two variables 𝐿 and 𝑅. The proce-
dure may be expressed in pseudocode as follows, where
the variable names and types remain the same as
above, floor is the floor function, and unsuccessful
refers to a specific value that conveys the failure of the
search.[6]

*Author correspondence: by online form

ORCID: [0000-0000-0000-0001]

Licensed under: CC BY-SA

Received 29-10-2018; accepted 02-07-2019

https://xtools.wmflabs.org/articleinfo/en.wikipedia.org/Binary_search_algorithm/2019-07-02
https://en.wikipedia.org/wiki/computer_science
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-Williams1976-2
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22),_subsection_%22Binary_search%22-3
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEButterfieldNgondi201646-4
https://en.wikipedia.org/wiki/search_algorithm
https://en.wikipedia.org/wiki/sorted_array
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTECormenLeisersonRivestStein200939-5
https://en.wikipedia.org/wiki/Time_complexity#Logarithmic_time
https://en.wikipedia.org/wiki/Best,_worst_and_average_case
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/logarithm
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FloresMadpis1971-6
https://en.wikipedia.org/wiki/linear_search
https://en.wikipedia.org/wiki/data_structures
https://en.wikipedia.org/wiki/hash_tables
https://en.wikipedia.org/wiki/fractional_cascading
https://en.wikipedia.org/wiki/computational_geometry
https://en.wikipedia.org/wiki/computational_geometry
https://en.wikipedia.org/wiki/Exponential_search
https://en.wikipedia.org/wiki/binary_search_tree
https://en.wikipedia.org/wiki/B-tree
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22),_subsection_%22Algorithm_B%22-7
https://en.wikipedia.org/wiki/Record%20(computer%20science)
https://en.wikipedia.org/wiki/subroutine
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22),_subsection_%22Algorithm_B%22-7
https://en.wikipedia.org/wiki/Floor%20and%20ceiling%20functions
https://en.wikipedia.org/wiki/pseudocode
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22),_subsection_%22Algorithm_B%22-7
https://en.wikiversity.org/wiki/Special:EmailUser/Esquivalience
https://creativecommons.org/licenses/by/4.0/

WikiJournal of Science, 2019, 2(1):5
doi: 10.15347/wjs/2019.005
Encyclopedic Review Article

2 of 13 | WikiJournal of Science

function binary_search(A, n, T):

 L := 0

 R := n − 1

 while L <= R:

 m := floor((L + R) / 2)

 if A[m] < T:

 L := m + 1

 else if A[m] > T:

 R := m - 1

 else:

 return m

 return unsuccessful

Alternatively, the algorithm may take the ceiling of
𝐿+𝑅

2
,

or the least integer greater than or equal to
𝐿+𝑅

2
. This

may change the result if the target value appears more
than once in the array.

Alternative procedure

In the above procedure, the algorithm checks whether
the middle element (𝑚) is equal to the target (𝑇) in
every iteration. Some implementations leave out this
check during each iteration. The algorithm would per-
form this check only when one element is left (when
𝐿 = 𝑅). This results in a faster comparison loop, as one
comparison is eliminated per iteration. However, it re-
quires one more iteration on average.[1]

Hermann Bottenbruch published the first implementa-
tion to leave out this check in 1962.[1][8]

1. Set 𝐿 to 0 and 𝑅 to 𝑛 − 1.

2. While 𝐿 ≠ 𝑅,

1. Set 𝑚 (the position of the middle element) to

the ceiling of
𝐿+𝑅

2
, which is the least integer

greater than or equal to
𝐿+𝑅

2
.

2. If 𝐴𝑚 > 𝑇, set 𝑅 to 𝑚 − 1.

3. Else 𝐴𝑚 ≤ 𝑇, set 𝐿 to 𝑚.

3. Now 𝐿 = 𝑅, the search is done. If 𝐴𝐿 = 𝑇, return 𝐿.
Otherwise, the search terminates as unsuccessful.

Where ceil is the ceiling function, the pseudocode for
this version is:

function binary_search_alternative(A, n, T):

 L := 0

 R := n − 1

 while L != R:

 m := ceil((L + R) / 2)

 if A[m] > T:

 R := m - 1

 else:

 L := m

 if A[L] == T:

 return L

 return unsuccessful

Duplicate elements

The procedure may return any index whose element is
equal to the target value, even if there are duplicate el-
ements in the array. For example, if the array to be
searched was [1,2,3,4,4,5,6,7] and the target was 4,
then it would be correct for the algorithm to either re-
turn the 4th (index 3) or 5th (index 4) element. The reg-
ular procedure would return the 4th element (index 3).
However, it is sometimes necessary to find the leftmost
element or the rightmost element for a target value
that is duplicated in the array. In the above example, the
4th element is the leftmost element of the value 4,
while the 5th element is the rightmost element of the
value 4. The alternative procedure above will always re-
turn the index of the rightmost element if such an ele-
ment exists.[8]

Procedure for finding the leftmost element

To find the leftmost element, the following procedure
can be used:[9]

1. Set 𝐿 to 0 and 𝑅 to 𝑛.

2. While 𝐿 < 𝑅,

1. Set 𝑚 (the position of the middle element) to

the floor of
𝐿+𝑅

2
, which is the greatest integer

less than or equal to
𝐿+𝑅

2
.

2. If 𝐴𝑚 < 𝑇, set 𝐿 to 𝑚 + 1.

3. Else 𝐴𝑚 ≥ 𝑇, set 𝑅 to 𝑚.

3. Return 𝐿.

If 𝐿 < 𝑛 and 𝐴𝐿 = 𝑇, then 𝐴𝐿 is the leftmost element
that equals 𝑇. Even if 𝑇 is not in the array, 𝐿 is the rank
of 𝑇 in the array, or the number of elements in the array
that are less than 𝑇.

Where floor is the floor function, the pseudocode for
this version is:

function binary_search_rightmost(A, n, T):

 L := 0

 R := n

 while L < R:

 m := floor((L + R) / 2)

 if A[m] > T:

 R := m

 else:

 L := m + 1

 return L - 1

Procedure for finding the rightmost element

To find the rightmost element, the following procedure
can be used:[9]

https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-Bottenbruch1962-8
https://en.wikipedia.org/wiki/Hermann%20Bottenbruch
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-Bottenbruch1962-8
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22),_subsection_%22History_and_bibliography%22-9
https://en.wikipedia.org/wiki/Floor%20and%20ceiling%20functions
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22),_subsection_%22History_and_bibliography%22-9
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKasaharaMorishita20068%E2%80%939-10
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#Approximate_matches
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKasaharaMorishita20068%E2%80%939-10

WikiJournal of Science, 2019, 2(1):5
doi: 10.15347/wjs/2019.005
Encyclopedic Review Article

3 of 13 | WikiJournal of Science

1. Set 𝐿 to 0 and 𝑅 to 𝑛.

2. While 𝐿 < 𝑅,

1. Set 𝑚 (the position of the middle element) to

the floor of
𝐿+𝑅

2
, which is the greatest integer

less than or equal to
𝐿+𝑅

2
.

2. If 𝐴𝑚 > 𝑇, set 𝑅 to 𝑚.

3. Else 𝐴𝑚 ≤ 𝑇, set 𝐿 to 𝑚 + 1.

3. Return 𝐿 − 1.

If 𝐿 > 0 and 𝐴𝐿−1 = 𝑇, then 𝐴𝐿−1 is the rightmost ele-
ment that equals 𝑇. Even if 𝑇 is not in the array,
(𝑛 − 1) − 𝐿 is the number of elements in the array that
are greater than 𝑇.

Where floor is the floor function, the pseudocode for
this version is:

function binary_search_rightmost(A, n, T):

 L := 0

 R := n

 while L < R:

 m := floor((L + R) / 2)

 if A[m] > T:

 R := m

 else:

 L := m + 1

 return L - 1

Approximate matches

The above procedure only performs exact matches,
finding the position of a target value. However, it is triv-
ial to extend binary search to perform approximate
matches because binary search operates on sorted ar-
rays. For example, binary search can be used to com-
pute, for a given value, its rank (the number of smaller
elements), predecessor (next-smallest element), suc-
cessor (next-largest element), and nearest neighbor.
Range queries seeking the number of elements be-
tween two values can be performed with two rank que-
ries.[10]

• Rank queries can be performed with the procedure
for finding the leftmost element. The number of el-
ements less than the target value is returned by the
procedure.[10]

• Predecessor queries can be performed with rank
queries. If the rank of the target value is 𝑟, its prede-
cessor is 𝑟 − 1.[11]

• For successor queries, the procedure for finding the
rightmost element can be used. If the result of run-
ning the procedure for the target value is 𝑟, then the
successor of the target value is 𝑟 + 1.[11]

• The nearest neighbor of the target value is either its
predecessor or successor, whichever is closer.

• Range queries are also straightforward.[11] Once the
ranks of the two values are known, the number of
elements greater than or equal to the first value and
less than the second is the difference of the two
ranks. This count can be adjusted up or down by one
according to whether the endpoints of the range
should be considered to be part of the range and
whether the array contains entries matching those
endpoints.[12]

Performance

Number of comparisons

 In terms of the number of comparisons, the perfor-
mance of binary search can be analyzed by viewing the
run of the procedure on a binary tree. The root node of
the tree is the middle element of the array. The middle
element of the lower half is the left child node of the
root, and the middle element of the upper half is the
right child node of the root. The rest of the tree is built
in a similar fashion. Starting from the root node, the left
or right subtrees are traversed depending on whether
the target value is less or more than the node under
consideration.[5][13]

In the worst case, binary search makes ⌊log2(𝑛) + 1⌋ it-
erations of the comparison loop, where the ⌊ ⌋ nota-
tion denotes the floor function that yields the greatest
integer less than or equal to the argument, and log2 is
the binary logarithm. This is because the worst case is
reached when the search reaches the deepest level of
the tree, and there are always ⌊log2(𝑛) + 1⌋ levels in
the tree for any binary search.

