
Young Won Lim
4/21/18

Applicatives Methods (3B)

Young Won Lim
4/21/18

 Copyright (c) 2016 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Applicatives
Methods (3B) 3 Young Won Lim

4/21/18

The definition of Applicative

class (Functor f) => Applicative f where

 pure :: a -> f a

 (<*>) :: f (a -> b) -> f a -> f b

The class has a two methods :

pure brings arbitrary values into the functor

(<*>) takes a function wrapped in a functor f

and a value wrapped in a functor f

and returns the result of the application

which is also wrapped in a functor f

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

f (a -> b) :: a function wrapped in f

f a :: a value wrapped in f

Applicatives
Methods (3B) 4 Young Won Lim

4/21/18

The Maybe instance of Applicative

instance Applicative Maybe where

 pure = Just

 (Just f) <*> (Just x) = Just (f x)

 _ <*> _ = Nothing

pure wraps the value with Just;

(<*>) applies

 the function wrapped in Just

to the value wrapped in Just if both exist,

and results in Nothing otherwise.

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicatives
Methods (3B) 5 Young Won Lim

4/21/18

An Instance of the Applicative Typeclass

class (Functor f) => Applicative f where

 pure :: a -> f a

 (<*>) :: f (a -> b) -> f a -> f b

f : Functor, Applicative

instance Applicative Maybe where

 pure = Just

 Nothing <*> _ = Nothing

 (Just f) <*> something = fmap f something

f : function in a context

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

f a

f a f b

a

ba

f aa

f g

pure

pure

(<*>)

g

pure

pure pure

(Functor f) => Applicative f

(Functor f) => Applicative f

Applicatives
Methods (3B) 6 Young Won Lim

4/21/18

Left associative <*>, fmap, and <$>

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

 pure g <*> x <*> y <*> z

 fmap g x <*> y <*> z

 g <$> x <*> y <*> z infix operator <$>

g :: f (a -> b -> c -> d)
x :: f a
y :: f b
z :: f c

Applicatives
Methods (3B) 7 Young Won Lim

4/21/18

fmap g x = (pure g) <*> x

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

ga b

fmapf a f b

(pure g) <*> x fmap g x

x <*>fmapx y

g pure g

y

f b

b

f g

pure

<*>

g

pure pure

f a

a

pure = f

x :: f a
y :: f b

Applicatives
Methods (3B) 8 Young Won Lim

4/21/18

Left associative <*> examples

ghci> pure (+) <*> Just 3 <*> Just 5

Just 8

ghci> pure (+) <*> Just 3 <*> Nothing

Nothing

ghci> pure (+) <*> Nothing <*> Just 5

Nothing

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

 pure (+) <*> Just 3 <*> Just 5

 Just (+3) <*> Just 5

 Just 8

Applicatives
Methods (3B) 9 Young Won Lim

4/21/18

Infix Operators <*> vs <$> - a type view

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

 h <*> x <*> y

 g <$> x <*> y

g :: (a -> b -> c)

x :: f a

y :: f b

h :: f (a -> b -> c)

x :: f a

y :: f b

h :: f (a -> b -> c)

x :: f a

h <*> x :: f (b -> c)

g :: (a -> b -> c)

x :: f a

g <$> x :: f (b -> c)

h :: f (a -> b -> c)

x :: f a

h <*> x :: f (b -> c)

y :: f b

h <*> x <*> y :: f c

g :: (a -> b -> c)

x :: f a

g <$> x :: f (b -> c)

y :: f b

g <$> x <*> y :: f c

Applicatives
Methods (3B) 10 Young Won Lim

4/21/18

Infix Operators <*> vs <$> - a curried function view

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

 h <*> x <*> y

 g <$> x <*> y

h <*> x

<*>x :: f a h <*> x

h :: f (a -> b -> c)

g <$> x

<$> g <$> x

g :: (a -> b -> c)

g :: (a -> b -> c)

x :: f a

y :: f b

h :: f (a -> b -> c)

x :: f a

y :: f b

x :: f a

Applicatives
Methods (3B) 11 Young Won Lim

4/21/18

Infix Operators <*> vs <$> examples

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

 h <*> x <*> y

 g <$> x <*> y

h <*> x

<*>Just 3 Just (3+)

