Correlation

Lecture 4

Survey Research & Design in Psychology James Neill, 2017 Creative Commons Attribution 4.0

Readings Howitt & Cramer (2014)

- Ch 7: Relationships between two or more variables: Diagrams and tables
- Ch 8: Correlation coefficients: Pearson correlation and Spearman's rho
- Ch 11: Statistical significance for the correlation coefficient: A practical introduction to statistical inference
- Ch 15: Chi-square: Differences between samples of frequency data
- Note: Howitt and Cramer doesn't cover point bi-serial correlation2

Overview

- 1. Covariation
- 2. Purpose of correlation
- 3. Linear correlation
- 4. Types of correlation
- 5. Interpreting correlation
- 6. Assumptions / limitations

Covariation

3

e.g., pollen and bees

e.g., study and grades

e.g., nutrients and growth

The world is made of co-variations

Purpose of correlation

Co-variations are the basis of more complex models.

Purpose of correlation

The underlying purpose of correlation is to help address the question:

What is the

- relationship or
- association or
- shared variance or
- co-relation

between two variables?

Purpose of correlation

Other ways of expressing the underlying correlational question include:

To what extent do variables

- covary?
- depend on one another?
- explain one another?

10

8

Linear correlation

11

Linear correlation

The linear relation between two variables is indicated by a correlation:

- Direction: Sign (+ / -) indicates direction of relationship (+ve or -ve slope)
- **Strength:** Size indicates strength (values closer to -1 or +1 indicate greater strength)
- **Statistical significance:** *p* indicates likelihood that the observed relationship could have occurred by chance

13

Types of relationships

- No relationship (r ~ 0)
 (X and Y are independent)
- Linear relationship
 (X and Y are dependent)
 -As X ↑s, so does Y (r > 0)
 - -As X \uparrow s, so does Y (r > 0) -As X \uparrow s, Y \downarrow s (r < 0)
- Non-linear relationship

14

Types of correlation

To decide which type of correlation to use, consider the **levels of measurement** for each variable.

15

Types of correlation

- Nominal by nominal:
 Phi (Φ) / Cramer's V, Chi-square
- Ordinal by ordinal:
 Spearman's rank / Kendall's Tau b
- Dichotomous by interval/ratio: Point bi-serial r_{pb}
- Interval/ratio by interval/ratio:
 Product-moment or Pearson's r

16

Types of correlation and LOM Ordinal Nominal Int/Ratio Clustered bar Clustered barchart or chart scatterplot Chi-square, Nominal ← Recode Point bi-serial Phi (ϕ) or correlation Cramer's V (r_{pb}) Clustered bar chart or scatterplot Ordinal =1 \lceil_{Recode} Spearman's Rho or Kendall's Tau Scatterplot Product-Interval/Ratio moment correlation (17

Nominal by nominal

Nominal by nominal correlational approaches

- Contingency (or cross-tab) tables
 - Observed frequencies
 - Expected frequencies
 - Row and/or column %s
 - Marginal totals
- Clustered bar chart
- Chi-square
- Phi (φ) / Cramer's V

19

Contingency tables

- · Bivariate frequency tables
- · Marginal totals (blue)
- · Observed cell frequencies (red)

Contingency table: Example

Snoring Do you snore? * Smokingr Smoking status Crosstabulation

Count

		Smokingr Smo		
		0 Non- smoker	1 Smoker	Total
Snoring Do you snore?	0 yes	50	16	66
	1 no	111		122
Total		161	27	188

BLUE = Marginal totals RED = Cell frequencies Contingency table: Example

 χ^2 = sum of ((observed – expected)²/ expected)

Snoring Do you snore? * Smokingr Smoking status Crosstabulation

			Smokingr Smo	king status	
			0 Non- smoker 2	1 Smoker 2	Total
Snoring Do you snore?	0 yes	Count	(- 50)	(-16)	66
		Expected Count	56.5	ارق	66.0
	1 no	Count	(-111)	(_11)	122
		Expected Count	104.5	17.5	122.0
Total		Count	161	27	188
		Expected Count	161.0	27.0	188.0

- •Expected counts are the cell frequencies that should occur if the variables are not correlated.
- •Chi-square is based on the squared differences between the actual and expected cell counts.