The worst case may also be reached when the target el-
ement is not in the array. If 𝑛 is one less than a power of

Figure 1 | Binary search can be adapted to compute approxi-
mate matches. In the example above, the rank, predecessor,
successor, and nearest neighbor are shown for the target
value 5, which is not in the array.

https://en.wikipedia.org/wiki/Nearest_neighbor_search
https://en.wikipedia.org/wiki/Range_query_(data_structures)
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTESedgewickWayne2011%C2%A73.1,_subsection_%22Rank_and_selection%22-11
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#Procedure_for_finding_the_leftmost_element
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#Procedure_for_finding_the_leftmost_element
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTESedgewickWayne2011%C2%A73.1,_subsection_%22Rank_and_selection%22-11
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEGoldmanGoldman2008461%E2%80%93463-12
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#Procedure_for_finding_the_rightmost_element
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#Procedure_for_finding_the_rightmost_element
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEGoldmanGoldman2008461%E2%80%93463-12
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEGoldmanGoldman2008461%E2%80%93463-12
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTESedgewickWayne2011%C2%A73.1,_subsection_%22Range_queries%22-13
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FloresMadpis1971-6
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22),_subsection_%22Further_analysis_of_binary_search%22-14
https://en.wikipedia.org/wiki/floor_function
https://en.wikipedia.org/wiki/binary_logarithm

WikiJournal of Science, 2019, 2(1):5
doi: 10.15347/wjs/2019.005
Encyclopedic Review Article

4 of 13 | WikiJournal of Science

two, then this is always
the case. Otherwise, the
search may perform
⌊log2(𝑛) + 1⌋ iterations
if the search reaches the
deepest level of the
tree. However, it may
make ⌊log2(𝑛)⌋ itera-
tions, which is one less
than the worst case, if
the search ends at the
second-deepest level of
the tree.[14]

On average, assuming
that each element is equally likely to be searched, bi-

nary search makes ⌊log2(𝑛)⌋ + 1 − (2⌊log2(𝑛)⌋+1 −

⌊log2(𝑛)⌋ − 2)/𝑛 iterations when the target element is

in the array. This is approximately equal to log2(𝑛) – 1
iterations. When the target element is not in the array,

binary search makes ⌊log2(𝑛)⌋ + 2 − 2⌊log2(𝑛)⌋+1/(𝑛 +
1) iterations on average, assuming that the range be-
tween and outside elements is equally likely to be
searched.[13]

In the best case, where the target value is the middle el-
ement of the array, its position is returned after one it-
eration.[15]

In terms of iterations, no search algorithm that works
only by comparing elements can exhibit better average
and worst-case performance than binary search. The
comparison tree representing binary search has the
fewest levels possible as every level above the lowest
level of the tree is filled completely.[a] Otherwise, the
search algorithm can eliminate few elements in an iter-
ation, increasing the number of iterations required in
the average and worst case. This is the case for other
search algorithms based on comparisons, as while they
may work faster on some target values, the average
performance over all elements is worse than binary

search. By dividing the array in half, binary search en-
sures that the size of both subarrays are as similar as
possible.[13]

Space complexity

Binary search requires three pointers to elements,
which may be array indices or pointers to memory loca-
tions, regardless of the size of the array. However, it re-
quires at least ⌈log2(𝑛) bits to encode a pointer to an
element of an array with 𝑛 elements.[16] Therefore, the
space complexity of binary search is 𝑂(log 𝑛). In addi-
tion, it takes 𝑂(𝑛) space to store the array.

Derivation of average case

The average number of iterations performed by binary
search depends on the probability of each element be-
ing searched. The average case is different for success-
ful searches and unsuccessful searches. It will be as-
sumed that each element is equally likely to be
searched for successful searches. For unsuccessful
searches, it will be assumed that the intervals between
and outside elements are equally likely to be searched.
The average case for successful searches is the number
of iterations required to search every element exactly
once, divided by 𝑛, the number of elements. The aver-
age case for unsuccessful searches is the number of it-
erations required to search an element within every in-
terval exactly once, divided by the 𝑛 + 1 intervals.[13]

Successful searches

In the binary tree representation, a successful search
can be represented by a path from the root to the target
node, called an internal path. The length of a path is the
number of edges (connections between nodes) that the
path passes through. The number of iterations per-
formed by a search, given that the corresponding path
has length 𝑙 , is 𝑙 + 1 counting the initial iteration. The
internal path length is the sum of the lengths of all

Figure 3 | The worst case is reached when the search reaches the deepest level of the tree,
while the best case is reached when the target value is the middle element.

Figure 2 | A tree representing bi-
nary search. The array being
searched here is [20, 30, 40, 50,
80, 90, 100], and the target
value is 40.

https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22),_%22Theorem_B%22-15
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22),_subsection_%22Further_analysis_of_binary_search%22-14
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEChang2003169-16
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-17
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22),_subsection_%22Further_analysis_of_binary_search%22-14
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-18
https://en.wikipedia.org/wiki/Interval%20(mathematics)
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22),_subsection_%22Further_analysis_of_binary_search%22-14
https://en.wikipedia.org/wiki/Tree_(data_structure)

WikiJournal of Science, 2019, 2(1):5
doi: 10.15347/wjs/2019.005
Encyclopedic Review Article

5 of 13 | WikiJournal of Science

unique internal paths. Since there is only one path from
the root to any single node, each internal path repre-
sents a search for a specific element. If there are 𝑛 ele-
ments, which is a positive integer, and the internal path
length is 𝐼(𝑛) then the average number of iterations for

a successful search 𝑇(𝑛) = 1 +
𝐼(𝑛)

𝑛
, with the one itera-

tion added to count the initial iteration.[13]

Since binary search is the optimal algorithm for search-
ing with comparisons, this problem is reduced to calcu-
lating the minimum internal path length of all binary
trees with 𝑛 nodes, which is equal to:[17]

𝐼(𝑛) = ∑⌊𝑙𝑜𝑔2(𝑘)

𝑛

𝑘=1

For example, in a 7-element array, the root requires one
iteration, the two elements below the root require two
iterations, and the four elements below require three it-
erations. In this case, the internal path length is:[17]

∑⌊𝑙𝑜𝑔2(𝑘)⌋

7

𝑘=1

= 0 + 2(1) + 4(2)

= 2 + 8
= 10

The average number of iterations would be 1 +
10

7
= 2

3

7

based on the equation for the average case. The sum for
𝐼(𝑛) can be simplified to:[13]

𝐼(𝑛) = ∑⌊𝑙𝑜𝑔2(𝑘)⌋

𝑛

𝑘=1

= (𝑛 + 1)⌊𝑙𝑜𝑔2(𝑛 + 1)⌋ − 2⌊𝑙𝑜𝑔2(𝑛+1)⌋+1 + 2

Substituting the equation for 𝐼(𝑛) into the equation for
𝑇(𝑛):[13]

𝑇(𝑛) = 1 +
(𝑛 + 1)⌊𝑙𝑜𝑔2(𝑛 + 1)⌋ − 2⌊𝑙𝑜𝑔2(𝑛+1)⌋+1 + 2

𝑛
= ⌊𝑙𝑜𝑔2(𝑛)⌋ + 1 − (2⌊𝑙𝑜𝑔2(𝑛)⌋+1 − ⌊𝑙𝑜𝑔2(𝑛)⌋ − 2)/𝑛

For integer 𝑛, this is equivalent to the equation for the
average case on a successful search specified above.

Unsuccessful searches

Unsuccessful searches can be represented by augment-
ing the tree with external nodes, which forms an ex-
tended binary tree. If an internal node, or a node present
in the tree, has fewer than two child nodes, then addi-
tional child nodes, called external nodes, are added so
that each internal node has two children. By doing so,
an unsuccessful search can be represented as a path to
an external node, whose parent is the single element

that remains during the last iteration. An external path
is a path from the root to an external node. The external
path length is the sum of the lengths of all unique exter-
nal paths. If there are 𝑛 elements, which is a positive in-
teger, and the external path length is 𝐸(𝑛), then the av-
erage number of iterations for an unsuccessful search

𝑇′(𝑛) =
𝐸(𝑛)

𝑛+1
, with the one iteration added to count the

initial iteration. The external path length is divided by
𝑛 + 1 instead of 𝑛 because there are 𝑛 + 1 external
paths, representing the intervals between and outside
the elements of the array.[13]

This problem can similarly be reduced to determining
the minimum external path length of all binary trees
with 𝑛 nodes. For all binary trees, the external path
length is equal to the internal path length plus 2𝑛.[17]
Substituting the equation for 𝐼(𝑛):[13]

𝐸(𝑛) = 𝐼(𝑛) + 2𝑛

= [(𝑛 + 1)⌊𝑙𝑜𝑔2(𝑛 + 1)⌋ − 2⌊𝑙𝑜𝑔2(𝑛+1)⌋+1 + 2] + 2𝑛

= (𝑛 + 1)(⌊𝑙𝑜𝑔2(𝑛)⌋ + 2) − 2⌊𝑙𝑜𝑔2(𝑛)⌋+1

Substituting the equation for 𝐸(𝑛) into the equation for
𝑇′(𝑛), the average case for unsuccessful searches can
be determined:[13]

𝑇′(𝑛) =
(𝑛 + 1)(⌊𝑙𝑜𝑔2(𝑛)⌋ + 2) − 2⌊𝑙𝑜𝑔2(𝑛)⌋+1

(𝑛 + 1)

= ⌊𝑙𝑜𝑔2(𝑛)⌋ + 2 − 2⌊𝑙𝑜𝑔2(𝑛)⌋+1/(𝑛 + 1)

Performance of alternative procedure

Each iteration of the binary search procedure defined
above makes one or two comparisons, checking if the
middle element is equal to the target in each iteration.
Assuming that each element is equally likely to be
searched, each iteration makes 1.5 comparisons on av-
erage. A variation of the algorithm checks whether the
middle element is equal to the target at the end of the
search. On average, this eliminates half a comparison
from each iteration. This slightly cuts the time taken per
iteration on most computers. However, it guarantees
that the search takes the maximum number of itera-
tions, on average adding one iteration to the search. Be-
cause the comparison loop is performed only
⌊log2(𝑛) + 1⌋ times in the worst case, the slight in-
crease in efficiency per iteration does not compensate
for the extra iteration for all but very large 𝑛.[b][18][19]

