Lambda Calculus - Combinators (8A)

Copyright (c) 2024 - 2016 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

Fix point (1)

```
In mathematics, a fixed point (fixpoint), also known as an invariant point, is a value that does <u>not change</u> under a given transformation.
```

Specifically, for functions,
a **fixed point** is an element
that is mapped to itself by the function.

Formally, \mathbf{c} is a fixed point of a function \mathbf{f} if \mathbf{c} belongs to both the domain and the codomain of \mathbf{f} , and $\mathbf{f}(\mathbf{c}) = \mathbf{c}$.

https://en.wikipedia.org/wiki/Fixed_point_(mathematics)

Fix point (2)

For example, if **f** is defined on the real numbers by

$$f(x) = x^2 - 3x + 4$$

then 2 is a fixed point of f, because f(2) = 2.

Not all functions have fixed points: for example,

f(x) = x + 1, has no fixed points,

since x is never equal to x + 1 for any real number.

In graphical terms, a fixed-point x means the point (x, f(x)) is on the line y = x, or in other words the graph of f has a point in common with that line.

https://en.wikipedia.org/wiki/Fixed_point_(mathematics)

Combinatory Logic

Combinatory logic is a notation

to <u>eliminate</u> the need for <u>quantified variables</u> in <u>mathematical logic</u>.

It was introduced by Moses Schönfinke and Haskell Curry, and has more recently been used in computer science as a theoretical model of computation and also as a basis for the design of functional programming languages.

It is based on combinators

Combinator

combinators were introduced by Schönfinkel in 1920 with the idea of providing an analogous way

- to build up functions
- to remove any mention of variables
- particularly in predicate logic.

A combinator is a higher-order function that uses <u>only</u> function application

earlier defined combinators
to <u>define</u> a result from its arguments.

Combinator Definitions (1)

Combinator: A lambda expression containing no free variables.

While this is the most general definition, the word is usually understood more specifically to refer to certain combinators of special importance, in particular the following four:

$$I = \lambda x . x$$

$$K = \lambda x . \lambda y . x$$

$$S = \lambda x . \lambda y . \lambda z . x(z)(y(z))$$

$$Y = \lambda f . (\lambda u . f(u(u))) (\lambda u . f(u(u)))$$

https://www.encyclopedia.com/computing/dictionaries-thesauruses-pictures-and-press-releases/combinator

Combinator Definitions (2)

The combinators I, K, and S were introduced by Schönfinkel and Curry, who showed that any λ -expression can essentially be formed by combining them.

More recently combinators have been applied to the design of implementations for functional languages.

In particular **Y** (also called the paradoxical combinator) can be seen as producing fixed points, since **Y(f)** reduces to **f(Y(f))**.

 $I = \lambda x . x$ $K = \lambda x . \lambda y . x$ $S = \lambda x . \lambda y . \lambda z . x(z)(y(z))$ $Y = \lambda f . (\lambda u . f(u(u))) (\lambda u . f(u(u)))$

https://www.encyclopedia.com/computing/dictionaries-thesauruses-pictures-and-press-releases/combinator

Combinatory Logic and Lambda Calculus (1)

Lambda calculus is concerned with <u>objects</u> called <u>lambda-terms</u>, which can be <u>represented</u> by the following <u>three forms</u> of <u>strings</u>:

```
\mathbf{V}
\lambda \mathbf{V}. \mathbf{E}_{1}
(\mathbf{E}_{1} \mathbf{E}_{2})
```

where \mathbf{v} is a variable name drawn from a predefined <u>infinite set</u> of <u>variable names</u>, and $\mathbf{E_1}$ and $\mathbf{E_2}$ are <u>lambda-terms</u>.

Combinatory Logic and Lambda Calculus (2)

Terms of the form λv . E_1 are called abstractions.

The variable \mathbf{v} is called the formal parameter of the abstraction, and \mathbf{E}_1 is the body of the abstraction.

The term $\lambda v. E_{_1}$ represents the function

applied to an argument,

binds the formal parameter **v** to the argument

computes the resulting value of E₁

<u>returns</u> \mathbf{E}_{1} , with every occurrence of \mathbf{v} <u>replaced</u> by the <u>argument</u>.