22

Cell percentages

Row and/or column cell percentages can also be useful e.g., ~60% of smokers snore, whereas only ~30% of non-smokers

Snoring Do you snore? * Smokingr Smoking status Crosstabulation

% within Smokingr Smoking status

		Smokingr/Smoking status		
		0 Non/ smoker	1 Smoker	Total
Snoring Do you snore?	0 yes	31.1%	59.3%	35.1%
	1 no	68.9%	40.7%	64.9%
Total		100.0%	100.0%	100.0%

Bivariate bar graph of frequencies or percentages.

The category axis bars are clustered (by colour or fill pattern) to indicate the the second variable's categories.

Do you snore?

Pearson chi-square test

The value of the test-statistic is

$$X^2 = \sum \frac{(O-E)^2}{E},$$

where

 X^2 = the test statistic that approaches a χ^2 distribution.

O =frequencies observed;

 \boldsymbol{E} = frequencies expected (asserted by the null hypothesis).

26

Pearson chi-square test: Example Smoking (2) x Snoring (2)

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	8.073ª		004	P	
Continuity Correction ^b	6.883	1	.009		
Likelihood Ratio	7.694	1	.006		
Fisher's Exact Test				.008	.005
Linear-by-Linear Association	8.030	1	.005		
N of Valid Cases	188	•			

Write-up: χ^2 (1, 188) = 8.07, p = .004

Phi (φ) & Cramer's V

(non-parametric measures of correlation)

Phi (φ)

• Use for 2 x 2, 2 x 3, 3 x 2 analyses e.g., Gender (2) & Pass/Fail (2)

Cramer's V

 Use for 3 x 3 or greater analyses e.g., Favourite Season (4) x Favourite Sense (5)

Phi (φ) & Cramer's V: Example

Symmetric Measures

		Value	Approximate Significance
Nominal by Nominal	Phi	-207	.004
	Cramer's V	.207	.004
N of Valid Cases		188	

$$\chi^2$$
 (1, 188) = 8.07, p = .004, ϕ = .21

Note that the sign is ignored here (because nominal coding is arbitrary, the researcher should explain the direction of the relationship)

Ordinal by ordinal

Ordinal by ordinal correlational approaches

- Spearman's rho (r_s)
- Kendall tau (τ)
- Alternatively, use nominal by nominal techniques (i.e., recode the variables or treat them as having a lower level of measurement)

32

Graphing ordinal by ordinal data

- Ordinal by ordinal data is difficult to visualise because its non-parametric, with many points.
- Consider using:
 - Non-parametric approaches (e.g., clustered bar chart)
 - -Parametric approaches(e.g., scatterplot with line of best fit)

33

31

Spearman's rho ($r_{\rm s}$) or Spearman's rank order correlation

- For ranked (ordinal) data
 - -e.g., Olympic Placing correlated with World Ranking
- Uses product-moment correlation formula
- Interpretation is adjusted to consider the underlying ranked scales

34

Kendall's Tau (τ)

- Tau a
 - -Does not take joint ranks into account
- Tau b
 - -Takes joint ranks into account
 - -For square tables
- Tau c
 - -Takes joint ranks into account
 - -For rectangular tables

Ordinal correlation example

Godranked Religiousity

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	0 Do not believe in God	56	29.5	29.5	29.5
	1 Sort of believe in god	57	30.0	30.0	59.5
	2 Believe in god	77	40.5	40.5	100.0
1	Total	190	100.0	100.0	

Smokingranked Smoking ranked

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	0 Non-smoker	162	85.3	85.7	85.7
	1 Light smoker	7	3.7	3.7	89.4
	2 Heavy smoker	20	10.5	10.6	100.0
	Total	189	99.5	100.0	
Missing	System	1	.5		
Total		190	100.0		

Dichotomous by scale (interval/ratio)

39

Point-biserial correlation (r_{pb})

- One dichotomous & one interval/ratio variable
 - -e.g., belief in god (yes/no) and number of countries visited
- Calculate as for Pearson's product-moment r
- Adjust interpretation to consider the direction of the dichotomous scales

Scale (interval/ratio) by Scale (interval/ratio)

43

45

Scatterplot

- Plot each pair of observations (X, Y)
 - -x = predictor variable (independent; IV)
 - -y = criterion variable (dependent; DV)
- By convention:
 - -IV on the x (horizontal) axis
 - -DV on the y (vertical) axis
- Direction of relationship:
 - -+ve = trend from bottom left to top right
 - --ve = trend from top left to bottom right

44

Scatterplot showing relationship between age & cholesterol with line of best fit

Line of best fit

- The correlation between 2 variables is a measure of the degree to which pairs of numbers (points) cluster together around a best-fitting straight line
- Line of best fit: y = a + bx
- · Check for:
 - outliers
 - linearity

Pearson product-moment correlation (r)

 The product-moment correlation is the standardised covariance.

$$r_{X,Y} = \frac{\text{cov}(X,Y)}{S_X S_Y}$$

51

Covariance

• Variance shared by 2 variables

$$Cov_{XY} = \frac{\Sigma(X - \overline{X})(Y - \overline{Y})}{N - 1}$$
 Cross products
 $N - 1$ for the sample; N for the population

- Covariance reflects the direction of the relationship:
 - +ve cov indicates +ve relationship -ve cov indicates -ve relationship
- Covariance is unstandardised.