Running time and cache use

In analyzing the performance of binary search, another
consideration is the time required to compare two ele-
ments. For integers and strings, the time required in-
creases linearly as the encoding length (usually the

https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22),_subsection_%22Further_analysis_of_binary_search%22-14
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1997%C2%A72.3.4.5_(%22Path_length%22)-19
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1997%C2%A72.3.4.5_(%22Path_length%22)-19
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22),_subsection_%22Further_analysis_of_binary_search%22-14
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22),_subsection_%22Further_analysis_of_binary_search%22-14
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22),_subsection_%22Further_analysis_of_binary_search%22-14
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1997%C2%A72.3.4.5_(%22Path_length%22)-19
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22),_subsection_%22Further_analysis_of_binary_search%22-14
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22),_subsection_%22Further_analysis_of_binary_search%22-14
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-21
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22),_subsection_%22Exercise_23%22-20
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-22

WikiJournal of Science, 2019, 2(1):5
doi: 10.15347/wjs/2019.005
Encyclopedic Review Article

6 of 13 | WikiJournal of Science

number of bits) of the elements increase. For example,
comparing a pair of 64-bit unsigned integers would re-
quire comparing up to double the bits as comparing a
pair of 32-bit unsigned integers. The worst case is
achieved when the integers are equal. This can be sig-
nificant when the encoding lengths of the elements are
large, such as with large integer types or long strings,
which makes comparing elements expensive. Further-
more, comparing floating-point values (the most com-
mon digital representation of real numbers) is often
more expensive than comparing integers or short
strings.

On most computer architectures, the processor has a
hardware cache separate from RAM. Since they are lo-
cated within the processor itself, caches are much faster
to access but usually store much less data than RAM.
Therefore, most processors store memory locations
that have been accessed recently, along with memory
locations close to it. For example, when an array ele-
ment is accessed, the element itself may be stored
along with the elements that are stored close to it in
RAM, making it faster to sequentially access array ele-
ments that are close in index to each other (locality of
reference). On a sorted array, binary search can jump to
distant memory locations if the array is large, unlike al-
gorithms (such as linear search and linear probing in
hash tables) which access elements in sequence. This
adds slightly to the running time of binary search for
large arrays on most systems.[20]

Binary search versus other schemes

Sorted arrays with binary search are a very inefficient
solution when insertion and deletion operations are in-
terleaved with retrieval, taking 𝑂(𝑛) time for each such
operation. In addition, sorted arrays can complicate
memory use especially when elements are often in-
serted into the array.[21] There are other data structures
that support much more efficient insertion and dele-
tion. Binary search can be used to perform exact match-
ing and set membership (determining whether a target
value is in a collection of values). There are data struc-
tures that support faster exact matching and set mem-
bership. However, unlike many other searching
schemes, binary search can be used for efficient approx-
imate matching, usually performing such matches in
𝑂(log 𝑛) time regardless of the type or structure of the
values themselves.[22] In addition, there are some oper-
ations, like finding the smallest and largest element,
that can be performed efficiently on a sorted array.[10]

Linear search

Linear search is a simple search algorithm that checks
every record until it finds the target value. Linear search
can be done on a linked list, which allows for faster in-
sertion and deletion than an array. Binary search is
faster than linear search for sorted arrays except if the
array is short, although the array needs to be sorted be-
forehand.[c][24] All sorting algorithms based on compar-
ing elements, such as quicksort and merge sort, require
at least 𝑂(𝑛 log 𝑛) comparisons in the worst case.[25]
Unlike linear search, binary search can be used for effi-
cient approximate matching. There are operations such
as finding the smallest and largest element that can be
done efficiently on a sorted array but not on an un-
sorted array.[26]

Linear search

Linear search is a simple search algorithm that checks
every record until it finds the target value. Linear search
can be done on a linked list, which allows for faster in-
sertion and deletion than an array. Binary search is
faster than linear search for sorted arrays except if the
array is short, although the array needs to be sorted be-
forehand.[lower-alpha 3][24] All sorting algorithms based on
comparing elements, such as quicksort and merge sort,
require at least 𝑂(𝑛 log 𝑛) comparisons in the worst
case.[25] Unlike linear search, binary search can be used
for efficient approximate matching. There are opera-
tions such as finding the smallest and largest element
that can be done efficiently on a sorted array but not on
an unsorted array.[26]

Trees

A binary search tree is a binary tree data structure that
works based on the principle of binary search. The rec-
ords of the tree are arranged in sorted order, and each
record in the tree can be searched using an algorithm
similar to binary search, taking on average logarithmic
time. Insertion and deletion also require on average log-
arithmic time in binary search trees. This can be faster
than the linear time insertion and deletion of sorted ar-
rays, and binary trees retain the ability to perform all
the operations possible on a sorted array, including
range and approximate queries.[22][27]

However, binary search is usually more efficient for
searching as binary search trees will most likely be im-
perfectly balanced, resulting in slightly worse perfor-
mance than binary search. This even applies to bal-
anced binary search trees, binary search trees that bal-
ance their own nodes, because they rarely produce the
tree with the fewest possible levels. Except for balanced

https://en.wikipedia.org/wiki/bit
https://en.wikipedia.org/wiki/Floating-point%20arithmetic
https://en.wikiversity.org/wiki/Real_number
https://en.wikipedia.org/wiki/Central%20processing%20unit
https://en.wikipedia.org/wiki/Cache%20(computing)
https://en.wikipedia.org/wiki/Random-access%20memory
https://en.wikipedia.org/wiki/locality%20of%20reference
https://en.wikipedia.org/wiki/locality%20of%20reference
https://en.wikipedia.org/wiki/linear%20search
https://en.wikipedia.org/wiki/linear%20probing
https://en.wikipedia.org/wiki/hash%20table
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-23
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1997%C2%A72.2.2_(%22Sequential_Allocation%22)-24
https://en.wikipedia.org/wiki/Set%20(abstract%20data%20type)
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-pred-25
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTESedgewickWayne2011%C2%A73.1,_subsection_%22Rank_and_selection%22-11
https://en.wikipedia.org/wiki/Linear%20search
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-27
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22)-28
https://en.wikipedia.org/wiki/sorting%20algorithm
https://en.wikipedia.org/wiki/quicksort
https://en.wikipedia.org/wiki/merge%20sort
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A75.3.1_(%22Minimum-Comparison_sorting%22)-29
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTESedgewickWayne2011%C2%A73.2_(%22Ordered_symbol_tables%22)-30
https://en.wikipedia.org/wiki/Linear%20search
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-27
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22)-28
https://en.wikipedia.org/wiki/sorting%20algorithm
https://en.wikipedia.org/wiki/quicksort
https://en.wikipedia.org/wiki/merge%20sort
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A75.3.1_(%22Minimum-Comparison_sorting%22)-29
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTESedgewickWayne2011%C2%A73.2_(%22Ordered_symbol_tables%22)-30
https://en.wikipedia.org/wiki/binary%20search%20tree
https://en.wikipedia.org/wiki/binary%20tree
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-pred-25
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTESedgewickWayne2011%C2%A73.2_(%22Binary_Search_Trees%22),_subsection_%22Order-based_methods_and_deletion%22-31
https://en.wikipedia.org/wiki/balanced%20binary%20search%20tree
https://en.wikipedia.org/wiki/balanced%20binary%20search%20tree

WikiJournal of Science, 2019, 2(1):5
doi: 10.15347/wjs/2019.005
Encyclopedic Review Article

7 of 13 | WikiJournal of Science

binary search trees, the tree may be severely imbal-
anced with few internal nodes with two children, result-
ing in the average and worst-case search time ap-
proaching 𝑛 comparisons.[d] Binary search trees take
more space than sorted arrays.[29]

Binary search trees lend themselves to fast searching in
external memory stored in hard disks, as binary search
trees can be efficiently structured in filesystems. The B-
tree generalizes this method of tree organization. B-
trees are frequently used to organize long-term storage
such as databases and filesystems.[30][31]

Hashing

For implementing associative arrays, hash tables, a
data structure that maps keys to records using a hash
function, are generally faster than binary search on a
sorted array of records.[32] Most hash table implemen-
tations require only amortized constant time on aver-
age.[e][34] However, hashing is not useful for approxi-
mate matches, such as computing the next-smallest,
next-largest, and nearest key, as the only information
given on a failed search is that the target is not present
in any record.[35] Binary search is ideal for such matches,
performing them in logarithmic time. Binary search also
supports approximate matches. Some operations, like
finding the smallest and largest element, can be done
efficiently on sorted arrays but not on hash tables.[22]

Set membership algorithms

A related problem to search is set membership. Any al-
gorithm that does lookup, like binary search, can also
be used for set membership. There are other algorithms
that are more specifically suited for set membership. A
bit array is the simplest, useful when the range of keys
is limited. It compactly stores a collection of bits, with
each bit representing a single key within the range of

keys. Bit arrays are very fast, requiring only 𝑂(1)
time.[36] The Judy1 type of Judy array handles 64-bit
keys efficiently.[37]

For approximate results, Bloom filters, another proba-
bilistic data structure based on hashing, store a set of
keys by encoding the keys using a bit array and multiple
hash functions. Bloom filters are much more space-effi-
cient than bit arrays in most cases and not much slower:
𝑘 hash functions, membership queries require only
𝑂(𝑘) time. However, Bloom filters suffer from false
positives.[f][g][39]