Just (+)

g <$> x

<$>Just 3 Just (3+)

(+)

Just (+) <*> Just 3 <*> Just 2

Just (+3) <*> Just 2

Just 5

(+) <$> Just 3 <*> Just 2

Just (+3) <*> Just 2

Just 5

Applicatives
Methods (3B) 12 Young Won Lim

4/21/18

the minimal complete definition

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

(<$>) :: (Functor f) => (a -> b) -> f a -> f b

g <$> x = fmap g x

class (Functor f) => Applicative f where

 pure :: a -> f a

 (<*>) :: f (a -> b) -> f a -> f b

instance Applicative Maybe where

 pure = Just

 Nothing <*> _ = Nothing

 (Just g) <*> something = fmap g something

Not in the minimal complete definition

g :: a -> b, x :: f a

the minimal complete definition

Applicatives
Methods (3B) 13 Young Won Lim

4/21/18

The Applicative Typeclass

Applicative is a superclass of Monad.

every Monad is also a Functor and an Applicative

fmap, pure, (<*>) can all be used with monads.

a Monad instance

requires Functor and Applicative instances.

defines the types and roles of return and (>>)

fmap : defined in Functors

pure, (<*>) : defined in Applicatives

return, (>>) : defined in Monads

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicatives
Methods (3B) 14 Young Won Lim

4/21/18

(<$>) vs ($)

(<$>) infix operator

(<$>) :: (Functor f) => (a -> b) -> f a -> f b

g <$> x = fmap g x

The $ operator is for avoiding parentheses

putStrLn (show (1 + 1))

putStrLn $ show (1 + 1)

putStrLn $ show $ 1 + 1 – right associative

($) calls the function which is its left-hand argument of $

on the value which is its right-hand argument of $

Applicatives
Methods (3B) 15 Young Won Lim

4/21/18

The Applicative Laws

The identity law: pure id <*> v = v

Homomorphism: pure g <*> pure x = pure (g x)

Interchange: u <*> pure y = pure ($ y) <*> u

Composition: u <*> (v <*> w) = pure (.) <*> u <*> v <*> w

Left associative u <*> v <*> w = (u <*> v) <*> w

id :: a -> a v :: f a

g :: a -> b x :: a

u :: f (a -> b) y :: a

w :: f a v :: f (a -> b) u :: f (b -> c)

u :: f (c -> b -> a)

v :: f c

u <*> v :: f (b -> a)

w :: f b

u <*> v <*> w = f a

Applicatives
Methods (3B) 16 Young Won Lim

4/21/18

The Identity Law

The identity law pure id <*> v = v

pure to inject values into the functor

in a default, featureless way,

so that the result is as close as possible

to the plain value.

applying the pure id morphism does nothing,

exactly like with the plain id function.

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

id :: a -> a v :: f a

Applicatives
Methods (3B) 17 Young Won Lim

4/21/18

The Homomorphism Law

The homomorphism law pure g <*> pure x = pure (g x)

applying a "pure" function to a "pure" value is the same as

applying the function to the value in the ordinary way

and then using pure on the result.

means pure preserves function application.

applying a non-effectful function g

to a non-effectful argument x in an effectful context pure

is the same as just applying the function g to the argument x

and then injecting the result (f x)

into the effectual context with pure.

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

g :: a -> b x :: a

Applicatives
Methods (3B) 18 Young Won Lim

4/21/18

The Interchange Law

The interchange law u <*> pure y = pure ($ y) <*> u

($ y) is the function that supplies y

as argument to another function

– a higher order function

applying a morphism u to a "pure" value pure y

is the same as applying pure ($ y) to the morphism u

when evaluating the application of

an effectful function (u) to a pure argument (pure y),

the order doesn't matter – commutative.

