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Multiple Linear Regression I
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Overview

1. Readings
2. Correlation (Review)
3. Simple linear regression
4. Multiple linear regression
5. Summary
6. MLR I Quiz - Practice questions
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1. Howitt & Cramer (2014):
–  Regression: Prediction with precision 

  [Ch 9] [Textbook/eReserve]
–  Multiple regression & multiple correlation

  [Ch 32] [Textbook/eReserve]

2. StatSoft (2016). How to find relationship 
between variables, multiple regression. StatSoft 
Electronic Statistics Handbook. [Online]

3. Tabachnick & Fidell (2013).
  Multiple regression 
  (includes example write-ups) [eReserve]

Readings

  

Correlation (Review)

Linear relation between 
two variables

5

Purposes of 
correlational statistics

Explanatory - Regression
e.g., cross-sectional study 
(all data collected at same 
time)

Predictive - Regression
e.g., longitudinal study 
(predictors collected prior 
to outcome measures) 6

Linear correlation
● Linear relations between interval or ratio 

variables
● Best fitting straight-line on a scatterplot
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Correlation – Key points
• Covariance = sum of cross-products 

(unstandardised)
• Correlation = sum of cross-products 

(standardised), ranging from -1 to 1 
(sign indicates direction, value indicates size)

• Coefficient of determination (r2) 
indicates % of shared variance

• Correlation does not necessarily 
equal causality

  

Simple linear 
regression

Explains and predicts a Dependent Variable 
(DV) based on a linear relation with an  

Independent Variable (IV)
10

What is simple linear regression?
• An extension of correlation
• Best-fitting straight line for a scatterplot 

between two variables:
• predictor (X)  – also called an independent 

variable (IV)
• outcome (Y)  - also called a 

dependent variable (DV) or criterion variable

• LR uses an IV to explain/predict a DV
• Help to understand relationships and 

possible causal effects of one variable 
on another.
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Least squares criterionThe line of best fit minimises 
the total sum of squares of 
the vertical deviations for 
each case.

a = point  at which line of 
best fit crosses the Y-axis.

b = slope  
of the line of best fit

Least squares criterion

residuals  
= vertical (Y) distance 
between line of best fit 
and each observation
(unexplained variance)

12

Linear Regression - Example:
Cigarettes & coronary heart disease

IV = Cigarette 
consumption

DV = Coronary 
Heart Disease

IV = Cigarette 
consumption

Landwehr & Watkins (1987, cited in Howell, 2004, pp. 216-218)
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Linear regression - Example:
Cigarettes & coronary heart disease

(Howell, 2004)

Research question:  
How fast does CHD mortality rise 
with a one unit increase in smoking?
• IV = Av. # of cigs per adult per day
• DV = CHD mortality rate (deaths per 

10,000 per year due to CHD)
• Unit of analysis  = Country

14

Linear regression - Data:
Cigarettes & coronary heart disease

(Howell, 2004)
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Linear regression - Example:
Scatterplot with Line of Best Fit

16

Linear regression equation
(without error)

predicted 
values of Y

Y-intercept = 
level of Y 

when X is 0

b = slope = rate of 
predicted ↑/↓ for Y 
scores for each unit 

increase in X

17

Y = bX + a + e
X = IV values
Y = DV values

a = Y-axis intercept
b = slope of line of best fit

(regression coefficient)

e = error

Linear regression equation
(with error)
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Linear regression – Example:
Explained variance

• r = .71
• r2 = .712 = .51
• p < .05
• Approximately 50% in variability 

of incidence of CHD mortality is 
associated with variability in 
countries' smoking rates.

20

Linear regression – Example: 
Test for overall significance

ANOVAb

454.482 1 454.48 19.59 .00a

440.757 19 23.198
895.238 20

Regression
Residual
Total

Sum of
Squares df

Mean
Square F Sig.

Predictors: (Constant), Cigarette Consumption per
Adult per Day

a. 

Dependent Variable: CHD Mortality per 10,000b. 

● r = .71, r2 = .51, p < .05

21

Linear regression – Example:
Regression coefficients - SPSS

Coefficientsa

2.37 2.941 .80 .43

2.04 .461 .713 4.4 .00

(Constant)
Cigarette
Consumption
per Adult per
Day

B
Std.

Error

Unstandardiz
ed

Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: CHD Mortality per 10,000a. 

a

b

22

Linear regression - Example:
Making a prediction

● What if we want to predict CHD mortality 
when cigarette consumption is 6?