Other data structures

There exist data structures that may improve on binary
search in some cases for both searching and other op-
erations available for sorted arrays. For example,
searches, approximate matches, and the operations
available to sorted arrays can be performed more effi-
ciently than binary search on specialized data structures
such as van Emde Boas trees, fusion trees, tries, and bit
arrays. These specialized data structures are usually
only faster because they take advantage of the proper-
ties of keys with a certain attribute (usually keys that are
small integers), and thus will be time or space consum-
ing for keys that lack that attribute.[22] As long as the
keys can be ordered, these operations can always be
done at least efficiently on a sorted array regardless of
the keys. Some structures, such as Judy arrays, use a
combination of approaches to mitigate this while re-
taining efficiency and the ability to perform approxi-
mate matching.[37]

Variations

Uniform binary search

Main article: Uniform binary search

Uniform binary search stores, instead of the lower and
upper bounds, the difference in the index of the middle
element from the current iteration to the next iteration.
A lookup tablecontaining the differences is computed
beforehand. For example, if the array to be searched is

Figure 4 | Binary search trees are searched using
an algorithm similar to binary search.
Chris Martin, public domain

Figure 5 | Uniform binary search stores the difference be-
tween the current and the two next possible middle elements
instead of specific bounds.

https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-33
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTESedgewickWayne2011%C2%A73.5_(%22Applications%22),_%22Which_symbol-table_implementation_should_I_use?%22-34
https://en.wikipedia.org/wiki/B-tree
https://en.wikipedia.org/wiki/B-tree
https://en.wikipedia.org/wiki/database
https://en.wikipedia.org/wiki/filesystem
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A75.4.9_(%22Disks_and_Drums%22)-35
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.4_(%22Multiway_trees%22)-36
https://en.wikipedia.org/wiki/associative_arrays
https://en.wikipedia.org/wiki/hash_table
https://en.wikipedia.org/wiki/record_(computer_science)
https://en.wikipedia.org/wiki/hash_function
https://en.wikipedia.org/wiki/hash_function
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.4_(%22Hashing%22)-37
https://en.wikipedia.org/wiki/Amortized_analysis
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-39
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-40
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-41
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-pred-25
https://en.wikipedia.org/wiki/Set_(abstract_data_type)
https://en.wikipedia.org/wiki/bit_array
https://en.wikipedia.org/wiki/bit
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth2011%C2%A77.1.3_(%22Bitwise_Tricks_and_Techniques%22)-42
https://en.wikipedia.org/wiki/Judy_array
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-judyarray-43
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/set_(mathematics)
https://en.wikipedia.org/wiki/bit_array
https://en.wikipedia.org/wiki/False_positives_and_false_negatives
https://en.wikipedia.org/wiki/False_positives_and_false_negatives
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-45
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-46
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-47
https://en.wikipedia.org/wiki/van_Emde_Boas_tree
https://en.wikipedia.org/wiki/fusion_tree
https://en.wikipedia.org/wiki/trie
https://en.wikipedia.org/wiki/bit_array
https://en.wikipedia.org/wiki/bit_array
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-pred-25
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-judyarray-43
https://en.wikipedia.org/wiki/Uniform_binary_search
https://en.wikipedia.org/wiki/lookup_table

WikiJournal of Science, 2019, 2(1):5
doi: 10.15347/wjs/2019.005
Encyclopedic Review Article

8 of 13 | WikiJournal of Science

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], the middle element (𝑚)
would be 6. In this case, the middle element of the left
subarray ([1, 2, 3, 4, 5]) is 3 and the middle element of
the right subarray ([7, 8, 9, 10, 11]) is 9. Uniform binary
search would store the value of 3 as both indices differ
from 6 by this same amount.[40] To reduce the search
space, the algorithm either adds or subtracts this
change from the index of the middle element. Uniform
binary search may be faster on systems where it is inef-
ficient to calculate the midpoint, such as on decimal
computers.[41]

Exponential search

Main article: Exponential search

Exponential search extends binary search to un-
bounded lists. It starts by finding the first element with
an index that is both a power of two and greater than
the target value. Afterwards, it sets that index as the up-
per bound, and switches to binary search. A search
takes ⌊log2 𝑥 + 1⌋ iterations before binary search is
started and at most ⌊log2 𝑥⌋ iterations of the binary
search, where 𝑥 is the position of the target value. Ex-
ponential search works on bounded lists, but becomes
an improvement over binary search only if the target
value lies near the beginning of the array.[42]

Interpolation search

Main article: Interpolation search

Instead of calculating the midpoint, interpolation
search estimates the position of the target value, taking
into account the lowest and highest elements in the ar-
ray as well as length of the array. It works on the basis

that the midpoint is not the best guess in many cases.
For example, if the target value is close to the highest
element in the array, it is likely to be located near the
end of the array.[43]

A common interpolation function is linear interpolation.
If 𝐴 is the array, 𝐿, 𝑅 are the lower and upper bounds re-
spectively, and 𝑇 is the target, then the target is esti-
mated to be about (𝑇 − 𝐴𝐿)/(𝐴𝑅 − 𝐴𝐿) of the way be-
tween 𝐿 and 𝑅. When linear interpolation is used, and
the distribution of the array elements is uniform or near
uniform, interpolation search makes 𝑂(log log 𝑛) com-
parisons.[43][44][45]

In practice, interpolation search is slower than binary
search for small arrays, as interpolation search requires
extra computation. Its time complexity grows more
slowly than binary search, but this only compensates
for the extra computation for large arrays.[43]

Fractional cascading

Main article: Fractional cascading

Fractional cascading is a technique that speeds up bi-
nary searches for the same element in multiple sorted
arrays. Searching each array separately requires
𝑂(𝑘 log 𝑛) time, where 𝑘 is the number of arrays. Frac-
tional cascading reduces this to 𝑂(𝑘 + log 𝑛) by storing
specific information in each array about each element
and its position in the other arrays.[46][47]

Fractional cascading was originally developed to effi-
ciently solve various computational geometry prob-
lems. Fractional cascading has been applied elsewhere,
such as in data mining and Internet Protocol routing.[46]

Figure 6 | Visualization of exponential searching finding the upper bound for the subsequent binary search.

Figure 7 | Visualization of interpolation search. In this case, no searching is needed because the estimate of
the target's location within the array is correct. Other implementations may specify another function for esti-
mating the target's location.

https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22),_subsection_%22An_important_variation%22-48
https://en.wikipedia.org/wiki/decimal_computer
https://en.wikipedia.org/wiki/decimal_computer
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22),_subsection_%22Algorithm_U%22-49
https://en.wikipedia.org/wiki/Exponential_search
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEMoffatTurpin200233-50
https://en.wikipedia.org/wiki/Interpolation_search
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22),_subsection_%22Interpolation_search%22-51
https://en.wikipedia.org/wiki/linear_interpolation
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22),_subsection_%22Interpolation_search%22-51
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22),_subsection_%22Exercise_22%22-52
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-53
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22),_subsection_%22Interpolation_search%22-51
https://en.wikipedia.org/wiki/Fractional_cascading
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-ChazelleLiu2001-54
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-ChazelleLiu2004-55
https://en.wikipedia.org/wiki/computational_geometry
https://en.wikipedia.org/wiki/data_mining
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-ChazelleLiu2001-54

WikiJournal of Science, 2019, 2(1):5
doi: 10.15347/wjs/2019.005
Encyclopedic Review Article

9 of 13 | WikiJournal of Science

Generalization to graphs

Binary search has been generalized to work on certain
types of graphs, where the target value is stored in a
vertex instead of an array element. Binary search trees
are one such generalization—when a vertex (node) in
the tree is queried, the algorithm either learns that the
vertex is the target, or otherwise which subtree the tar-
get would be located in. However, this can be further
generalized as follows: given an undirected, positively
weighted graph and a target vertex, the algorithm
learns upon querying a vertex that it is equal to the tar-
get, or it is given an incident edge that is on the shortest
path from the queried vertex to the target. The stand-
ard binary search algorithm is simply the case where the
graph is a path. Similarly, binary search trees are the
case where the edges to the left or right subtrees are
given when the queried vertex is unequal to the target.
For all undirected, positively weighted graphs, there is
an algorithm that finds the target vertex in 𝑂(log 𝑛)
queries in the worst case.[48]

Noisy binary search

Noisy binary search algorithms solve the case where the
algorithm cannot reliably compare elements of the ar-
ray. For each pair of elements, there is a certain proba-
bility that the algorithm makes the wrong comparison.
Noisy binary search can find the correct position of the
target with a given probability that controls the reliabil-
ity of the yielded position. Every noisy binary search

procedure must make at least (1 − τ)
log2(𝑛)

𝐻(𝑝)
−

10

𝐻(𝑝)

comparisons on average, where (1 − τ)
log2(𝑛)

𝐻(𝑝)
−

10

𝐻(𝑝)
 is

the binary entropy function and τ is the probability that
the procedure yields the wrong position.[49][50][51] The
noisy binary search problem can be considered as a case
of the Rényi-Ulam game,[52] a variant of Twenty Ques-
tions where the answers may be wrong.[53]

Quantum binary search

Classical computers are bounded to the worst case of
exactly ⌊log2 𝑛 + 1⌋ iterations when performing binary
search. Quantum algorithms for binary search are still
bounded to a proportion of log2 𝑛 queries (representing
iterations of the classical procedure), but the constant
factor is less than one, providing for a lower time com-
plexity on quantum computers. Any exact quantum bi-
nary search procedure—that is, a procedure that always

yields the correct result—requires at least
1

π
(ln 𝑛 −

1) ≈ 0.22 log2 𝑛 queries in the worst case, where 𝑙𝑛 is
the natural logarithm.[54] There is an exact quantum bi-
nary search procedure that runs in 4 log605 𝑛 ≈
0.433 log2 𝑛 queries in the worst case.[55] In compari-
son, Grover's algorithm is the optimal quantum algo-
rithm for searching an unordered list of elements, and it

requires 𝑂(√𝑛) queries.[56]

