Correlation

Lecture 4

Survey Research \& Design in Psychology
James Neill, 2017
Creative Commons Attribution 4.0

Overview

1. Covariation
2. Purpose of correlation
3. Linear correlation
4. Types of correlation
5. Interpreting correlation
6. Assumptions / limitations
e.g., study and grades
e.g., nutrients and growth

The world is made of co-variations

\quad Overview

1. Covariation
2. Purpose of correlation
3. Linear correlation
4. Types of correlation
5. Interpreting correlation
6. Assumptions / limitations

Howitt \& Cramer (2014)

- Ch 7: Relationships between two or more variables: Diagrams and tables
- Ch 8: Correlation coefficients: Pearson correlation and Spearman's rho
- Ch 11: Statistical significance for the correlation coefficient: A practical introduction to statistical inference
- Ch 15: Chi-square: Differences between samples of frequency data
- Note: Howitt and Cramer doesn't cover point bi-serial correlation2

Readings

Purpose of correlation

Co-variations are the basis of more complex models.

Purpose of correlation

The underlying purpose of correlation is to help address the question:

What is the

- relationship or
- association or
- shared variance or
- co-relation
between two variables?

Purpose of correlation

Other ways of expressing the underlying correlational question include:
To what extent do variables

- covary?
- depend on one another?
- explain one another?

Linear correlation

Linear correlation

Extent to which two variables have a simple linear (straight-line) relationship.

Linear correlation

The linear relation between two variables is indicated by a correlation:

- Direction: Sign (+ / -) indicates direction of relationship (+ve or -ve slope)
- Strength: Size indicates strength (values closer to -1 or +1 indicate greater strength)
- Statistical significance: p indicates likelihood that the observed relationship could have occurred by chance

Types of correlation

To decide which type of correlation to use, consider the levels of measurement for each variable.

Types of correlation and LOM

	Nominal	Ordinal	Int/Ratio
Nominal	Clustered barchart Chi-square, Phi (φ) or Cramer's V	\Longleftarrow Recode	Clustered bar chart or scatterplot Point bi-serial correlation $\left(r_{p b}\right)$
Ordinal		Clustered bar chart or scatterplot Spearman's Rho or Kendall's Tau	$\Longleftarrow \bigcap_{\text {Recode }}$
Interval/Ratio			Scatterplot Product- moment correlation (17)

Types of relationships

- No relationship ($r \sim 0$) (X and Y are independent)
- Linear relationship (X and Y are dependent) - As $\mathrm{X} \uparrow \mathrm{s}$, so does $\mathrm{Y}(r>0)$ -As X $\uparrow \mathrm{s}, \mathrm{Y} \downarrow \mathrm{s}(r<0)$
- Non-linear relationship

Types of correlation

- Nominal by nominal: Phi (Φ) / Cramer's V, Chi-square
- Ordinal by ordinal: Spearman's rank / Kendall's Tau b
- Dichotomous by interval/ratio: Point bi-serial $r_{p b}$
- Interval/ratio by interval/ratio: Product-moment or Pearson's r

Nominal by nominal correlational approaches

- Contingency (or cross-tab) tables
- Observed frequencies
- Expected frequencies
- Row and/or column \%s
- Marginal totals
- Clustered bar chart
- Chi-square
- Phi (ϕ) / Cramer's V

Contingency table: Example

Snoring Do you snore? * Smokingr Smoking status Crosstabulation Count

		Smokingr Smoking status		Total
		0 Nonsmoker	1 Smoker	
Snoring Do you snore?	$\begin{aligned} & \hline 0 \text { yes } \\ & 1 \text { no } \end{aligned}$	$\begin{array}{r} 50 \\ 111 \\ \hline \end{array}$		$\binom{66}{122}$
Total		-161		188

BLUE $=$ Marginal totals
RED $=$ Cell frequencies $\angle 1$

Contingency tables

- Bivariate frequency tables
- Marginal totals (blue)
- Observed cell frequencies (red)

Contingency table: Example
$\chi^{2}=$ sum of $\left((\text { observed }- \text { expected })^{2} /\right.$ expected $)$

-Expected counts are the cell frequencies that should occur if the variables are not correlated.
-Chi-square is based on the squared differences between the actual and expected cell counts.

Cell percentages

Row and/or column cell percentages can also be useful e.g., $\sim 60 \%$ of smokers snore, whereas only $\sim 30 \%{ }^{\text {d }}$ of non-smokers snore.

Snoring Do you snore? * Smokingr Smoking status Crosstabulation
\% within Smokingr Smoking status

		Smokingr/Smoking status		
		0 Non- smoker	1 Smoker	Total
Snoring Do you snore?	0 yes	31.1%	59.3%	
	1 no	68.9%	40.7%	64.9%
Total	100.0%	100.0%	100.0%	

Clustered bar graph
Bivariate bar graph of frequencies or percentages.