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Just (+3) <*> Just 2

Just ($ 2) <*> Just (+3)

Function $ Argument

 $ y

 (y) as a single argument

u :: f (a -> b) y :: a

pure y :: f a

pure ($ y) :: f (a)

u <*> pure y :: f b

pure ($ y) <*> u :: f b

u :: f (a -> b) y :: a

Applicatives
Methods (3B) 19 Young Won Lim

4/21/18

The Composition Law

The composition law pure (.) <*> u <*> v <*> w = u <*> (v <*> w)

pure (.) composes morphisms similarly

to how (.) composes functions:

applying the composed mourphism

pure (.) <*> u <*> v to w

gives the same result (u <*> (v <*> w))

as applying u to the result (v <*> w)

of applying v to w

it is expressing a sort of associativity property of (<*>).

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

w :: f a v :: f (a -> b) u :: f (b -> c)

w :: f a -- value

v :: f (a -> b) -- func1

u : f (b -> c) -- func2

v <*> w :: f b

u <*> (v <*> w) :: f c

pure (.) <*> u <*> v :: f (a -> c)

pure (.) <*> u <*> v <*> w :: f c

Applicatives
Methods (3B) 20 Young Won Lim

4/21/18

The Composition Law and Left Associativity

The composition law pure (.) <*> u <*> v <*> w = u <*> (v <*> w)

pure (.) <*> pure g <*> pure h <*> pure x (g . h) x

((pure (.) <*> pure g) <*> pure h) <*> pure x

= pure g <*> (pure h <*> pure x) g (h x)

Left associative u <*> v <*> w = (u <*> v) <*> w

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

u = pure g :: f (b -> c)
v = pure h :: f (a -> b)
w = pure x :: f a

 pure g pure h

 pure (.)

w :: f a v :: f (a -> b) u :: f (b -> c)

f (a -> b)f (b -> c)

f (a -> c)

g :: (b -> c)
h :: (a -> b)
x :: a

u :: f (c -> b -> a)

v :: f c

u <*> v :: f (b -> a)

w :: f b

u <*> v <*> w = f a

u :: f (c -> b -> a) v :: f c w :: f b

Applicatives
Methods (3B) 21 Young Won Lim

4/21/18

liftA2

liftA2 :: (a -> b -> c) -> f a -> f b -> f c

lift a binary function (a->b->c) to actions.

Some functors support an implementation of liftA2

that is more efficient than the default one.

liftA2 may have an efficient implementation

whereas fmap is an expensive operation,

sometimes better to use liftA2 than

to use fmap over the structure and then use <*>.

http://hackage.haskell.org/package/base-4.10.1.0/docs/Control-Applicative.html#v:liftA2

(pure g) <*> x <*> y

(<*>)

pure g

x

f g

liftA2

g

pure

f a

a
b

c

f b f c

(<*>)y z

pure

Applicatives
Methods (3B) 22 Young Won Lim

4/21/18

liftA2, <*>, fmap, <$>

fmap h x

fmapf a f b

h <$> x

<$>

h

g :: a -> b -> c

(pure g) <*> x <*> y

(<*>)

pure g

f g

liftA2

g

f a

a
b

c

f b
f c

(<*>)
f a f b

ha b

pure pure

liftA2 g x y

f a

f b f c

h :: a -> b

Applicatives
Methods (3B) 23 Young Won Lim

4/21/18

pure g <*> x <*> y = (fmap g x) <*> y

(pure g) <*> x <*> y

(<*>)

pure g

f g

liftA2

g

f a

a
b

c

f b
f c

(<*>)

pure pure

liftA2 g x y

f a

f b f c

(fmap g x) <*> y

fmap

g

(<*>)

f a

f b f c

g :: a -> b -> c g :: a -> b -> c

(g $ x) <*> y

$

g

(<*>)