V

λν. Ε₁

 $(E_1 E_2)$

Combinatory Logic and Lambda Calculus (3-1)

Terms of the form $(\mathbf{E}_1 \ \mathbf{E}_2)$ are called **applications**.

applications <u>model</u> function invocation or execution: the function represented by $\mathbf{E_1}$ is to be <u>invoked</u>, with $\mathbf{E_2}$ as its <u>argument</u>, and the <u>result</u> is computed.

Combinatory Logic and Lambda Calculus (3-2)

If E_1 (the applicand) is an abstraction, the term may be reduced:

 $\mathbf{E_2}$, the argument, may be <u>substituted</u> into the <u>body</u> of $\mathbf{E_1}$ in place of the <u>formal parameter</u> \mathbf{v} of $\mathbf{E_1}$, and the result is a <u>new lambda term</u> which is equivalent to the old one.

If a lambda term contains <u>no</u> subterms of the form $((\lambda v. E_1) E_2)$ then it cannot be reduced, and is said to be in <u>normal form</u>.

Combinatory Logic and Lambda Calculus (4)

The motivation for this <u>definition</u> of <u>reduction</u> is that it <u>captures</u> the <u>essential behavior</u> of all <u>mathematical functions</u>.

For example, consider the function that computes the square of a number. We might write

The **square** of x is x * x (using * to indicate multiplication.)

x here is the formal parameter of the function.

To <u>evaluate</u> the **square** for a particular <u>argument</u>, say 3, we insert it into the definition in place of the formal parameter:

The square of 3 is 3 * 3

Combinatory Logic and Lambda Calculus (5)

To <u>evaluate</u> the resulting expression **3 * 3**, we would have to resort to our knowledge of <u>multiplication</u> and the <u>number</u> **3**.

Since any <u>computation</u> is simply a <u>composition</u> of the <u>evaluation</u> of suitable <u>functions</u> on suitable <u>primitive</u> arguments,

this simple substitution principle suffices to capture the <u>essential mechanism</u> of <u>computation</u>.

Combinatory Logic and Lambda Calculus (6)

Moreover, in lambda calculus, notions such as '3' and '*' can be represented without any need for externally defined primitive operators or constants.

It is possible to identify terms in lambda calculus, which, when suitably <u>interpreted</u>, behave like the <u>number</u> **3** and like the <u>multiplication operator</u> *, q.v. Church encoding.

Combinatory Logic and Lambda Calculus (7)

Lambda calculus is known to be computationally equivalent in power to many other plausible <u>models</u> for <u>computation</u> (including <u>Turing machines</u>);

that is, any <u>calculation</u> that can be accomplished in any of these other <u>models</u> can be expressed in <u>lambda calculus</u>, and vice versa.

According to the Church-Turing thesis, both <u>models</u> can express any possible <u>computation</u>.

Combinatory Logic and Lambda Calculus (8-1)

lambda-calculus can <u>represent</u> any conceivable <u>computation</u> using only the simple notions

of function abstraction and application

based on simple textual substitution of terms for variables.

abstraction is <u>not</u> even *required*.

Combinatory logic is

a <u>model</u> of <u>computation</u> <u>equivalent</u> to <u>lambda calculus</u>, but <u>without abstraction</u>.

Combinatory Logic and Lambda Calculus (8-2)

Combinatory logic is

a <u>model</u> of <u>computation</u> <u>equivalent</u> to <u>lambda calculus</u>, but <u>without</u> <u>abstraction</u>.

The advantage of this is that evaluating expressions in lambda calculus is quite complicated because the semantics of substitution must be specified with great care to avoid variable capture problems.

<u>evaluating expressions</u> in <u>combinatory logic</u> is much <u>simpler</u>, because there is no notion of <u>substitution</u>.

Combinatory Calculus

abstraction is the only way to <u>manufacture</u> functions in the lambda calculus

Instead of abstraction,
combinatory calculus provides a <u>limited</u> set of primitive functions
out of which other functions may be built.

Combinatory Terms (1)

(M N)	Application	Applying a function to an argument. M and N are combinatory terms.
Р	Primitive function	One of the combinator symbols I, K, S.
X	Variable	A character or string representing a combinatory term.
Syntax	Name	Description

Combinatory Terms (2)

The primitive functions are combinators, or functions that, when seen as lambda terms, contain <u>no</u> free variables.