History

The idea of sorting a list of items to allow for faster
searching dates back to antiquity. The earliest known
example was the Inakibit-Anu tablet from Babylon da-
ting back to c. 200 BCE. The tablet contained about 500
sexagesimalnumbers and their reciprocals sorted in lex-
icographical order, which made searching for a specific
entry easier. In addition, several lists of names that
were sorted by their first letter were discovered on the
Aegean Islands. Catholicon, a Latin dictionary finished
in 1286 CE, was the first work to describe rules for sort-
ing words into alphabetical order, as opposed to just the
first few letters.[8]

In 1946, John Mauchly made the first mention of binary
search as part of the Moore School Lectures, a seminal
and foundational college course in computing.[8] In
1957, William Wesley Peterson published the first

Figure 8 | In fractional cascading, each array has pointers to every second element of another array, so only one
binary search has to be performed to search all the arrays.

https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-56
https://en.wikipedia.org/wiki/binary_entropy_function
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-57
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-pelc1989-58
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-59
https://en.wikipedia.org/wiki/Ulam%27s_game
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-60
https://en.wikipedia.org/wiki/Twenty_Questions
https://en.wikipedia.org/wiki/Twenty_Questions
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-61
https://en.wikipedia.org/wiki/Quantum_algorithm
https://en.wikipedia.org/wiki/quantum_computing
https://en.wikipedia.org/wiki/natural_logarithm
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-62
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-quantumalgo-63
https://en.wikipedia.org/wiki/Grover%27s_algorithm
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-64
https://en.wikipedia.org/wiki/Sexagesimal
https://en.wikipedia.org/wiki/Multiplicative_inverse
https://en.wikipedia.org/wiki/Lexicographical_order
https://en.wikipedia.org/wiki/Lexicographical_order
https://en.wikipedia.org/wiki/Aegean_Islands
https://en.wikipedia.org/wiki/Catholicon_(1286)
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22),_subsection_%22History_and_bibliography%22-9
https://en.wikipedia.org/wiki/John_Mauchly
https://en.wikipedia.org/wiki/Moore_School_Lectures
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22),_subsection_%22History_and_bibliography%22-9
https://en.wikipedia.org/wiki/W._Wesley_Peterson

WikiJournal of Science, 2019, 2(1):5
doi: 10.15347/wjs/2019.005
Encyclopedic Review Article

10 of 13 | WikiJournal of Science

method for interpolation search.[8][57] Every published
binary search algorithm worked only for arrays whose
length is one less than a power of two[h] until 1960,
when Derrick Henry Lehmer published a binary search
algorithm that worked on all arrays.[59] In 1962, Her-
mann Bottenbruch presented an ALGOL 60 implemen-
tation of binary search that placed the comparison for
equality at the end, increasing the average number of
iterations by one, but reducing to one the number of
comparisons per iteration.[7] The uniform binary search
was developed by A. K. Chandra of Stanford University
in 1971.[8] In 1986, Bernard Chazelle and Leonidas J.
Guibas introduced fractional cascading as a method to
solve numerous search problems in computational ge-
ometry.[46][60][61]

Implementation issues

Although the basic idea of binary search is comparatively
straightforward, the details can be surprisingly tricky ... — Don-
ald Knuth[2]

When Jon Bentley assigned binary search as a problem
in a course for professional programmers, he found that
ninety percent failed to provide a correct solution after
several hours of working on it, mainly because the in-
correct implementations failed to run or returned a
wrong answer in rare edge cases.[62] A study published
in 1988 shows that accurate code for it is only found in
five out of twenty textbooks.[63] Furthermore, Bentley's
own implementation of binary search, published in his
1986 book Programming Pearls, contained an overflow
error that remained undetected for over twenty years.
The Java programming language library implementa-
tion of binary search had the same overflow bug for
more than nine years.[64]

In a practical implementation, the variables used to rep-
resent the indices will often be of fixed size, and this can
result in an arithmetic overflow for very large arrays. If

the midpoint of the span is calculated as
𝐿+𝑅

2
, then the

value of 𝐿 + 𝑅 may exceed the range of integers of the
data type used to store the midpoint, even if 𝐿 and 𝑅 are
within the range. If 𝐿 and 𝑅 are nonnegative, this can be

avoided by calculating the midpoint as 𝐿 +
𝑅−𝐿

2
.[65]

An infinite loop may occur if the exit conditions for the
loop are not defined correctly. Once 𝐿 exceeds 𝑅, the
search has failed and must convey the failure of the
search. In addition, the loop must be exited when the
target element is found, or in the case of an implemen-
tation where this check is moved to the end, checks for
whether the search was successful or failed at the end

must be in place. Bentley found that most of the pro-
grammers who incorrectly implemented binary search
made an error in defining the exit conditions.[7][66]

Library support

Many languages' standard libraries include binary
search routines:

• C provides the function bsearch() in its standard li-
brary, which is typically implemented via binary
search, although the official standard does not re-
quire it so.[67]

• C++'s Standard Template Library provides the func-
tions binary_search(), lower_bound(), up-

per_bound() and equal_range().[68]

• COBOL provides the SEARCH ALL verb for perform-
ing binary searches on COBOL ordered tables.[69]

• Go's sort standard library package contains the
functions Search, SearchInts, SearchFloat64s, and
SearchStrings, which implement general binary
search, as well as specific implementations for
searching slices of integers, floating-point numbers,
and strings, respectively.[70]

• Java offers a set of overloaded binarySearch()
static methods in the classes Arrays and Collec-
tionsin the standard java.util package for per-
forming binary searches on Java arrays and on
Lists, respectively.[71][72]

• Microsoft's .NET Framework 2.0 offers static ge-
neric versions of the binary search algorithm in its
collection base classes. An example would be Sys-
tem.Array's method BinarySearch<T>(T[] ar-

ray, T value).[73]

• For Objective-C, the Cocoa framework provides the
NSArray -indexOfObject:inSortedRange:op-

tions:usingComparator: method in Mac OS X
10.6+.[74] Apple's Core Foundation C framework also
contains a CFArrayBSearchValues() function.[75]

• Python provides the bisect module.[76]

• Ruby's Array class includes a bsearch method with
built-in approximate matching.[77]

https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22),_subsection_%22History_and_bibliography%22-9
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-65
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-67
https://en.wikipedia.org/wiki/Derrick_Henry_Lehmer
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-68
https://en.wikipedia.org/wiki/ALGOL_60
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#Alternative_procedure
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#Alternative_procedure
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-Bottenbruch1962-8
https://en.wikipedia.org/wiki/#Uniform_binary_search
https://en.wikipedia.org/wiki/Stanford_University
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22),_subsection_%22History_and_bibliography%22-9
https://en.wikipedia.org/wiki/Bernard_Chazelle
https://en.wikipedia.org/wiki/Leonidas_J._Guibas
https://en.wikipedia.org/wiki/Leonidas_J._Guibas
https://en.wikipedia.org/wiki/fractional_cascading
https://en.wikipedia.org/wiki/computational_geometry
https://en.wikipedia.org/wiki/computational_geometry
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-ChazelleLiu2001-54
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-69
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-70
https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22),_subsection_%22Binary_search%22-3
https://en.wikipedia.org/wiki/Jon_Bentley_(computer_scientist)
https://en.wikipedia.org/wiki/edge_case
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEBentley2000%C2%A74.1_(%22The_Challenge_of_Binary_Search%22)-71
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-textbook-72
https://en.wikipedia.org/wiki/Integer_overflow
https://en.wikipedia.org/wiki/Integer_overflow
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-73
https://en.wikipedia.org/wiki/integer_overflow
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-semisum-74
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-Bottenbruch1962-8
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEBentley2000%C2%A74.4_(%22Principles%22)-75
https://en.wikipedia.org/wiki/standard_library
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/subroutine
https://en.wikipedia.org/wiki/C_standard_library
https://en.wikipedia.org/wiki/C_standard_library
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-76
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Standard_Template_Library
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEStroustrup2013945-77
https://en.wikipedia.org/wiki/COBOL
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-78
https://en.wikipedia.org/wiki/Go_(programming_language)
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-79
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/function_overloading
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-80
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-81
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/.NET_Framework
https://en.wikipedia.org/wiki/generic_programming
https://en.wikipedia.org/wiki/generic_programming
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-82
https://en.wikipedia.org/wiki/Objective-C
https://en.wikipedia.org/wiki/Cocoa_(API)
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Classes/NSArray_Class/NSArray.html#//apple_ref/occ/instm/NSArray/indexOfObject:inSortedRange:options:usingComparator:
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Classes/NSArray_Class/NSArray.html#//apple_ref/occ/instm/NSArray/indexOfObject:inSortedRange:options:usingComparator:
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-83
https://en.wikipedia.org/wiki/Core_Foundation
https://developer.apple.com/library/mac/documentation/CoreFoundation/Reference/CFArrayRef/Reference/reference.html#//apple_ref/c/func/CFArrayBSearchValues
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-84
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-85
https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEFitzgerald2007152-86

WikiJournal of Science, 2019, 2(1):5
doi: 10.15347/wjs/2019.005
Encyclopedic Review Article

11 of 13 | WikiJournal of Science

Additional information

Acknowledgements

I would like to thank all the Wikipedia editors who have
contributed to the article, as well as the Wikipedia edi-
tors who have contributed to the good article review
and featured article review of the article.