● We predict that 14.61 / 10,000 people in a 
country with an average cigarette 
consumption of 6 per person will die of 
CHD per annum. 

61.1437.26*04.2ˆ

37.204.2ˆ

=+=

+=+=

Y

XabXY

23

Linear regression - Example:
Accuracy of prediction - Residual

• Finnish smokers smoke 6 
cigarettes/adult/day

• We predict 14.61 deaths /10,000
• But Finland actually has 23 

deaths / 10,000
• Therefore, the error (“residual”) 

for this case is 23 - 14.61 = 8.39
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Hypothesis testing

Null hypotheses (H
0
):

• a (Y-intercept) = 0
Unless the DV is ratio (meaningful 0), we are not 
usually very interested in the a value (starting 
value of Y when X is 0).

• b (slope of line of best fit) = 0

26

Linear regression – Example:
Testing slope and intercept

Coefficientsa

2.37 2.941 .80 .43

2.04 .461 .713 4.4 .00

(Constant)
Cigarette
Consumption
per Adult per
Day

B
Std.
Error

Unstandardiz
ed

Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: CHD Mortality per 10,000a. 

a

b

a is not significant -  
baseline CHD may be 

neglible.
b is significant (+ve) -  

smoking is +vely 
associated with CHD

27

Linear regression - Example

Does a tendency to 
‘ignore problems’ (IV) 

predict 
‘psychological distress’ (DV)?

28
Ignore the Problem
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20 Rsq = 0.1058 

Line of best fit 
seeks to minimise 
sum of squared 
residuals

PD is 
measured 
in the 
direction of 
mental 
health – i.e., 
high scores 
mean less 
distress.

Higher IP scores indicate 
greater frequency of ignoring 
problems as a way of coping.

29

Model Summary

.325a .106 .102 19.4851
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), IGNO2  ACS Time 2 - 11. Ignorea. 

Ignoring Problems accounts for ~10% of the 
variation in Psychological Distress

Linear regression - Example

R = .32, R2 = .11, Adjusted R2 = .10

The predictor (Ignore the Problem) explains 
approximately 10% of the variance in the 
dependent variable (Psychological Distress).

30

ANOVAb

9789.888 1 9789.888 25.785 .000a

82767.884 218 379.669

92557.772 219

Regression

Residual

Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), IGNO2  ACS Time 2 - 11. Ignorea. 

Dependent Variable: GWB2NEGb. 

The population relationship between Ignoring 
Problems and Psychological Distress is 
unlikely to be 0% because p = .000
(i.e., reject the null hypothesis that there is no 
relationship)

Linear regression - Example
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Coefficients a

118.897 4.351 27.327 .000

-9.505 1.872 -.325 -5.078 .000

(Constant)

IGNO2  ACS Time
2 - 11. Ignore

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardi
zed

Coefficien
ts

t Sig.

Dependent Variable: GWB2NEGa. 

PD = 119 - 9.5*IP

There is a sig. a or constant (Y-intercept) - this 
is the baseline level of Psychological Distress.

In addition, Ignore Problems (IP) is a significant 
predictor of Psychological Distress (PD).

Linear regression - Example

32
Ignore the Problem
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a = 119 

b = -9.5 

PD = 119 - 9.5*IP 

e = 
error

  

Multiple Linear 
Regression

Linear relations between two 
or more IVs and a single DV

35

Linear Regression

X                      Y

Multiple Linear Regression
X1

X2

 X3 Y
X4

X5

What is multiple linear regression (MLR)?
Visual model

Single predictor

Multiple 

predictors

36

What is MLR?

• Use of several IVs to predict a DV
• Weights each predictor (IV) 

according to the strength of its 
linear relationship with the DV

• Makes adjustments for inter-
relationships among predictors

• Provides a measure of overall fit (R)



  

 

37

Correlation
Regression

Correlation
Partial correlation
Multiple linear regression

Y

YX

X1
X2

What is MLR?

38

What is MLR?
A 3-way scatterplot can depict the correlational 

relationship between 3 variables.

However, it is difficult to graph/visualise 4+-
way relationships via scatterplot.

39

General steps

1. Develop a diagrammatic model 
and express a research 
question and/or hypotheses

2. Check assumptions
3. Choose type of MLR
4. Interpret output
5. Develop a regression equation 

(if needed)
40

• ~50% of the variance in CHD 
mortality could be explained by 
cigarette smoking (using LR)

• Strong effect - but what about the 
other 50% (‘unexplained’ 
variance)?

• What about other predictors?
–e.g., exercise and cholesterol?