The category axis bars are clustered (by colour or fill pattern) to indicate the the second variable's categories.

Pearson chi-square test:

Example

Smoking (2) x Snoring (2)

Write-up: $\chi^{2}(1,188)=8.07, p=.004$

Phi (\$) \& Cramer's V
(non-parametric measures of correlation)

Phi (ϕ)

- Use for $2 \times 2,2 \times 3,3 \times 2$ analyses e.g., Gender (2) \& Pass/Fail (2)

Cramer's V

- Use for 3×3 or greater analyses e.g., Favourite Season (4) x Favourite Sense (5)

Pearson chi-square test

The value of the test-statistic is

$$
X^{2}=\sum \frac{(O-E)^{2}}{E}
$$

where
$X^{2}=$ the test statistic that approaches a χ^{2} distribution.
$O=$ frequencies observed;
$E=$ frequencies expected (asserted by the null hypothesis).

Chi-square distribution: Example

The Chi-Square Distribution

Phi (ϕ) \& Cramer's V: Example

Symmetric Measures

		Value	Approximate Significance
Nominal by Nominal	Phi	-207	.004
	Cramer's V	.207	.004
N of Valid Cases		188	

$\chi^{2}(1,188)=8.07, p=.004, \phi=.21$
Note that the sign is ignored here (because nominal coding is arbitrary, the researcher should explain the direction of the relationship)

Ordinal by ordinal

Graphing ordinal by ordinal data

- Ordinal by ordinal data is difficult to visualise because its non-parametric, with many points.
- Consider using:
-Non-parametric approaches
(e.g., clustered bar chart)
-Parametric approaches
(e.g., scatterplot with line of best fit)

Kendall's Tau (τ)

- Tau a
-Does not take joint ranks into account
- Tau b
-Takes joint ranks into account
-For square tables
- Tau c
-Takes joint ranks into account
-For rectangular tables

Ordinal by ordinal correlational approaches

- Spearman's rho $\left(r_{s}\right)$
- Kendall tau (τ)
- Alternatively, use nominal by nominal techniques (i.e., recode the variables or treat them as having a lower level of measurement)

Spearman's rho $\left(r_{s}\right)$ or Spearman's rank order correlation

- For ranked (ordinal) data
-e.g., Olympic Placing correlated with World Ranking
- Uses product-moment correlation formula
- Interpretation is adjusted to consider the underlying ranked scales

Ordinal correlation example

Godranked Religiousity					
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	0 Do not believe in God	56	29.5	29.5	29.5
	1 Sort of believe in god	57	30.0	30.0	59.5
	2 Believe in god	77	40.5	40.5	100.0
	Total	190	100.0	100.0	

Smokingranked Smoking ranked

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	0 Non-smoker	162	85.3	85.7	85.7
	1 Light smoker	7	3.7	3.7	89.4
	2 Heavy smoker	20	10.5	10.6	100.0
	Total	189	99.5	100.0	
Missing	System	1	.5		
Total		190	100.0		

Ordinal correlation example

Smoking ranked
Religiousity
震

Ordinal correlation example

$$
\mathrm{T}_{\mathrm{b}}=-.07, p=.298
$$

Point-biserial correlation (r_{pb})

- One dichotomous \& one interval/ratio variable
-e.g., belief in god (yes/no) and number of countries visited
- Calculate as for Pearson's product-moment r
- Adjust interpretation to consider the direction of the dichotomous scales

Point-biserial correlation $\left(r_{\text {pb }}\right)$:
Example

Correlations

		b4r	God
	b8 Countries		
b4r God	Pearson Correlation	1	$(.095$
$0=$ No	Sig. (2-tailed)		$\left(\begin{array}{r}.288 \\ 1=\text { Yes }\end{array} \mathrm{N}\right.$

Scale (interval/ratio) by Scale (interval/ratio)

Scatterplot showing relationship between age \& cholesterol with line of best fit

Scatterplot

- Plot each pair of observations (X, Y)
$-x=$ predictor variable (independent; IV)
$-\mathrm{y}=$ criterion variable (dependent; DV)
- By convention:
-IV on the x (horizontal) axis
-DV on the y (vertical) axis
- Direction of relationship:
$-+v e=$ trend from bottom left to top right
- -ve $=$ trend from top left to bottom right

Line of best fit

- The correlation between 2 variables is a measure of the degree to which pairs of numbers (points) cluster together around a best-fitting straight line
- Line of best fit: $y=a+b x$
- Check for:
- outliers
- linearity

What's wrong with this scatterplot?

Scatterplot example: Strong positive (.81)

Pearson product-moment correlation (r)

- The product-moment correlation is the standardised covariance.

$$
r_{X, Y}=\frac{\operatorname{cov}(X, Y)}{S_{X} S_{Y}}
$$

Covariance, SD, and correlation: Example quiz question

The covariance between X and Y is 1.2. The $S D$ of X is 2 and the $S D$ of Y is 3. The correlation is:
a. 0.2
b. 0.3
c. 0.4

d. 1.2

Significance of correlation

- Null hypothesis $\left(\mathrm{H}_{0}\right):{ }^{\text {rho }} \rho=0$
i.e., no "true" relationship in the population
- Alternative hypothesis $\left(\mathrm{H}_{1}\right): \rho<>0$ i.e., there is a real relationship in the population
- Initially, assume \mathbf{H}_{0} is true, and then evaluate whether the data support \mathbf{H}_{1}.
- $\rho($ rho $)=$ population product-moment correlation coefficient

Hypothesis testing

Almost all correlations are not 0 .
So, hypothesis testing seeks to answer:

- What is the likelihood that an observed relationship between two variables is "true" or "real"?
- What is the likelihood that an observed relationship is simply due to chance?

How to test the null hypothesis

- Select a critical value (alpha (a)); commonly 05
- Use a 1 - or 2-tailed test; 1 -tailed if hypothesis is directional
- Calculate correlation and its p value. Compare to the critical alpha value.
- If $p<$ critical alpha, correlation is statistically significant, i.e., there is less than critical alpha chance that the observed relationship is due to random sampling variability.

Errors in hypothesis testing

- Type I error:
decision to reject \mathbf{H}_{0} when H_{0} is true
- Type II error:
decision to not reject \mathbf{H}_{0} when H_{0} is false
- A significance test outcome depends on the statistical power which is a function of:
-Effect size (r)
-Sample size (M)
-Critical alpha level ($\alpha_{\text {crit }}$)

Significance of correlation

$d f$	critical	
($\mathrm{N}-2$)	$p=.05$	
5	. 67	
10	. 50	The higher the
15	. 41	, the smaller
20	. 36	the correlation
25	. 32	required for a
30	. 30	statistically
50	. 23	significant result
200	.11 .07	- why?
500 1000	. 07	

Coefficient of Determination (r^{2})

- CoD = The proportion of variance in one variable that can be accounted for by another variable.
- e.g., $r=.60, r^{2}=.36$ or 36% of shared variance

Interpreting correlation

(Cohen, 1988)

- A correlation is an effect size
- Rule of thumb:

Strength	$\underline{\boldsymbol{r}}$	$\underline{\underline{\underline{r}}}$
Weak:	$.1-.3$	$1-9 \%$
Moderate:	$.3-.5$	$10-25 \%$
Strong:	$>.5$	$>25 \%$

Interpreting correlation

(Evans, 1996)

Strength	$\underline{\boldsymbol{r}}$	$\underline{\boldsymbol{r}^{\underline{2}}}$
very weak	$0-.19$	(0 to $4 \%)$
weak	$.20-.39$	(4 to $16 \%)$
moderate	$.40-.59$	(16 to $36 \%)$
strong	$.60-.79$	(36\% to $64 \%)$
very strong	$.80-1.00$	(64\% to 100\%)

69

Correlation of this scatterplot $=-.9$

X1

Size of correlation (conen, 1988)
WEAK (.1-.3)

MODERATE (. 3 - .5)

STRONG (> .5)

Correlation of this scatterplot $=-.9$

What do you estimate the correlation of this scatterplot of height and weight to be?
a. -.5
b. -1
c. 0
d. . 5
e. 1

What do you estimate the correlation of this scatterplot to be?
a. -. 5
b. -1
C. 0
d. . 5
e. 1

Write-up: Example

"Number of children and marital satisfaction were inversely related ($r(48)=-.35, p<.05$), such that contentment in marriage tended to be lower for couples with more children. Number of children explained approximately 10% of the variance in marital satisfaction, a small-moderate effect."

Assumptions and limitations

1. Levels of measurement
2. Normality
3. Linearity
4. Effects of outliers
5. Non-linearity
6. Homoscedasticity
7. No range restriction
8. Homogenous samples
9. Correlation is not causation
10. Dealing with multiple correlations
a. -. 5
b. -1
c. 0
d. . 5
e. 1

Assumptions and limitations

(Pearson product-moment linear correlation)
What do you estimate the correlation of this scatterplot to be?