Notes

a. Any search algorithm based solely on comparisons
can be represented using a binary comparison tree.
An internal path is any path from the root to an ex-
isting node. Let 𝑙 be the internal path length, the
sum of the lengths of all internal paths. If each ele-
ment is equally likely to be searched, the average

case is 1 +
𝐼

𝑛
 or simply one plus the average of all the

internal path lengths of the tree. This is because in-
ternal paths represent the elements that the search
algorithm compares to the target. The lengths of
these internal paths represent the number of itera-
tions after the root node. Adding the average of
these lengths to the one iteration at the root yields
the average case. Therefore, to minimize the aver-
age number of comparisons, the internal path
length 𝑙 must be minimized. It turns out that the tree
for binary search minimizes the internal path length.
Knuth 1998 proved that the external path length
(the path length over all nodes where both children
are present for each already-existing node) is mini-
mized when the external nodes (the nodes with no
children) lie within two consecutive levels of the
tree. This also applies to internal paths as internal
path length 𝑙 is linearly related to external path
length . For any tree of 𝑛 nodes, 𝐼 = 𝐸 − 2𝑛.
When each subtree has a similar number of nodes,
or equivalently the array is divided into halves in
each iteration, the external nodes as well as their in-
terior parent nodes lie within two levels. It follows
that binary search minimizes the number of average
comparisons as its comparison tree has the lowest
possible internal path length.[13]

b. Knuth 1998 showed on his MIX computer model,
which Knuth designed as a representation of an or-
dinary computer, that the average running time of
this variation for a successful search is 17.5 log2 𝑛 +
17 units of time compared to 18 log2 𝑛 − 16 units
for regular binary search. The time complexity for
this variation grows slightly more slowly, but at the
cost of higher initial complexity. [18]

c. Knuth 1998 performed a formal time performance
analysis of both of these search algorithms. On
Knuth's MIX computer, which Knuth designed as a
representation of an ordinary computer, binary
search takes on average 18 log 𝑛 − 16 units of time
for a successful search, while linear search with a
sentinel node at the end of the list takes 1.75𝑛 +

8.5 −
𝑛 mod 2

4𝑛
 units. Linear search has lower initial

complexity because it requires minimal computa-
tion, but it quickly outgrows binary search in com-
plexity. On the MIX computer, binary search only
outperforms linear search with a sentinel if 𝑛 >
 44.[13][23]

d. Inserting the values in sorted order or in an alternat-
ing lowest-highest key pattern will result in a binary
search tree that maximizes the average and worst-
case search time.[28]

e. It is possible to search some hash table implemen-
tations in guaranteed constant time.[33]

f. This is because simply setting all of the bits which
the hash functions point to for a specific key can af-
fect queries for other keys which have a common
hash location for one or more of the functions.[38]

g. There exist improvements of the Bloom filter which
improve on its complexity or support deletion; for
example, the cuckoo filter exploits cuckoo hashing
to gain these advantages.[38]

h. That is, arrays of length 1, 3, 7, 15, 31 ...[58]

Citations
1. Willams, Jr., Louis F. (22 April 1976). A modification to the half-interval

search (binary search) method. Proceedings of the 14th ACM Southeast
Conference. ACM. pp. 95–101. doi:10.1145/503561.503582. Retrieved 29
June 2018.

2. Knuth 1998, §6.2.1 ("Searching an ordered table"), subsection "Binary
search".

3. Butterfield & Ngondi 2016, p. 46.
4. Cormen et al. 2009, p. 39.
5. Flores, Ivan; Madpis, George (1 September 1971). "Average binary search

length for dense ordered lists". Communications of the ACM 14 (9): 602–
603. doi:10.1145/362663.362752. ISSN 0001-0782. Retrieved 29 June 2018.

6. Knuth 1998, §6.2.1 ("Searching an ordered table"), subsection "Algorithm
B".

7. Bottenbruch, Hermann (1 April 1962). "Structure and use of ALGOL 60".
Journal of the ACM 9 (2): 161–221. doi:10.1145/321119.321120. ISSN 0004-
5411. Retrieved 30 June 2018. Procedure is described at p. 214 (§43), titled
"Program for Binary Search".

8. Knuth 1998, §6.2.1 ("Searching an ordered table"), subsection "History and
bibliography".

9. Kasahara & Morishita 2006, pp. 8–9.
10. Sedgewick & Wayne 2011, §3.1, subsection "Rank and selection".
11. Goldman & Goldman 2008, pp. 461–463.
12. Sedgewick & Wayne 2011, §3.1, subsection "Range queries".
13. Knuth 1998, §6.2.1 ("Searching an ordered table"), subsection "Further

analysis of binary search".
14. Knuth 1998, §6.2.1 ("Searching an ordered table"), "Theorem B".
15. Chang 2003, p. 169.

https://en.wikipedia.org/w/index.php?title=Binary_search_algorithm&action=history
https://en.wikipedia.org/wiki/Talk:Binary_search_algorithm/GA1
https://en.wikipedia.org/wiki/Wikipedia:Featured_article_candidates/Binary_search_algorithm/archive1
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFKnuth1998
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22),_subsection_%22Further_analysis_of_binary_search%22-14
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFKnuth1998
https://en.wikipedia.org/wiki/MIX
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22),_subsection_%22Exercise_23%22-20
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFKnuth1998
https://en.wikipedia.org/wiki/MIX
https://en.wikipedia.org/wiki/sentinel_node
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.1_(%22Searching_an_ordered_table%22),_subsection_%22Further_analysis_of_binary_search%22-14
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998Answers_to_Exercises_(%C2%A76.2.1)_for_%22Exercise_5%22-26
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.2.2_(%22Binary_tree_searching%22),_subsection_%22But_what_about_the_worst_case?%22-32
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-FOOTNOTEKnuth1998%C2%A76.4_(%22Hashing%22),_subsection_%22History%22-38
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-cuckoofilter-44
https://en.wikipedia.org/wiki/cuckoo_hashing
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-cuckoofilter-44
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#cite_note-66
https://dl.acm.org/citation.cfm?doid=503561.503582
https://dl.acm.org/citation.cfm?doid=503561.503582
https://en.wikiversity.org/wiki/Digital_object_identifier
https://doi.org/10.1145%2F503561.503582
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFKnuth1998
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFButterfieldNgondi2016
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFCormenLeisersonRivestStein2009
https://dl.acm.org/citation.cfm?doid=362663.362752
https://dl.acm.org/citation.cfm?doid=362663.362752
https://en.wikipedia.org/wiki/Communications_of_the_ACM
http://dx.doi.org/10.1145%2F362663.362752
http://www.worldcat.org/issn/0001-0782
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFKnuth1998
https://dl.acm.org/citation.cfm?doid=321119.321120
https://en.wikipedia.org/wiki/Journal_of_the_ACM
http://dx.doi.org/10.1145%2F321119.321120
http://www.worldcat.org/issn/0004-5411
http://www.worldcat.org/issn/0004-5411
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFKnuth1998
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFKasaharaMorishita2006
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFSedgewickWayne2011
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFGoldmanGoldman2008
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFSedgewickWayne2011
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFKnuth1998
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFKnuth1998
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFChang2003

WikiJournal of Science, 2019, 2(1):5
doi: 10.15347/wjs/2019.005
Encyclopedic Review Article

12 of 13 | WikiJournal of Science

16. Shannon, Claude E. (July 1948). "A Mathematical Theory of
Communication". Bell System Technical Journal 27 (3): 379–423.
doi:10.1002/j.1538-7305.1948.tb01338.x.

17. Knuth 1997, §2.3.4.5 ("Path length").
18. Knuth 1998, §6.2.1 ("Searching an ordered table"), subsection "Exercise

23".
19. Rolfe, Timothy J. (1997). "Analytic derivation of comparisons in binary

search". ACM SIGNUM Newsletter 32 (4): 15–19.
doi:10.1145/289251.289255.

20. Khuong, Paul-Virak; Morin, Pat. "Array Layouts for Comparison-Based
Searching". Journal of Experimental Algorithmics (Article 1.3) 22.
doi:10.1145/289251.289255.

21. Knuth 1997, §2.2.2 ("Sequential Allocation").
22. Beame, Paul; Fich, Faith E. (2001). "Optimal bounds for the predecessor

problem and related problems". Journal of Computer and System Sciences
65 (1): 38–72. doi:10.1006/jcss.2002.1822.

23. Knuth 1998, Answers to Exercises (§6.2.1) for "Exercise 5".
24. Knuth 1998, §6.2.1 ("Searching an ordered table").
25. Knuth 1998, §5.3.1 ("Minimum-Comparison sorting").
26. Sedgewick & Wayne 2011, §3.2 ("Ordered symbol tables").
27. Sedgewick & Wayne 2011, §3.2 ("Binary Search Trees"), subsection

"Order-based methods and deletion".
28. Knuth 1998, §6.2.2 ("Binary tree searching"), subsection "But what about

the worst case?".
29. Sedgewick & Wayne 2011, §3.5 ("Applications"), "Which symbol-table

implementation should I use?".
30. Knuth 1998, §5.4.9 ("Disks and Drums").
31. Knuth 1998, §6.2.4 ("Multiway trees").
32. Knuth 1998, §6.4 ("Hashing").
33. Knuth 1998, §6.4 ("Hashing"), subsection "History".
34. Dietzfelbinger, Martin; Karlin, Anna; Mehlhorn, Kurt; Meyer auf der Heide,

Friedhelm; Rohnert, Hans; Tarjan, Robert E.(August 1994). "Dynamic
perfect hashing: upper and lower bounds". SIAM Journal on Computing 23
(4): 738–761. doi:10.1137/S0097539791194094.

35. Morin, Pat. "Hash tables" (PDF). p. 1. Retrieved 28 March 2016.
36. Knuth 2011, §7.1.3 ("Bitwise Tricks and Techniques").
37. Silverstein, Alan, Judy IV shop manual, Hewlett-Packard
38. Fan, Bin; Andersen, Dave G.; Kaminsky, Michael; Mitzenmacher, Michael D.

(2014). Cuckoo filter: practically better than Bloom. Proceedings of the 10th
ACM International on Conference on Emerging Networking Experiments and
Technologies. pp. 75–88. doi:10.1145/2674005.2674994.

39. Bloom, Burton H. (1970). "Space/time trade-offs in hash coding with
allowable errors". Communications of the ACM 13(7): 422–426.
doi:10.1145/362686.362692.

40. Knuth 1998, §6.2.1 ("Searching an ordered table"), subsection "An
important variation".

41. Knuth 1998, §6.2.1 ("Searching an ordered table"), subsection "Algorithm
U".

42. Moffat & Turpin 2002, p. 33.
43. Knuth 1998, §6.2.1 ("Searching an ordered table"), subsection

"Interpolation search".
44. Knuth 1998, §6.2.1 ("Searching an ordered table"), subsection "Exercise

22".
45. Perl, Yehoshua; Itai, Alon; Avni, Haim (1978). "Interpolation search—a log

log n search". Communications of the ACM21 (7): 550–553.
doi:10.1145/359545.359557.