LR →→→→ MLR example:
Cigarettes & coronary heart disease

41

MLR – Example 
Research question 1

How well do these three IVs:
• # of cigarettes / day (IV1)
• exercise (IV2) and 
• cholesterol (IV3) 

predict 
• CHD mortality (DV)?

Cigarettes
Exercise  CHD Mortality
Cholesterol

42

MLR – Example 
Research question 2

To what extent do personality factors 
(IVs) predict annual income (DV)?

Extraversion
Neuroticism         Income
Psychoticism
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MLR - Example 
Research question 3

“Does the # of years of formal study 
of psychology (IV1) and the no. of 
years of experience as a 
psychologist (IV2) predict clinical 
psychologists’ effectiveness in 
treating mental illness (DV)?”

Study
Experience                 Effectiveness

44

MLR - Example 
Your example

Generate your own MLR research 
question 
(e.g., based on some of the following variables):
• Gender & Age

• Enrolment Type

• Hours

• Stress

• Time management
– Planning
– Procrastination
– Effective actions

• Time perspective
– Past-Negative
– Past-Positive
– Present-Hedonistic
– Present-Fatalistic
– Future-Positive
– Future-Negative

45

Assumptions
• Levels of measurement
• Sample size
• Normality (univariate, bivariate, and multivariate)

• Linearity: Linear relations between IVs & DVs

• Homoscedasticity
• Multicollinearity

– IVs are not overly correlated with one another 
(e.g., not over .7) 

• Residuals are normally distributed
46

Levels of measurement

• DV = Continuous 
         (Interval or Ratio)

• IV = Continuous or Dichotomous
        (if neither, may need to recode

into a dichotomous variable 
           or create dummy variables)

47

Dummy coding

• “Dummy coding” converts a more 
complex variable into a series of 
dichotomous variables 
(i.e., 0 or 1)

• Several dummy variables can be 
created from a variable with a 
higher level of measurement.

48

Dummy coding - Example
• Religion 

(1 = Christian; 2 = Muslim; 3 = Atheist)
in this format, can't be an IV in regression 
(a linear correlation with a categorical variable doesn't 
make sense)

• However, it can be dummy coded into 
dichotomous variables:
– Christian (0 = no; 1 = yes)

– Muslim    (0 = no; 1 = yes)

– Atheist   (0 = no; 1 = yes) (redundant)

• These variables can then be used as IVs.
• More information (Dummy variable (statistics), Wikiversity)
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Sample size:
Rules of thumb

• Enough data is needed to provide reliable estimates 
of the correlations.

• N >= 50 cases and N >= 10 to 20 cases x no. of 
IVs, otherwise the estimates of the regression line are probably 
unstable and are unlikely to replicate if the study is repeated.

• Green (1991) and Tabachnick & Fidell (2013) 
suggest:
– 50 + 8(k) for testing an overall regression model and

– 104 + k when testing individual predictors (where k is the 
number of IVs)

– Based on detecting a medium effect size (β >= .20), with 
critical α <= .05, with power of 80%.

50

Sample size:
Rules of thumb

Q: Should a researcher conduct an MLR 
with 4 predictors with 200 cases?

A: Yes; satisfies all rules of thumb: 
• N > 50 cases
• N > 20 cases x 4 = 80 cases
• N > 50 + 8 x 4 = 82 cases
• N > 104 + 4 = 108 cases

51

Dealing with outliers
Extreme cases should be deleted or 
modified if they are overly influential.
• Univariate outliers - 

detect via initial data screening 
(e.g., min. and max.) 

• Bivariate outliers - 
detect via scatterplots

• Multivariate outliers - 
unusual combination of predictors – detect via 
Mahalanobis' distance

52

Multivariate outliers

• A case may be within normal range for 
each variable individually, but be a 
multivariate outlier based on an unusual 
combination of responses which unduly 
influences multivariate test results.

• e.g., a person who:
– Is 18 years old
– Has 3 children
– Has a post-graduate degree

53

Multivariate outliers

• Identify & check unusual 
cases

• Use Mahalanobis' distance or 
Cook’s D as a MVO screening 
procedure

54

Multivariate outliers
• Mahalanobis' distance (MD)

– Distributed as χ2 with df equal to the number of 
predictors (with critical α = .001)

– Cases with a MD greater than the critical value 
are multivariate outliers.

• Cook’s D
– Cases with CD values > 1 are multivariate 

outliers.