f a

f b f c

Applicatives
Methods (3B) 24 Young Won Lim

4/21/18

liftA2

 liftA2 g x y

liftA2 :: (a -> b -> c) -> f a -> f b -> f c

g :: a -> b -> c

x :: f a

y :: f b

liftA2 g x y :: f c

 pure g <*> x <*> y

g :: a -> b -> c

x :: f a

y :: f b

z :: f c

pure g <*> x <*> y :: f c

https://wiki.haskell.org/Applicative_functor

(pure g) <*> x <*> y

(<*>)

pure g

f g

liftA2

g

f a

a
b

c

f b
f c

(<*>)

pure pure

liftA2 g x y

f a

f b f c

g :: a -> b -> c

Applicatives
Methods (3B) 25 Young Won Lim

4/21/18

liftA2

(a -> b -> c) -> (f a -> f b -> f c)

fmap :: (a -> b) -> (f a -> f b)

fmap2 :: Functor f => (a -> b -> c) -> (f a -> f b -> f c)

fmap2 h fa fb = undefined

h :: a -> b -> c

fa :: f a

fb :: f b

h :: a -> (b -> c)

fmap h :: f a -> f (b -> c)

fmap h fa :: f (b -> c)

http://www.openhaskell.com/lectures/applicative.html

Applicatives
Methods (3B) 26 Young Won Lim

4/21/18

liftA2

class Functor f => Applicative f where

 pure :: a -> f a

 (<*>) :: f (a -> b) -> f a -> f b

pure :: a -> f a

fmap :: (a -> b) -> f a -> f b

fmap2 :: (a -> b -> c) -> f a -> f b -> f c

liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b -> f c

liftA2 h fa fb = (h `fmap` fa) <*> fb

liftA2 h fa fb = h <$> fa <*> fb

(<$>) :: Functor f => (a -> b) -> f a -> f b

(<$>) = fmap

liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d

liftA3 h fa fb fc = ((h <$> fa) <*> fb) <*> fc

http://www.openhaskell.com/lectures/applicative.html

Applicatives
Methods (3B) 27 Young Won Lim

4/21/18

liftA2

liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b -> f c

liftA2 (+) (Just 5) (Just 6) = Just 11

<*> :: Applicative f => f (a -> b) -> f a -> f b

(Just (+5)) <*> (Just 6) = Just 11

let v1 = IO (Just (+5))

let v2 = IO (Just 6)

liftA2 (<*>) v1 v2 = IO (Just 11)

https://blog.ssanj.net/posts/2014-08-10-boosting-liftA2.html

Applicatives
Methods (3B) 28 Young Won Lim

4/21/18

<*> or liftA2 implementations

liftA2 :: (a -> b -> c) -> f a -> f b -> f c

A minimal complete definition :

either one of the two

1) pure and <*>

2) pure and liftA2

If it defines both, then they must behave the same

as their default definitions:

http://hackage.haskell.org/package/base-4.10.1.0/docs/Control-Applicative.html#v:liftA2

Applicatives
Methods (3B) 29 Young Won Lim

4/21/18

(<*>) = liftA2 id

liftA2 id x y = id <$> x <*> y = x <*> y

liftA2 id x y = x <*> y

liftA2 g x y = g <$> x <*> y

liftA2 g’’ x y = g’’ <$> x <*> y

liftA2 id x y = id <$> x <*> y = x <*> y

(<*>) = liftA2 id

http://hackage.haskell.org/package/base-4.10.1.0/docs/Control-Applicative.html#v:liftA2

liftA2

g’’

x

b -> c
b

c

y
z

pure pure

id b -> cb -> c

g :: a -> b -> c x :: f a y :: f b

id :: (b -> c) -> (b -> c) x :: f (b -> c) y :: f b

g’’ :: (b -> c) -> b -> c x :: f (b -> c) y :: f b

Applicatives
Methods (3B) 30 Young Won Lim

4/21/18

g’’ :: (b->c) -> b->c

ga
b

c

g’a b -> c

g :: a -> b -> c

g’ :: a -> (b -> c)

idb -> c b -> c id :: (b -> c) -> (b -> c)

view the function

as having one input only

consider the case

when a is (b -> c)

g’’b -> c
b

c g’’ :: (b -> c) -> (b -> c)