To shorten the notations, a general convention is that $(E_1 E_2 E_3 \dots E_n)$, or even $E_1 E_2 E_3 \dots E_n$, denotes the term $(\dots ((E_1 E_2) E_3) \dots E_n)$.

This is the same general convention (left-associativity) as for multiple application in lambda calculus.

Reductions in Combinatory Logic

In combinatory logic, each primitive combinator comes with a reduction rule of the form

$$(P x_1 ... x_n) = E$$

where **E** is a term mentioning only variables from the set $\{x_1 \dots x_n\}$.

It is in this way that primitive combinators behave as functions.

Examples of Combinators (1-1)

The simplest example of a combinator is I, the identity combinator, defined by

$$(I x) = x$$
 for all terms x.

Examples of Combinators (1-2)

Another simple combinator is K,

which manufactures constant functions:

(K x) is the function which, for any argument, returns x, so we say

$$((K x) y) = x$$
 for all terms x and y.

Or, following the convention for multiple application,

$$(K \times y) = x$$

Examples of Combinators (2-1)

A third combinator is **S**, which is a generalized version of application:

$$(S \times y z) = (x z (y z))$$

S <u>applies</u> x to y after first <u>substituting</u> z into each of them (x and y)

x is <u>applied</u> to **y** inside the <u>environment</u> **z**.

Examples of Combinators (2-2)

```
Given S and K, I itself is unnecessary, since it can be built from the other two:
```

for any term x.

https://en.wikipedia.org/wiki/Combinatory_logic

Young Won Lim

4/25/24

Examples of Combinators (3-1)

Note that although ((S K K) x) = (I x) for any x, (S K K) itself is <u>not</u> equal to I.

We say the terms are extensionally equal.

Extensional equality captures the <u>mathematical notion</u> of the equality of functions:

that two functions are equal

if they always produce the same results for the same arguments.

Examples of Combinators (3-2)

In contrast, the terms themselves, together with the reduction of primitive combinators, capture the notion of intensional equality of functions:

that two functions are <u>equal</u>
only if they have identical implementations
up to the <u>expansion</u> of <u>primitive</u> combinators.

Examples of Combinators (3-3)

There are <u>many ways</u> to <u>implement</u> an <u>identity function</u>; **(S K K)** and **I** are among these ways.

(S K S) is yet another.

We will use the word <u>equivalent</u> to indicate <u>extensional</u> equality, <u>reserving equal</u> for <u>identical</u> combinatorial terms.

Examples of Combinators (4)

A more interesting combinator is the fixed point combinator or Y combinator, which can be used to implement recursion.

Fix-point combinator (1)

In combinatory logic for computer science,

a **fixed-point combinator** (or fixpoint combinator), denoted fix, is a higher-order function (which takes a function as argument) that returns some fixed point (a value that is mapped to itself) of its argument function, if one exists.

Formally, if the function f has one or more fixed points, then fix f = f(fix f),

and hence, by repeated application,

$$fix f = f (f (... f (fix f) ...))$$

Fix-point combinator (1111)

Every recursively defined function can be seen as a fixed point of some suitably defined function closing over the recursive call with an extra argument,

and therefore, using Y, every recursively defined function can be expressed as a lambda expression.

In particular, we can now cleanly define the subtraction, multiplication and comparison predicate of natural numbers recursively.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Fix-point combinator (3-1)

In the classical untyped lambda calculus, every function has a fixed point.

A particular implementation of fix is Curry's paradoxical combinator Y, represented by

$$Y = \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))$$

In functional programming, the Y combinator can be used to formally define recursive functions in a programming language that does not support recursion.

Fix-point combinator (3-2)

This combinator may be used in implementing Curry's paradox.

The heart of Curry's paradox is that untyped lambda calculus is unsound as a deductive system, and the Y combinator demonstrates this by allowing an anonymous expression to represent zero, or even many values.

This is inconsistent in mathematical logic.

Fix-point combinator (4)

Every recursively defined function can be seen as a fixed point of some suitably defined function closing over the recursive call with an extra argument,

and therefore, using Y, every recursively defined function can be expressed as a lambda expression.

In particular, we can now cleanly define the subtraction, multiplication and comparison predicate of natural numbers recursively.

Fix-point combinator (5)

Applied to a function with one variable,

the Y combinator usually does not terminate.