Effect of outliers

- Outliers can disproportionately increase or decrease r.
- Options
-compute r with \& without outliers
- get more data for outlying values
-recode outliers as having more conservative scores
-transformation
-recode variable into lower level of measurement and a non-parametric approach

Age \& self-esteem (outliers removed) $r=.23$

AGE

Non-linear relationships

If non-linear, consider:

- Does a linear relation help?
- Use a non-linear mathematical function to describe the relationship between the variables
- Transforming variables to "create" linear relationship

Age \& self-esteem
($r=.63$)

AGE
80

Non-linear relationships

Check scatterplot
Can a linear
 relationship 'capture' the lion's share of the variance?
If so,use r.

82

Scedasticity

- Homoscedasticity refers to even spread of observations about a line of best fit
- Heteroscedasticity refers to uneven spread of observations about a line of best fit
- Assess visually and with Levene's test

Scedasticity

Image source:
htrps:/commo mage source:
httos:/commons

Range restriction

- Range restriction is when the sample contains a restricted (or truncated) range of scores
-e.g., level of hormone X and age <18 might have linear relationship
- If range is restricted, be cautious about generalising beyond the range for which data is available -e.g., level of hormone X may not continue to increase linearly with age after age 18

Heterogenous samples

- Sub-samples (e.g., males \& females) may artificially increase or decrease overall r.
- Solution - calculate r separately for subsamples \& overall; look for differences

Scedasticity

Homoscedasticity with both variables normally distributed

Heteroscedasticity with skewness on one variable

Scatterplot of Same-sex \& Opposite-sex Relations by Gender

Scatterplot of Weight and Self-esteem by Gender

$\pi r=.50$
جr $=-.48$

Correlation is not causation e.g.,: Stop global warming: Become a pirate

Correlation matrix:					
Example of an APA Style					
Correlation Table					
Table 1.					
Correlations Between Five Life Effectiveness Factors for Adolescents and Adults $(\mathrm{N}=3640)$					
	Time Management	Social Competence	Achievement Motivation	Intellectual Flexibility	Task Leadership
Time Management		. 36	. 53	. 31	. 42
Social Competence			. 37	. 32	. 57
Achievement Motivation				. 42	.41
Intellectual Flexibility					. 37
Task Leadership					

Correlation is not causation e.g,:
correlation between ice cream consumption and crime, but actual cause is temperature

Dealing with several correlations

Scatterplot matrices organise scatterplots and correlations amongst several variables at once.

However, they are not sufficiently detailed for more than about five variables at a time.

Summary: Correlation

1. The world is made of covariations.
2. Covariations are the building blocks of more complex multivariate relationships.
3. Correlation is a standardised measure of the covariance (extent to which two phenomenon co-relate).
4. Correlation does not prove causation - may be opposite causality, bi-directional, or due to other variables. 97

Summary: Correlation steps

1. Choose measure of correlation and graphs based on levels of measurement.
2. Check graphs (e.g., scatterplot):
-Linear or non-linear?
-Outliers?
-Homoscedasticity?
-Range restriction?
-Sub-samples to consider?

Summary: Interpreting correlation

- Coefficient of determination
-Correlation squared
-Indicates \% of shared variance

Strength	$\underline{\boldsymbol{r}}$	$\underline{\underline{r}}^{\boldsymbol{r}}$
Weak:	$.1-.3$	$1-10 \%$
Moderate:	$.3-.5$	$10-25 \%$
Strong:	$>.5$	$>25 \%$

Summary: Types of correlation

- Nominal by nominal:

Phi (Φ) / Cramer's V, Chi-square

- Ordinal by ordinal:

Spearman's rank / Kendall's Tau b

- Dichotomous by interval/ratio:

Point bi-serial $r_{p b}$

- Interval/ratio by interval/ratio:

Product-moment or Pearson's r

Summary: Correlation steps

3. Consider
-Effect size (e.g., Φ, Cramer's V, r, r^{2})
-Direction

- Inferential test (p)

4. Interpret/Discuss
-Relate back to hypothesis
-Size, direction, significance
-Limitations e.g.,

- Heterogeneity (sub-samples)
- Range restriction
-Causality?

Summary:

Asssumptions \& limitations

1. Levels of measurement
2. Normality
3. Linearity
4. Homoscedasticity
5. No range restriction
6. Homogenous samples
7. Correlation is not causation
8. Dealing with multliple correlations

References

Evans, J. D. (1996). Straightforward statistics for the behavioral sciences. Pacific Grove, CA: Brooks/Cole Publishing.
Howell, D. C. (2007). Fundamental statistics for the behavioral sciences. Belmont, CA: Wadsworth.
Howell, D. C. (2010). Statistical methods for psychology (7th ed.). Belmont, CA: Wadsworth. Howitt, D. \& Cramer, D. (2011). Introduction to statistics in psychology (5th ed.). Harlow, UK: Pearson.

Open Office Impress

- This presentation was made using Open Office Impress.
- Free and open source software.
- http://www.openoffice.org/product/impress.html