52

Covariance → **Correlation**

- Size depends on the measurement scale → Can't compare covariance across different scales of measurement (e.g., age by weight in kilos <u>versus</u> age by weight in grams).
- Therefore, standardise covariance (divide by the cross-product of the SDs) → correlation
- Correlation is an effect size i.e., standardised measure of strength of linear relationship

Covariance, *SD*, and correlation: Example quiz question

The covariance between *X* and *Y* is 1.2. The *SD* of *X* is 2 and the *SD* of *Y* is 3. The correlation is:

a. 0.2

b. 0.3

c. 0.4

d. 1.2

Answer: $1.2 / 2 \times 3 = 0.2$

55

Hypothesis testing

Almost all correlations are not 0. So, hypothesis testing seeks to answer:

- What is the **likelihood** that an observed relationship between two variables is "true" or "real"?
- What is the **likelihood** that an observed relationship is simply due to chance?

56

Significance of correlation

- Null hypothesis (H₀): ρ = 0 i.e., no "true" relationship in the population
- Alternative hypothesis (H₁): ρ <> 0
 i.e., there is a real relationship in the population
- Initially, assume H₀ is true, and then evaluate whether the data support H₁.
- ρ (rho) = population product-moment correlation coefficient

57

59

How to test the null hypothesis

- Select a critical value (alpha (α)); commonly .05
- Use a 1- or 2-tailed test; 1-tailed if hypothesis is directional
- Calculate correlation and its *p* value. Compare to the critical alpha value.
- If p < critical alpha, correlation is statistically significant, i.e., there is less than critical alpha chance that the observed relationship is due to random sampling variability.

58

Correlation - SPSS output

Errors in hypothesis testing

- Type I error: decision to reject H₀ when H₀ is true
- Type II error: decision to not reject H₀ when H₀ is false
- A significance test outcome depends on the statistical power which is a function of:
 - -Effect size (r)
 - -Sample size (N)
 - -Critical alpha level (α_{crit})

Significance of correlation

_		
df	critical	
<u>(N - 2)</u>	p = .05	
5 10	.67 .50	The higher the
15	.50 .41	N, the smaller
20	.36	the correlation
25	.32	required for a
30	.30	statistically
50	.23	significant result
200	.11	•
500	.07	– why?
1000	.05	61

Scatterplot showing a confidence interval for a line of best fit

Practice quiz question: Significance of correlation

If the correlation between Age and Performance is statistically significant, it means that:

- a. there is an important relationship between the variables
- b. the true correlation between the variables in the population is equal to 0
- c. the true correlation between the variables in the population is not equal to 0
- d. getting older causes you to do poorly on tests

 64

Interpreting correlation

Coefficient of Determination (r^2)

- CoD = The proportion of variance in one variable that can be accounted for by another variable.
- e.g., r = .60, $r^2 = .36$ or 36% of shared variance

66

Interpreting correlation (Cohen, 1988)

- A correlation is an effect size
- Rule of thumb:

 Strength
 \underline{r} \underline{r}^2

 Weak:
 .1 - .3
 1 - 9%

 Moderate:
 .3 - .5
 10 - 25%

 Strong:
 >.5
 > 25%

67

Interpreting correlation (Evans, 1996)

 Strength
 r
 r²

 very weak
 0 - .19
 (0 to 4%)

 weak
 .20 - .39
 (4 to 16%)

 moderate
 .40 - .59
 (16 to 36%)

 strong
 .60 - .79
 (36% to 64%)

 very strong
 .80 - 1.00
 (64% to 100%)

69

71

What do you estimate the correlation of this scatterplot of height and weight to be?

a. -.5
b. -1
c. 0
d. .5
e. 1

WEIGHT

Write-up: Example

"Number of children and marital satisfaction were inversely related (r(48) = -.35, p < .05), such that contentment in marriage tended to be lower for couples with more children. Number of children explained approximately 10% of the variance in marital satisfaction, a small-moderate effect."