Then g’’ is the same as id

Applicatives
Methods (3B) 31 Young Won Lim

4/21/18

liftA2

Actually, using the liftA commands

we can pull results of applicative functors

into a scope where we can talk

exclusively about functor results c

and not about effects. f c

Note that functor results can also be functions. c

This scope is simply a function,

which contains the code that we used in the non-functorial setting.

liftA3

 (\x g h -> let y = g x in h y y)

 fx fg fh

The order of effects is entirely determined by the order of arguments to liftA3

.

http://hackage.haskell.org/package/base-4.10.1.0/docs/Control-Applicative.html#v:liftA2

Applicatives
Methods (3B) 32 Young Won Lim

4/21/18

liftA2

Consider the non-functorial expression:

x :: x

g :: x -> y

h :: y -> y -> z

let y = g x

in h y y

Very simple. Now we like to generalize this to

fx :: f x

fg :: f (x -> y)

fh :: f (y -> y -> z)

https://wiki.haskell.org/Applicative_functor

Applicatives
Methods (3B) 33 Young Won Lim

4/21/18

liftA2

However, we note that

let fy = fg <*> fx

in fh <*> fy <*> fy

runs the effect of fy

twice. E.g. if fy

writes something to the terminal then fh <*> fy <*> fy

writes twice. This could be intended, but how can we achieve, that the effect is run only once and
the result is used twice? Actually, using the liftA

commands we can pull results of applicative functors into a scope where we can talk exclusively
about functor results and not about effects. Note that functor results can also be functions. This
scope is simply a function, which contains the code that we used in the non-functorial setting.

liftA3

 (\x g h -> let y = g x in h y y)

 fx fg fh

The order of effects is entirely determined by the order of arguments to liftA3

.

https://wiki.haskell.org/Applicative_functor

Applicatives
Methods (3B) 34 Young Won Lim

4/21/18

liftA2(<*>)

 10

down vote

accepted

The wiki article says that liftA2 (<*>)

can be used to compose applicative functors.

It's easy to see how to use it from its type:

o :: (Applicative f, Applicative f1) =>

 f (f1 (a -> b)) -> f (f1 a) -> f (f1 b)

o = liftA2 (<*>)

https://stackoverflow.com/questions/12587195/examples-of-haskell-applicative-transformers

Applicatives
Methods (3B) 35 Young Won Lim

4/21/18

liftA2(<*>) Examples

So to if f is Maybe and f1 is [] we get:

> Just [(+1),(+6)] `o` Just [1, 6]

Just [2,7,7,12]

The other way around is:

> [Just (+1),Just (+6)] `o` [Just 1, Just 6]

[Just 2,Just 7,Just 7,Just 12]

https://stackoverflow.com/questions/12587195/examples-of-haskell-applicative-transformers

[Just (+1),Just (+6)] [Just 1, Just 6]

Just (+1) [Just 1, Just 6]

Just (+6) [Just 1, Just 6]

[(+1), (+6)] [1, 6]

(+1) [1, 6]

(+6) [1, 6]

Applicatives
Methods (3B) 36 Young Won Lim

4/21/18

LiftA2 (:)

your ex function is equivalent to liftA2 (:):

test1 = liftA2 (:) "abc" ["pqr", "xyz"]

To use (:) with deeper applicative stack

you need multiple applications of liftA2:

*Main> (liftA2 . liftA2) (:) (Just "abc") (Just ["pqr", "xyz"])

Just ["apqr","axyz","bpqr","bxyz","cpqr","cxyz"]

However it only works when both operands are equally deep.

So besides double liftA2 you should use pure to fix the level:

*Main> (liftA2 . liftA2) (:) (pure "abc") (Just ["pqr", "xyz"])

Just ["apqr","axyz","bpqr","bxyz","cpqr","cxyz"]

https://stackoverflow.com/questions/12587195/examples-of-haskell-applicative-transformers

Applicatives
Methods (3B) 37 Young Won Lim

4/21/18

<$> related operators

Functor map <$>

(<$>) :: Functor f => (a -> b) -> f a -> f b

(<$) :: Functor f => a -> f b -> f a

($>) :: Functor f => f a -> b -> f b

The <$> operator is just a synonym

for the fmap function from the Functor typeclass.

This function generalizes the map function for lists

to many other data types, such as Maybe, IO, and Map.

https://haskell-lang.org/tutorial/operators

Applicatives
Methods (3B) 38 Young Won Lim

4/21/18

<$> examples

#!/usr/bin/env stack

-- stack --resolver ghc-7.10.3 runghc

import Data.Monoid ((<>))

main :: IO ()

main = do

 putStrLn "Enter your year of birth"

 year <- read <$> getLine

 let age :: Int

 age = 2020 - year

 putStrLn $ "Age in 2020: " <> show age

https://haskell-lang.org/tutorial/operators

Applicatives
Methods (3B) 39 Young Won Lim

4/21/18

<$, $> operators

In addition, there are two additional operators provided

which replace a value inside a Functor

instead of applying a function.

This can be both more convenient in some cases,

as well as for some Functors be more efficient.

value <$ functor = const value <$> functor

functor $> value = const value <$> functor

x <$ y = y $> x

x $> y = y <$ x

https://haskell-lang.org/tutorial/operators

Applicatives
Methods (3B) 40 Young Won Lim

4/21/18

<*> related operators

Applicative function application <*>

(<*>) :: Applicative f => f (a -> b) -> f a -> f b

(*>) :: Applicative f => f a -> f b -> f b

(<*) :: Applicative f => f a -> f b -> f a

Commonly seen with <$>, <*> is an operator

that applies a wrapped function to a wrapped value.

It is part of the Applicative typeclass,

and is very often seen in code like the following:

foo <$> bar <*> baz

https://haskell-lang.org/tutorial/operators

Applicatives
Methods (3B) 41 Young Won Lim

4/21/18

<*> examples

For cases when you're dealing with a Monad, this is equivalent to:

do x <- bar

 y <- baz

 return (foo x y)

Other common examples including parsers and serialization libraries.

Here's an example you might see using the aeson package:

data Person = Person { name :: Text, age :: Int } deriving Show

-- We expect a JSON object, so we fail at any non-Object value.

instance FromJSON Person where

 parseJSON (Object v) = Person <$> v .: "name" <*> v .: "age"

 parseJSON _ = empty

https://haskell-lang.org/tutorial/operators

Applicatives
Methods (3B) 42 Young Won Lim

4/21/18

*> operator

To go along with this, we have two helper operators that are less frequently used:

 *> ignores the value from the first argument. It can be defined as:

 a1 *> a2 = (id <$ a1) <*> a2

 Or in do-notation:

 a1 *> a2 = do

 _ <- a1

 a2

 For Monads, this is completely equivalent to >>.

https://haskell-lang.org/tutorial/operators

Applicatives
Methods (3B) 43 Young Won Lim

4/21/18

<* operator

<* is the same thing in reverse: perform the first action then the second,

but only take the value from the first action.

Again, definitions in terms of <*> and do-notation:

(<*) = liftA2 const

a1 <* a2 = do

 res <- a1

 _ <- a2

 return res

https://haskell-lang.org/tutorial/operators

Applicatives
Methods (3B) 44 Young Won Lim

4/21/18

(*> v.s. >>) and (pure v.s. return)

(*>) :: Applicative f => f a -> f b -> f b

(>>) :: Monad m => m a -> m b -> m b

pure :: Applicative f => a -> f a

return :: Monad m => a -> m a

the constraint changes from Applicative to Monad.

(*>) in Applicative (>>) in Monad

pure in Applicative return in Monad

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Young Won Lim
4/21/18

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45