• Use either MD or CD
• Examine cases with extreme MD or CD 

scores - if in doubt, remove & re-run.
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Normality & 
homoscedasticity

Normality
• If variables are non-normal, 

this will create 
heteroscedasticity

Homoscedasticity
• Variance around the 

regression line should be 
the same throughout the 
distribution

• Even spread in residual 
plots 56

Multicollinearity

• Multicollinearity  – IVs shouldn't be 
overly correlated (e.g., over .7) – if so, 
consider combining them into a single 
variable or removing one.

• Singularity  - perfect correlations among 
IVs.

• Leads to unstable regression 
coefficients. 

57

Multicollinearity
Detect via:
� Correlation matrix  - are there 

large correlations among IVs?
� Tolerance statistics  - if < .3 then 

exclude that variable.
� Variance Inflation Factor (VIF)  – 

if > 3, then exclude that variable.
� VIF is the reciprocal of Tolerance 

(so use one or the other – not both)
58

Causality

• Like correlation, regression does 
not tell us about the causal 
relationship between variables.

• In many analyses, the IVs and DVs 
could be swapped around – 
therefore, it is important to:
–Take a theoretical position
–Acknowledge alternative explanations

59

Multiple correlation coefficient 
(R)

• “Big R” (capitalised)

• Equivalent of r, but takes into 
account that there are multiple 
predictors (IVs)

• Always positive, between 0 and 1
• Interpretation is similar to that for r 

(correlation coefficient)

60

Coefficient of determination ( R2)

• “Big R squared”
• Squared multiple correlation 

coefficient
• Always include R2

• Indicates the % of variance in 
DV explained by combined 
effects of the IVs

• Analogous to r2
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Rule of thumb for 
interpretation of R2

•   .00 = no linear relationship
•   .10 = small (R ~ .3)
•   .25 = moderate (R ~ .5)
•   .50 = strong  (R ~ .7)
• 1.00 = perfect linear relationship

R2 > .30 
is “good” in social sciences

62

Adjusted R2

• R2 is explained variance in a sample. 
• Adjusted R2 is used for estimating 

explained variance in a population. 
• Report R2 and adjusted R2.
• Particularly for small N and where 

results are to be generalised, take 
more note of adjusted R2.

63

Multiple linear regression – 
Test for overall significance

• Shows if there is a significant 
linear relationship between the X 
variables taken together and Y

• Examine F and p in the ANOVA 
table to determine the likelihood 
that the explained variance in Y 
could have occurred by chance

64

Regression coefficients

• Y-intercept (a)
• Slopes (b):

–Unstandardised
–Standardised

• Slopes are the weighted loading of 
each IV on the DV, adjusted for the 
other IVs in the model.

65

Unstandardised 
regression coefficients

• B = unstandardised regression 
coefficient

• Used for regression equations
• Used for predicting Y scores
• But can’t be compared with other Bs 

unless all IVs are measured on the 
same scale

66

Standardised 
regression coefficients

• Beta (β) = standardised regression 
coefficient

• Useful for comparing the relative 
strength of predictors

• β = r in LR but this is only true in 
MLR when the IVs are uncorrelated.
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Test for significance:
Independent variables

Indicates the likelihood of a linear 
relationship between each IV (Xi) 

and Y occurring by chance.
Hypotheses:

H0: βi  = 0 (No linear relationship)
H1: βi ≠ 0 (Linear relationship 
between Xi and Y)

68

Relative importance of IVs

• Which IVs are the most important?
• To answer this, compare the 

standardised regression 
coefficients (βs)

69

Y = b1x1 + b2x2 +.....+ bixi + a + e
• Y = observed DV scores
• bi = unstandardised regression 

coefficients (the Bs in SPSS) - 
slopes

•  x1 to xi = IV scores 
• a = Y axis intercept
• e = error (residual)

Regression equation

71 72

.32 .52

.35

Y

X1

X2
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Multiple linear regression - 
Example

Together, Ignoring Problems and Worrying 
explain 30% of the variance in Psychological 
Distress in the Australian adolescent 
population (R2 = .30, Adjusted R2 = .29). 74

Multiple linear regression - 
Example

The explained variance in the population is 
unlikely to be 0 (p = .00).

75

Coefficients a

138.932 4.680 29.687 .000

-11.511 1.510 -.464 -7.625 .000

-4.735 1.780 -.162 -2.660 .008

(Constant)

Worry

Ignore the Problem

Model

1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: Psychological Distressa. 