46. Chazelle, Bernard; Liu, Ding (6 July 2001). Lower bounds for intersection
searching and fractional cascading in higher dimension. 33rd ACM
Symposium on Theory of Computing. ACM. pp. 322–329.
doi:10.1145/380752.380818. ISBN 978-1-58113-349-3. Retrieved 30 June
2018.

47. Chazelle, Bernard; Liu, Ding (1 March 2004). "Lower bounds for
intersection searching and fractional cascading in higher dimension" (in
en). Journal of Computer and System Sciences 68 (2): 269–284.
doi:10.1016/j.jcss.2003.07.003. ISSN 0022-0000. Retrieved 30 June 2018.

48. Emamjomeh-Zadeh, Ehsan; Kempe, David; Singhal, Vikrant (2016).
Deterministic and probabilistic binary search in graphs. 48th ACM
Symposium on Theory of Computing. pp. 519–532. arXiv:1503.00805.
doi:10.1145/2897518.2897656.

49. Ben-Or, Michael; Hassidim, Avinatan (2008). "The Bayesian learner is
optimal for noisy binary search (and pretty good for quantum as well)" (PDF).
49th Symposium on Foundations of Computer Science. pp. 221–230.
doi:10.1109/FOCS.2008.58. ISBN 978-0-7695-3436-7.

50. Pelc, Andrzej (1989). "Searching with known error probability". Theoretical
Computer Science 63 (2): 185–202. doi:10.1016/0304-3975(89)90077-7.

51. Rivest, Ronald L.; Meyer, Albert R.; Kleitman, Daniel J.; Winklmann, K.
Coping with errors in binary search procedures. 10th ACM Symposium on
Theory of Computing. doi:10.1145/800133.804351.

52. Pelc, Andrzej (2002). "Searching games with errors—fifty years of coping
with liars". Theoretical Computer Science270 (1–2): 71–109.
doi:10.1016/S0304-3975(01)00303-6.

53. Rényi, Alfréd (1961). "On a problem in information theory" (in Hungarian).
Magyar Tudományos Akadémia Matematikai Kutató Intézetének
Közleményei 6: 505–516.

54. Høyer, Peter; Neerbek, Jan; Shi, Yaoyun (2002). "Quantum complexities of
ordered searching, sorting, and element distinctness". Algorithmica 34 (4):
429–448. doi:10.1007/s00453-002-0976-3.

55. Childs, Andrew M.; Landahl, Andrew J.; Parrilo, Pablo A. (2007). "Quantum
algorithms for the ordered search problem via semidefinite
programming". Physical Review A 75 (3): 032335.
doi:10.1103/PhysRevA.75.032335.

56. Grover, Lov K. (1996). A fast quantum mechanical algorithm for database
search. 28th ACM Symposium on Theory of Computing. Philadelphia, PA. pp.
212–219. arXiv:quant-ph/9605043. doi:10.1145/237814.237866.

57. Peterson, William Wesley (1957). "Addressing for random-access storage".
IBM Journal of Research and Development 1 (2): 130–146.
doi:10.1147/rd.12.0130.

58. "2n−1". OEIS A000225. Retrieved 7 May 2016.
59. Lehmer, Derrick (1960). Teaching combinatorial tricks to a computer.

Proceedings of Symposia in Applied Mathematics. 10. pp. 180–181.
doi:10.1090/psapm/010.

60. Chazelle, Bernard; Guibas, Leonidas J. (1986). "Fractional cascading: I. A
data structuring technique". Algorithmica1 (1): 133–162.
doi:10.1007/BF01840440.

61. Chazelle, Bernard; Guibas, Leonidas J. (1986), "Fractional cascading: II.
Applications", Algorithmica 1 (1), doi:10.1007/BF01840441

62. Bentley 2000, §4.1 ("The Challenge of Binary Search").
63. Pattis, Richard E. (1988). "Textbook errors in binary searching". SIGCSE

Bulletin 20: 190–194. doi:10.1145/52965.53012.
64. Bloch, Joshua (2 June 2006). "Extra, extra – read all about it: nearly all binary

searches and mergesorts are broken". Google Research Blog. Retrieved 21
April 2016.

65. Ruggieri, Salvatore (2003). "On computing the semi-sum of two integers".
Information Processing Letters 87 (2): 67–71. doi:10.1016/S0020-
0190(03)00263-1.

66. Bentley 2000, §4.4 ("Principles").
67. "bsearch – binary search a sorted table". The Open Group Base Specifications

(7th ed.). The Open Group. 2013. Retrieved 28 March 2016.
68. Stroustrup 2013, p. 945.
69. Unisys (2012), COBOL ANSI-85 programming reference manual, 1
70. "Package sort". The Go Programming Language. Retrieved 28 April 2016.
71. "java.util.Arrays". Java Platform Standard Edition 8 Documentation. Oracle

Corporation. Retrieved 1 May 2016.
72. "java.util.Collections". Java Platform Standard Edition 8 Documentation.

Oracle Corporation. Retrieved 1 May 2016.
73. "List<T>.BinarySearch method (T)". Microsoft Developer Network. Retrieved

10 April 2016.
74. "NSArray". Mac Developer Library. Apple Inc. Retrieved 1 May 2016.
75. "CFArray". Mac Developer Library. Apple Inc. Retrieved 1 May 2016.
76. "8.6. bisect — Array bisection algorithm". The Python Standard Library.

Python Software Foundation. Retrieved 26 March 2018.
77. Fitzgerald 2007, p. 152.

Works
• Bentley, Jon (2000). Programming pearls (2nd ed.). Addison-Wesley. ISBN

978-0-201-65788-3.

• Butterfield, Andrew; Ngondi, Gerard E. (2016). A dictionary of computer
science (7th ed.). Oxford, UK: Oxford University Press. ISBN 978-0-19-
968897-5.

• Chang, Shi-Kuo (2003). Data structures and algorithms. Software
Engineering and Knowledge Engineering. 13. Singapore: World Scientific.
ISBN 978-981-238-348-8.

• Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford
(2009). Introduction to algorithms (3rd ed.). MIT Press and McGraw-Hill.
ISBN 978-0-262-03384-8.

• Fitzgerald, Michael (2007). Ruby pocket reference. Sebastopol, California:
O'Reilly Media. ISBN 978-1-4919-2601-7.

https://en.wikipedia.org/wiki/Claude_Shannon
https://en.wikipedia.org/wiki/Bell_System_Technical_Journal
http://dx.doi.org/10.1002%2Fj.1538-7305.1948.tb01338.x
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFKnuth1997
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFKnuth1998
http://dx.doi.org/10.1145%2F289251.289255
http://dx.doi.org/10.1145%2F289251.289255
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFKnuth1997
https://en.wikipedia.org/wiki/Faith_Ellen
http://www.sciencedirect.com/science/article/pii/S0022000002918222
http://www.sciencedirect.com/science/article/pii/S0022000002918222
https://en.wikipedia.org/wiki/Journal_of_Computer_and_System_Sciences
http://dx.doi.org/10.1006%2Fjcss.2002.1822
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFKnuth1998
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFKnuth1998
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFKnuth1998
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFSedgewickWayne2011
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFSedgewickWayne2011
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFKnuth1998
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFSedgewickWayne2011
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFKnuth1998
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFKnuth1998
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFKnuth1998
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFKnuth1998
https://en.wikipedia.org/wiki/Anna_Karlin
https://en.wikipedia.org/wiki/Kurt_Mehlhorn
https://en.wikipedia.org/wiki/Robert_Tarjan
https://en.wikipedia.org/wiki/SIAM_Journal_on_Computing
http://dx.doi.org/10.1137%2FS0097539791194094
http://cglab.ca/~morin/teaching/5408/notes/hashing.pdf
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFKnuth2011
http://judy.sourceforge.net/doc/shop_interm.pdf
https://en.wikipedia.org/wiki/Hewlett-Packard
https://en.wikiversity.org/wiki/Digital_object_identifier
https://doi.org/10.1145%2F2674005.2674994
https://en.wikipedia.org/wiki/Communications_of_the_ACM
http://dx.doi.org/10.1145%2F362686.362692
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFKnuth1998
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFKnuth1998
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFMoffatTurpin2002
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFKnuth1998
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFKnuth1998
https://en.wikipedia.org/wiki/Communications_of_the_ACM
http://dx.doi.org/10.1145%2F359545.359557
https://en.wikipedia.org/wiki/Bernard_Chazelle
https://dl.acm.org/citation.cfm?doid=380752.380818
https://dl.acm.org/citation.cfm?doid=380752.380818
https://en.wikipedia.org/wiki/Symposium_on_Theory_of_Computing
https://en.wikipedia.org/wiki/Symposium_on_Theory_of_Computing
https://en.wikiversity.org/wiki/Digital_object_identifier
https://doi.org/10.1145%2F380752.380818
https://en.wikiversity.org/wiki/International_Standard_Book_Number
https://en.wikiversity.org/wiki/Special:BookSources/978-1-58113-349-3
https://en.wikipedia.org/wiki/Bernard_Chazelle
http://www.cs.princeton.edu/~chazelle/pubs/FClowerbounds.pdf
http://www.cs.princeton.edu/~chazelle/pubs/FClowerbounds.pdf
http://dx.doi.org/10.1016%2Fj.jcss.2003.07.003
http://www.worldcat.org/issn/0022-0000
https://en.wikipedia.org/wiki/Symposium_on_Theory_of_Computing
https://en.wikipedia.org/wiki/Symposium_on_Theory_of_Computing
https://en.wikiversity.org/wiki/ArXiv
https://arxiv.org/abs/1503.00805
https://en.wikiversity.org/wiki/Digital_object_identifier
https://doi.org/10.1145%2F2897518.2897656
http://www2.lns.mit.edu/~avinatan/research/search-full.pdf
http://www2.lns.mit.edu/~avinatan/research/search-full.pdf
https://en.wikipedia.org/wiki/Annual_IEEE_Symposium_on_Foundations_of_Computer_Science
https://en.wikiversity.org/wiki/Digital_object_identifier
https://doi.org/10.1109%2FFOCS.2008.58
https://en.wikiversity.org/wiki/International_Standard_Book_Number
https://en.wikiversity.org/wiki/Special:BookSources/978-0-7695-3436-7
http://www.sciencedirect.com/science/article/pii/0304397589900777
http://dx.doi.org/10.1016%2F0304-3975%2889%2990077-7
https://en.wikipedia.org/wiki/Ronald_Rivest
https://en.wikipedia.org/wiki/Albert_R._Meyer
https://en.wikipedia.org/wiki/Daniel_Kleitman
https://en.wikipedia.org/wiki/Symposium_on_Theory_of_Computing
https://en.wikipedia.org/wiki/Symposium_on_Theory_of_Computing
https://en.wikiversity.org/wiki/Digital_object_identifier
https://doi.org/10.1145%2F800133.804351
http://www.sciencedirect.com/science/article/pii/S0304397501003036
http://www.sciencedirect.com/science/article/pii/S0304397501003036
http://dx.doi.org/10.1016%2FS0304-3975%2801%2900303-6
https://en.wikipedia.org/wiki/Algorithmica
http://dx.doi.org/10.1007%2Fs00453-002-0976-3
http://dx.doi.org/10.1103%2FPhysRevA.75.032335
https://en.wikipedia.org/wiki/Lov_Grover
https://en.wikipedia.org/wiki/Symposium_on_Theory_of_Computing
https://en.wikipedia.org/wiki/Philadelphia
https://en.wikiversity.org/wiki/ArXiv
https://arxiv.org/abs/quant-ph/9605043
https://en.wikiversity.org/wiki/Digital_object_identifier
https://doi.org/10.1145%2F237814.237866
https://en.wikipedia.org/wiki/W._Wesley_Peterson
http://dx.doi.org/10.1147%2Frd.12.0130
https://en.wikipedia.org/wiki/On-Line_Encyclopedia_of_Integer_Sequences
http://oeis.org/A000225
https://en.wikiversity.org/wiki/Digital_object_identifier
https://doi.org/10.1090%2Fpsapm%2F010
https://en.wikipedia.org/wiki/Bernard_Chazelle
https://en.wikipedia.org/wiki/Leonidas_J._Guibas
http://www.cs.princeton.edu/~chazelle/pubs/FractionalCascading1.pdf
http://www.cs.princeton.edu/~chazelle/pubs/FractionalCascading1.pdf
https://en.wikipedia.org/wiki/Algorithmica
http://dx.doi.org/10.1007%2FBF01840440
http://www.cs.princeton.edu/~chazelle/pubs/FractionalCascading2.pdf
http://www.cs.princeton.edu/~chazelle/pubs/FractionalCascading2.pdf
https://en.wikipedia.org/wiki/Algorithmica
http://dx.doi.org/10.1007%2FBF01840441
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFBentley2000
https://en.wikipedia.org/wiki/Richard_E._Pattis
http://dx.doi.org/10.1145%2F52965.53012
https://en.wikipedia.org/wiki/Joshua_Bloch
http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html
http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html
http://www.di.unipi.it/~ruggieri/Papers/semisum.pdf
https://en.wikipedia.org/wiki/Information_Processing_Letters
http://dx.doi.org/10.1016%2FS0020-0190%2803%2900263-1
http://dx.doi.org/10.1016%2FS0020-0190%2803%2900263-1
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFBentley2000
http://pubs.opengroup.org/onlinepubs/9699919799/functions/bsearch.html
https://en.wikipedia.org/wiki/The_Open_Group
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFStroustrup2013
https://en.wikipedia.org/wiki/Unisys
http://golang.org/pkg/sort/
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html
https://en.wikipedia.org/wiki/Oracle_Corporation
https://en.wikipedia.org/wiki/Oracle_Corporation
https://docs.oracle.com/javase/8/docs/api/java/util/Collections.html
https://en.wikipedia.org/wiki/Oracle_Corporation
https://msdn.microsoft.com/en-us/library/w4e7fxsh%28v=vs.110%29.aspx
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Classes/NSArray_Class/index.html#//apple_ref/occ/instm/NSArray/indexOfObject:inSortedRange:options:usingComparator:
https://en.wikipedia.org/wiki/Apple_Inc.
https://developer.apple.com/library/mac/documentation/CoreFoundation/Reference/CFArrayRef/index.html#//apple_ref/c/func/CFArrayBSearchValues
https://en.wikipedia.org/wiki/Apple_Inc.
https://docs.python.org/3.6/library/bisect.html#module-bisect
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Binary_search_algorithm#CITEREFFitzgerald2007
https://en.wikipedia.org/wiki/Jon_Bentley_(computer_scientist)
https://en.wikipedia.org/wiki/Addison-Wesley
https://en.wikiversity.org/wiki/International_Standard_Book_Number
https://en.wikiversity.org/wiki/Special:BookSources/978-0-201-65788-3
https://en.wikipedia.org/wiki/Oxford_University_Press
https://en.wikiversity.org/wiki/International_Standard_Book_Number
https://en.wikiversity.org/wiki/Special:BookSources/978-0-19-968897-5
https://en.wikiversity.org/wiki/Special:BookSources/978-0-19-968897-5
https://en.wikipedia.org/wiki/World_Scientific
https://en.wikiversity.org/wiki/International_Standard_Book_Number
https://en.wikiversity.org/wiki/Special:BookSources/978-981-238-348-8
https://en.wikipedia.org/wiki/Thomas_H._Cormen
https://en.wikipedia.org/wiki/Charles_E._Leiserson
https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Clifford_Stein
https://en.wikiversity.org/wiki/Introduction_to_Algorithms
https://en.wikiversity.org/wiki/International_Standard_Book_Number
https://en.wikiversity.org/wiki/Special:BookSources/978-0-262-03384-8
https://en.wikipedia.org/wiki/Sebastopol,_California
https://en.wikipedia.org/wiki/O%27Reilly_Media
https://en.wikiversity.org/wiki/International_Standard_Book_Number
https://en.wikiversity.org/wiki/Special:BookSources/978-1-4919-2601-7

WikiJournal of Science, 2019, 2(1):5
doi: 10.15347/wjs/2019.005
Encyclopedic Review Article

13 of 13 | WikiJournal of Science

• Goldman, Sally A.; Goldman, Kenneth J. (2008). A practical guide to data
structures and algorithms using Java. Boca Raton, Florida: CRC Press. ISBN
978-1-58488-455-2.

• Kasahara, Masahiro; Morishita, Shinichi (2006). Large-scale genome
sequence processing. London, UK: Imperial College Press. ISBN 978-1-
86094-635-6.

• Knuth, Donald (1997). Fundamental algorithms. The Art of Computer
Programming. 1 (3rd ed.). Reading, MA: Addison-Wesley Professional.
ISBN 978-0-201-89683-1.

• Knuth, Donald (1998). Sorting and searching. The Art of Computer
Programming. 3 (2nd ed.). Reading, MA: Addison-Wesley Professional.
ISBN 978-0-201-89685-5.

• Knuth, Donald (2011). Combinatorial algorithms. The Art of Computer
Programming. 4A (1st ed.). Reading, MA: Addison-Wesley Professional.
ISBN 978-0-201-03804-0.

• Moffat, Alistair; Turpin, Andrew (2002). Compression and coding
algorithms. Hamburg, Germany: Kluwer Academic Publishers.
doi:10.1007/978-1-4615-0935-6. ISBN 978-0-7923-7668-2.

• Sedgewick, Robert; Wayne, Kevin (2011). Algorithms (4th ed.). Upper
Saddle River, New Jersey: Addison-Wesley Professional. ISBN 978-0-321-
57351-3.

• Stroustrup, Bjarne (2013). The C++ programming language (4th ed.). Upper
Saddle River, New Jersey: Addison-Wesley Professional. ISBN 978-0-321-
56384-2.

https://en.wikipedia.org/wiki/CRC_Press
https://en.wikiversity.org/wiki/International_Standard_Book_Number
https://en.wikiversity.org/wiki/Special:BookSources/978-1-58488-455-2
https://en.wikiversity.org/wiki/International_Standard_Book_Number
https://en.wikiversity.org/wiki/Special:BookSources/978-1-86094-635-6
https://en.wikiversity.org/wiki/Special:BookSources/978-1-86094-635-6
https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
https://en.wikiversity.org/wiki/International_Standard_Book_Number
https://en.wikiversity.org/wiki/Special:BookSources/978-0-201-89683-1
https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
https://en.wikiversity.org/wiki/International_Standard_Book_Number
https://en.wikiversity.org/wiki/Special:BookSources/978-0-201-89685-5
https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
https://en.wikiversity.org/wiki/International_Standard_Book_Number
https://en.wikiversity.org/wiki/Special:BookSources/978-0-201-03804-0
https://en.wikiversity.org/wiki/Digital_object_identifier
https://doi.org/10.1007%2F978-1-4615-0935-6
https://en.wikiversity.org/wiki/International_Standard_Book_Number
https://en.wikiversity.org/wiki/Special:BookSources/978-0-7923-7668-2
https://en.wikipedia.org/wiki/Robert_Sedgewick_(computer_scientist)
https://en.wikiversity.org/wiki/International_Standard_Book_Number
https://en.wikiversity.org/wiki/Special:BookSources/978-0-321-57351-3
https://en.wikiversity.org/wiki/Special:BookSources/978-0-321-57351-3
https://en.wikipedia.org/wiki/Bjarne_Stroustrup
https://en.wikiversity.org/wiki/International_Standard_Book_Number
https://en.wikiversity.org/wiki/Special:BookSources/978-0-321-56384-2
https://en.wikiversity.org/wiki/Special:BookSources/978-0-321-56384-2