Assumptions and limitations

(Pearson product-moment linear correlation)

76

Assumptions and limitations

- 1. Levels of measurement
- 2. Normality
- 3. Linearity
 - 1. Effects of outliers
 - 2. Non-linearity
- 4. Homoscedasticity
- 5. No range restriction
- 6. Homogenous samples
- 7. Correlation is not causation
- 8. Dealing with multiple correlations

Normality

- The X and Y data should be sampled from populations with normal distributions
- Do not overly rely on any single indicator of normality; use histograms, skewness and kurtosis (e.g., within -1 and +1)
- Inferential tests of normality (e.g., Shapiro-Wilks) are overly sensitive when sample is large

78

77

Effect of outliers

- Outliers can disproportionately increase or decrease *r*.
- Options
 - -compute r with & without outliers
 - -get more data for outlying values
 - recode outliers as having more conservative scores
 - -transformation
 - recode variable into lower level of measurement and a non-parametric approach

Non-linear relationships

If non-linear, consider:

- Does a linear relation help?
- Use a non-linear mathematical function to describe the relationship between the variables
- Transforming variables to "create" linear relationship

Scedasticity

- <u>Homo</u>scedasticity refers to even spread of observations about a line of best fit
- <u>Hetero</u>scedasticity refers to uneven spread of observations about a line of best fit
- Assess visually and with Levene's test

84

Range restriction

- Range restriction is when the sample contains a restricted (or truncated) range of scores
 - -e.g., level of hormone X and age < 18 might have linear relationship
- If range is restricted, be cautious about generalising beyond the range for which data is available
 - -e.g., level of hormone X may not continue to increase linearly with age after age 18

- Sub-samples (e.g., males & females) may artificially increase or decrease overall

 r
- Solution calculate r separately for subsamples & overall; look for differences

87

Summary: Correlation

- 1. The world is made of covariations.
- Covariations are the building blocks of more complex multivariate relationships.
- 3. Correlation is a standardised measure of the covariance (extent to which two phenomenon co-relate).
- Correlation does not prove causation - may be opposite causality, bi-directional, or due to other variables.

Summary: Types of correlation

- Nominal by nominal:
 Phi (Φ) / Cramer's V, Chi-square
- Ordinal by ordinal: Spearman's rank / Kendall's Tau b
- Dichotomous by interval/ratio: Point bi-serial r_{pb}
- Interval/ratio by interval/ratio:
 Product-moment or Pearson's r

98

Summary: Correlation steps

- Choose measure of correlation and graphs based on levels of measurement.
- 2. Check graphs (e.g., scatterplot):
 - -Linear or non-linear?
 - -Outliers?
 - -Homoscedasticity?
 - -Range restriction?
 - -Sub-samples to consider?

Summary:
Correlation steps

- 3. Consider
 - -Effect size (e.g., Φ , Cramer's V, r, r^2)
 - -Direction
 - -Inferential test (p)
- 4. Interpret/Discuss
 - -Relate back to hypothesis
 - -Size, direction, significance
 - -Limitations e.g.,
 - Heterogeneity (sub-samples)
 - Range restriction
 - Causality?

100

Summary: Interpreting correlation

- Coefficient of determination
 - -Correlation squared
 - -Indicates % of shared variance

<u>Strength</u>	<u>r</u>	<u>r²</u>
Weak:	.13	1 – 10%
Moderate:	.35	10 - 25%
Strong:	> .5	> 25%

101

99

Summary: Asssumptions & limitations

- 1. Levels of measurement
- 2. Normality
- 3. Linearity
- 4. Homoscedasticity
- 5. No range restriction
- 6. Homogenous samples
- 7. Correlation is not causation
- 8. Dealing with multliple correlations

References

Evans, J. D. (1996). *Straightforward statistics for the behavioral sciences*. Pacific Grove, CA: Brooks/Cole Publishing.

Howell, D. C. (2007). Fundamental statistics for the behavioral sciences. Belmont, CA: Wadsworth.

Howell, D. C. (2010). Statistical methods for psychology (7th ed.). Belmont, CA: Wadsworth.

Howitt, D. & Cramer, D. (2011). *Introduction to statistics in psychology* (5th ed.). Harlow, UK: Pearson.

Open Office Impress

- This presentation was made using Open Office Impress.
- Free and open source software.
- http://www.openoffice.org/product/impress.html

104