Multiple linear regression - 
Example

Worry predicts about three times as much 
variance in Psychological Distress than Ignoring 
the Problem, although both are significant, 
negative predictors of mental health. 76

Linear Regression
PD (hat) = 119 – 9.50*Ignore
R2  = .11

Multiple Linear Regression
PD (hat) = 139 - .4.7*Ignore - 11.5*Worry
R2  = .30

Multiple linear regression - 
Example – Prediction equations
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Multiple linear regression – 
Example – Violence study

• Participants were children: 
–  8 - 12 years
–  Lived in high-violence areas, USA

• Hypotheses :
–  Stress → ↑ internalising behaviour

–  Violence → ↑ internalising behaviour

–  Social support → ↓ internalising behaviour

80

Multiple linear regression – 
Example - Variables

• Predictors 
–Degree of witnessing violence
–Measure of life stress
–Measure of social support

• Outcome
–Internalising behaviour

(e.g., depression, anxiety, withdrawal 
symptoms) – measured using the 
Child Behavior Checklist (CBCL)

81

Correlations
Correlations

Pearson Correlation

.050

.080 -.080

.200* .270** -.170

Amount violenced
witnessed

Current stress

Social support

Internalizing symptoms
on CBCL

Amount
violenced
witnessed

Current
stress

Social
support

Internalizin
g

symptoms
on CBCL

Correlation is significant at the 0.05 level (2-tailed).*. 

Correlation is significant at the 0.01 level (2-tailed).**. 

Correlations 
amongst 
the IVs

Correlations 
between the

IVs and the DV

82

Model Summary

.37a .135 .108 2.2198
R

R
Square

Adjusted
R

Square

Std. Error
of the

Estimate

Predictors: (Constant), Social
support, Current stress, Amount
violenced witnessed

a. 

R2

13.5% of the variance in children's internalising 
symptoms can be explained by the 3 predictors.

83

Regression coefficients
Coefficientsa

.4771.289 .37 .712

.038 .018 .201 2.1 .039

.273 .106 .247 2.6 .012

-.074 .043 -.166 -2 .087

(Constant)
Amount
violenced
witnessed
Current stress
Social
support

B
Std.
Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: Internalizing symptoms on CBCLa. 

2 predictors 
have 
p < .05

84

Regression equation

• A separate coefficient or slope for 
each variable

• An intercept (here its called b
0
)

477.0074.0273.0038.0

ˆ
0332211

+−+=
+++=

SocSuppStressWit

bXbXbXbY
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Interpretation

• Slopes for Witness and Stress are +ve; 
slope for Social Support is -ve.

• Ignoring Stress and Social Support, a 
one unit increase in Witness would 
produce .038 unit increase in 
Internalising symptoms.

477.0074.0273.0038.0

ˆ
0332211

+−+=
+++=

SocSuppStressWit

bXbXbXbY

86

Predictions
Q: If Witness = 20, Stress = 5, and 
SocSupp = 35, what we would 
predict internalising symptoms to be?
A: .012

012.

477.0)35(074.)5(273.)20(038.

477.0*074.*273.*038.ˆ

=
+−+=

+−+= SocSuppStressWitY

87

Multiple linear regression - Example
The role of human, social, built, and natural 
capital in explaining life satisfaction at the 

country level: 
Towards a National Well-Being Index (NWI)

Vemuri & Costanza (2006)

88

Variables• IVs:
–Human & Built Capital 

(Human Development Index)

–Natural Capital 
(Ecosystem services per km2)

–Social Capital
(Press Freedom)

• DV = Life satisfaction
• Units of analysis: Countries

(N = 57; mostly developed countries, e.g., in Europe 
and America)

89

● There are moderately strong positive and 
statistically significant linear relations between 
the IVs and the DV

● The IVs have small to moderate positive 
inter-correlations.

90

● R2 = .35
● Two sig. IVs (not Social Capital - dropped)
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6 outliers

92

● R2 = .72 
(after dropping 6 outliers)

93

Types of MLR

• Standard or direct (simultaneous)
• Hierarchical or sequential
• Stepwise (forward & backward)

Image source: https://commons.wikimedia.org/wiki/File:IStumbler.png 94

• All predictor variables are entered 
together (simultaneously)

• Allows assessment of the relationship 
between all predictor variables and the 
outcome (Y) variable if there is good 
theoretical reason for doing so.

• Manual technique & commonly used.
• If you're not sure what type of MLR to 

use, start with this approach.

Direct or Standard

95

• IVs are entered in blocks or stages.
– Researcher defines order of entry for the 

variables, based on theory. 
– May enter ‘nuisance’ variables first to 

‘control’ for them, then test ‘purer’ effect of 
next block of important variables.

• R2 change - additional variance in Y 
explained at each stage of the regression.

– F test of R2 change.

Hierarchical (Sequential)

96

• Example

–  Drug A  is a cheap, well-proven drug which reduces 
AIDS symptoms

–  Drug B  is an expensive, experimental drug which 
could help to cure AIDS

–  Hierarchical linear regression:
• Step 1: Drug A (IV1)
• Step 2: Drug B (IV2)
• DV = AIDS symptoms
• Research question: To what extent does Drug B 

reduce AIDS symptoms above and beyond the effect 
of Drug A?

• Examine the change in R2 between Step 1 & Step 2

Hierarchical (Sequential)
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• Computer-driven – controversial.
• Starts with 0 predictors, then the 

strongest predictor is entered into 
the model, then the next strongest 
etc. if they reach a criteria (e.g., p 
< .05)

Forward selection

98

• Computer-driven – controversial.
• All predictor variables are 

entered, then the weakest 
predictors are removed, one by 
one, if they meet a criteria (e.g., p 
> .05)

Backward elimination

99

• Computer-driven – controversial.
• Combines forward & backward.
• At each step, variables may be 

entered or removed if they meet 
certain criteria.

• Useful for developing the best 
prediction equation  from a large 
number of variables.

• Redundant predictors are removed.

Stepwise

100

Which method?
• Standard: To assess impact of 

all IVs simultaneously
• Hierarchical: To test IVs in a 

specific order (based on 
hypotheses derived from theory)

• Stepwise: If the goal is accurate 
statistical prediction from a large 
# of variables - computer driven

101

Summary

102

Summary: General steps

1. Develop model and hypotheses
2. Check assumptions
3. Choose type
4. Interpret output
5. Develop a regression equation 

(if needed)
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Summary: Linear regression

1. Best-fitting straight line for a 
scatterplot of two variables

2. Y = bX + a + e
1. Predictor (X; IV)
2. Outcome (Y; DV)

3. Least squares criterion
4. Residuals are the vertical 

distance between actual and 
predicted values

  104

Summary: 
MLR assumptions

1. Level of measurement
2. Sample size
3. Normality
4. Linearity
5. Homoscedasticity
6. Collinearity
7. Multivariate outliers
8. Residuals should be normally 

distributed

105

Summary: 
Level of measurement and 

dummy coding
1. Levels of measurement

1. DV = Interval or ratio
2. IV = Interval or ratio or dichotomous

2. Dummy coding
1. Convert complex variables into series of 

dichotomous IVs

106

Summary: 
MLR types

1. Standard
2. Hierarchical
3. Stepwise / Forward / Backward
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Summary: 
MLR output

1. Overall fit
1. R, R2, Adjusted R2

2. F, p

2. Coefficients
1. Relation between each IV and the DV, 

adjusted for the other IVs 

2. B, β, t, p, and r
p

3. Regression equation (if useful)
Y = b1x1 + b2x2 +.....+ bixi + a + e
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Practice quiz
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MLR I Quiz – 
Practice question 1

A linear regression analysis produces the 
equation Y = 0.4X + 3. This indicates 
that:
(a) When Y = 0.4, X = 3
(b) When Y = 0, X = 3 
(c) When X = 3, Y = 0.4
(d) When X = 0, Y = 3
(e) None of the above
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MLR I Quiz – 
Practice question 1

Multiple linear regression is a 
________ type of statistical analysis.
(a) univariate
(b) bivariate
(c) multivariate
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MLR I Quiz – 
Practice question 3

Multiple linear regression is a 
________ type of statistical analysis.
(a) univariate
(b) bivariate
(c) multivariate
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MLR I Quiz – 
Practice question 4

The following types of data can be used in 
MLR (choose all that apply):
(a) Interval or higher DV
(b) Interval or higher IVs
(c) Dichotomous Ivs
(d) All of the above
(e) None of the above
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MLR I Quiz – 
Practice question 5

In MLR, the square of the multiple 
correlation coefficient, R2, is called the:
(a) Coefficient of determination
(b) Variance
(c) Covariance
(d) Cross-product
(e) Big R
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MLR I Quiz – 
Practice question 6

In MLR, a residual is the difference 
between the predicted Y and actual Y 
values.
(a) True
(b) False
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Next lecture

• Review of MLR I
• Semi-partial correlations
• Residual analysis
• Interactions
• Analysis of change
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