More interesting results are obtained

by applying the Y combinator to functions of two or more variables.

The additional variables may be used as a counter, or index.

The resulting function behaves like a while or a for loop in an imperative language.

Fix-point combinator (6)

Used in this way, the Y combinator implements simple recursion. In the lambda calculus, it is not possible to refer to the definition of a function inside its own body by name. Recursion though may be achieved by obtaining the same function passed in as an argument, and then using that argument to make the recursive call, instead of using the function's own name, as is done in languages which do support recursion natively. The Y combinator demonstrates this style of programming.

Fix-point combinator (7)

An example implementation of Y combinator in two languages is presented below.

Y Combinator in Python

Y=lambda f: (lambda x: f(x(x)))(lambda x: f(x(x)))

Y(Y)

Extensionality (1)

In logic, extensionality, or extensional equality, refers to <u>principles</u> that judge objects to be equal if they have the <u>same</u> external properties.

It stands in contrast to the concept of intensionality, which is concerned with whether the internal definitions of objects are the <u>same</u>.

https://en.wikipedia.org/wiki/Extensionality

Extensionality (2)

Consider the two functions **f** and **g** mapping from and to natural numbers, defined as follows:

To find **f(n)**, first <u>add</u> **5** to **n**, then <u>multiply</u> by **2**. To find **g(n)**, first <u>multiply</u> **n** by **2**, then <u>add</u> **10**.

These functions are extensionally equal; given the same input, both functions always produce the same value.

But the <u>definitions</u> of the functions are <u>not equal</u>, and in that <u>intensional</u> sense the functions are <u>not the same</u>.

https://en.wikipedia.org/wiki/Extensionality

Extensionality (3)

Similarly, in natural language there are many predicates (relations) that are intensionally different but are extensionally identical.

For example, suppose that a town has one person <u>named</u> Joe, who is also the oldest person in the town.

Then, the two predicates "being <u>called Joe</u>", and "being <u>the oldest person</u> in this town" are <u>intensionally distinct</u>, but <u>extensionally equal</u> for the (current) population of this town.

https://en.wikipedia.org/wiki/Extensionality

Extensionality (4-1)

If you are not skilled in colloquial astronomy, and I tell you that the morning star is the evening star,

I have given you information—your knowledge has changed.

If I tell you the <u>morning star</u> is the <u>morning star</u>, you might feel I was wasting your time.

Yet in both cases I have told you the planet <u>Venus</u> was <u>self-identical</u>.

There must be more to it than this.

Extensionality (4-2)

Naively, we might say the <u>morning star</u> and the <u>evening star</u> are <u>the same</u> in one way, and <u>not the same</u> in another.

The two phrases, "morning star" and "evening star" may designate the same object, but they do not have the same meaning.

<u>Meanings</u>, in this sense, are often called <u>intensions</u>, and <u>things designated</u>, <u>extensions</u>.

<u>Contexts</u> in which <u>extension</u> is all that matters are, naturally, called <u>extensional</u>, while <u>contexts</u> in which <u>extension</u> is <u>not enough</u> are <u>intensional</u>.

Extensionality (5-1)

Mathematics is typically extensional throughout—we happily write "1+4=2+3" even though the two terms involved may differ in meaning (more about this later).

"It is known that..." is a typical intensional context—"it is known that 1+4=2+3" may not be correct when the knowledge of small children is involved.

Thus mathematical pedagogy differs from mathematics proper.

Extensionality (5-2)

```
Other examples of intensional contexts are "it is believed that...", "it is necessary that...", "it is informative that...", "it is said that...", "it is astonishing that...", and so on.
```

Typically a context that is intensional can be recognized by a failure of the substitutivity of equality when naively applied.

Thus, the morning star equals the evening star; you know the morning star equals the morning star; then on substituting equals for equals, you know the morning star equals the evening star.

Extensionality (5-2)

Note that this knowledge arises from purely logical reasoning, and does not involve any investigation of the sky, which should arouse some suspicion.

Substitution of co-referring terms in a knowledge context is the problematic move—such a context is intensional, after all.

Admittedly this is somewhat circular.

We should not make use of equality of extensions in an intensional context, and an intensional context is one in which such substitutivity does not work.

References

- [1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
- [2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf