Hybrid CORDIC 2.A Sine/Cosine Generator

20171007

Copyright (c) 2015 - 2017 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

The details moved to
https://en.wikiversity.org/wiki/Butterfly_Hardware_Implementations
•

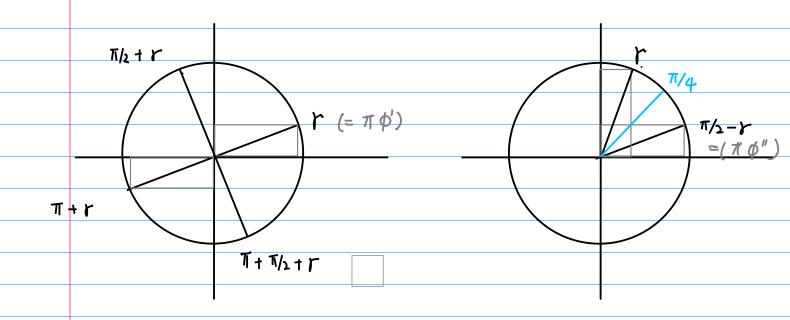
Wilson ROM based Sine/Cosine Generation

[24] Fu & Willson Sine / Cosine Generation

ROM-based

for high resolution, ROM size grows exponentially

quater-wave symmetry


 $\sin\theta = \cos\left(\frac{\pi}{2} - \theta\right)$

 \emptyset [0, 27] \longrightarrow [0, $\frac{\pi}{4}$]

conditionally interchanging inputs Xo & Yo
Conditionally interchanging and negating outputs X & Y

 $X = X_0 \cos \phi - Y_0 \sin \phi$ $Y = Y_0 \cos \phi + X_0 \sin \phi$

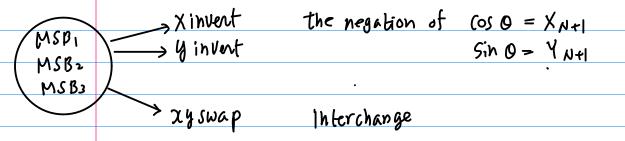
Madisetti VLSI arch

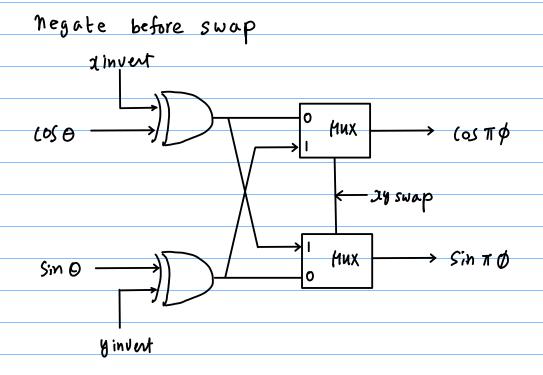
for frequency synthesis

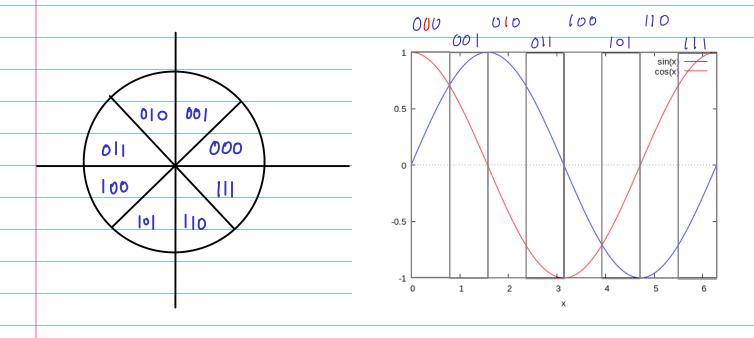
argument: Signed normalized by Π angle [-1, 1]binary representation of a radian angle required $[-1, 1] \rightarrow [0, \Pi/4] \rightarrow Sine/cosine$ generator ϕ $0 = \Pi \phi$

- (1) a phase accumulator \$ [+, 1]
- \bigcirc a radian converter $\bigcirc \bigcirc \bigcirc \bigcirc$
- 3 a sine/cosine generator Sin 0, cos o

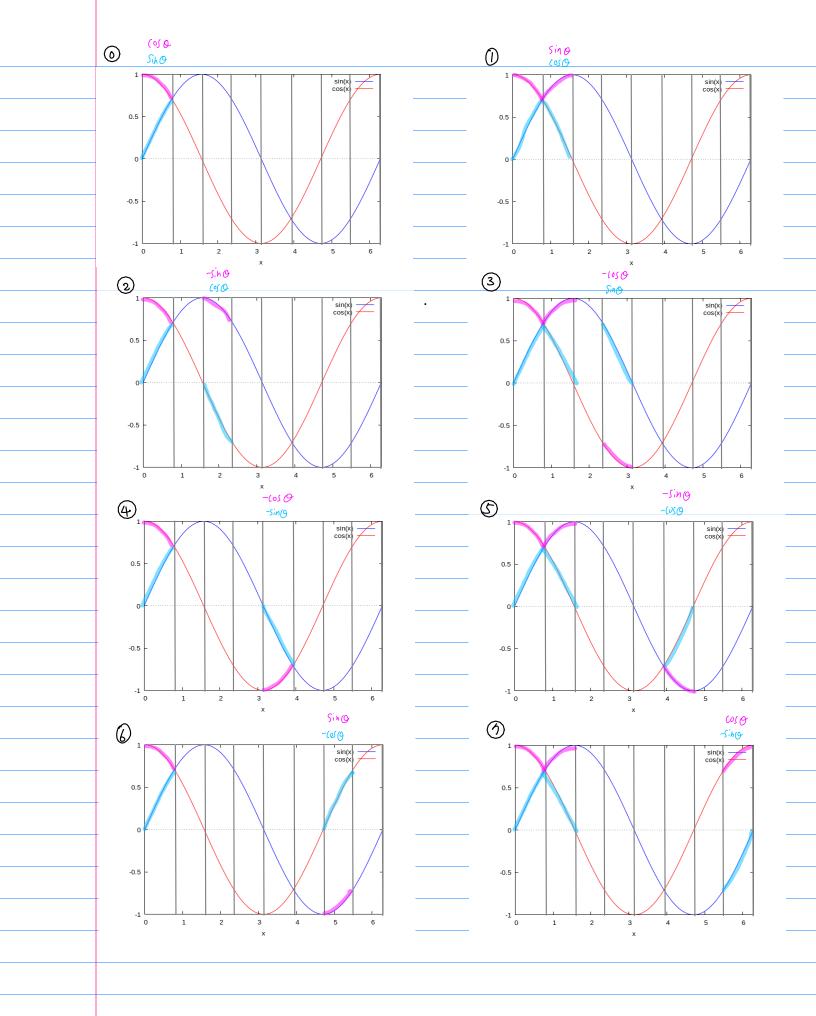
 an output stage Sin 0, cos o

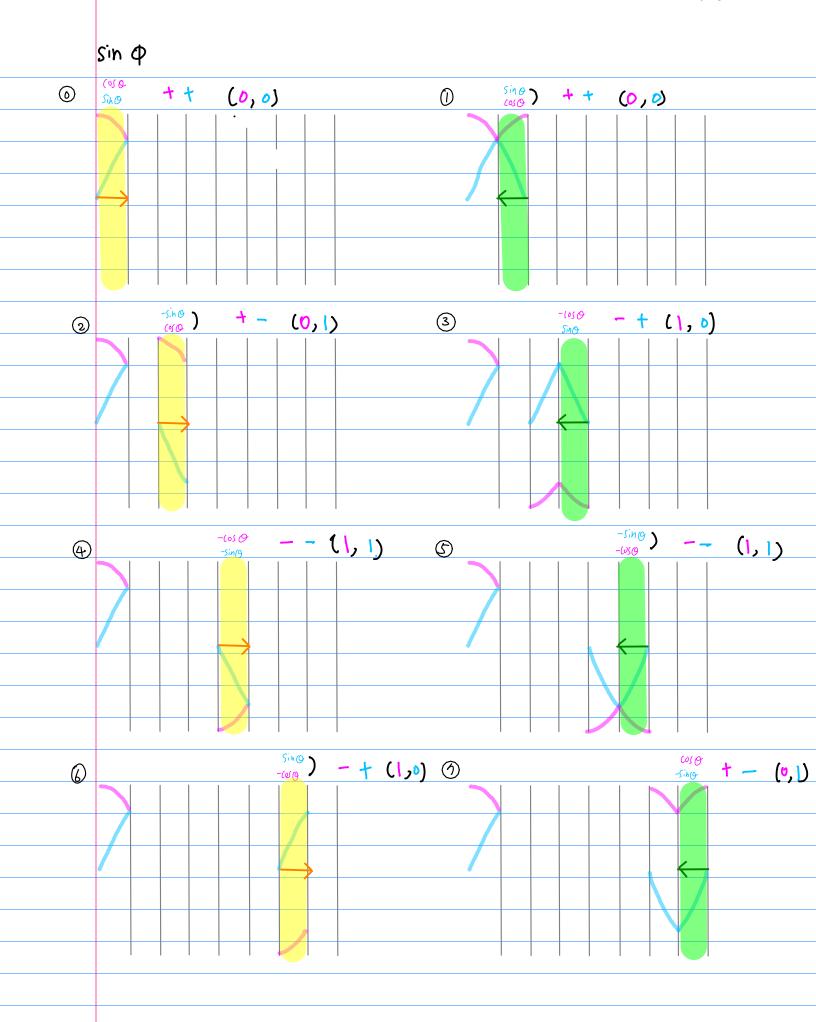

 Sin 70 cos o


 Sin 70 cos o


Madisetti & Willson, DDS Freq synthesizer
•

output stage
$$\sin Q \rightarrow \sin \pi \phi$$
 [- π , + π] $\cos Q \rightarrow \cos \pi \phi$


negation/interchange



		Cos	_			
		ws	ડામ.			
		Xinu	9 in U	swap	(OSTO	Sin 71 \$
	000	0	එ	0	(00	Siho
	001	0	0	1	sino	ে এ
	0 10	O			-sin O	COSO
	0		0	O	-1050	Sino
	1 00	1	l	0	-(os O	-sin(9
	0	(-sing	-6050
	L 1 0	l	0	1	Sino	-(016)
		0		D	coso	-sing

				r-1+ 1	C = 1	
000	Xinv O	9 in U	Swap	(°ST Ø	Sin 71 p	
001	0	0		(os o Sin o	Sih O	
0 1 0	0		<u>'</u>	-sin O	(હિં	
011		0	0	-los O	Sino	
100	<u> </u>	-	0	-(os O	-sin(9	
0			<u> </u>	-sing	-(050	
110	1	0	1	Sino	-(20	+
1 / 1	0		0	COSO	-sing	
	0	O				
	C) 0				
	0	1				
		0				
	1	ı				
	l	0				
	0 (0 ()			
	0 1	1 (
		.) 			
	\ () 0	<u>. </u>			
		J	-			

Madisetti & Willson, DDS Freq synthesizer

$$0 = \sum_{k=1}^{N} b_k O_k$$

$$0k = 2^{-k}$$

$$\theta$$
 is constrained to be positive $b_0 = 0$

$$0 = \sum_{k=1}^{N} b_k 2^{-k} = \phi_0 + \sum_{k=2}^{NH} r_k 2^{-k}$$

F subrotation by 2-k

2 equal F half rotations by 2-k-1

O subrotation

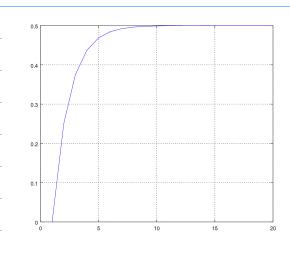
2 equal opposite half rotations by 12-k-1

Binary Representation

 $b_k = 1$: rotation by 2-k $b_k = 0$; Zero rotation

b-th rotation

Fixed rotation by 2^{-k-1} Light Position of bk = 1Meg rotation of bk = 0


Combining all the fixed rotations

initial fixed rotation

		bi	b2	þ3	bn
		2-1	2-2	2 ⁻³	2 ^{-N}
C		·			
tixed	\Rightarrow	+ 2 ⁻²	+ 2 ⁻³	+ 2 ⁻⁴	+ 2-4-1
		(b ₁ =1)	(b2=1)	(b3=1)	(pn=1)
		(b1=1) +2-5	+2-3	+2-4	(b _N =1) +2-N-1
				_	
		(b1=0)	$(b_2 = 0)$	$(b_3=0)$	$(b_N = 0)$
		ر - ع ع	-2-3	-2-4	$\begin{pmatrix} b_{N} = 0 \end{pmatrix}$ -2^{-N+}
			~	~	
	•				

$$\phi_{v} = \frac{1}{2^{v}} + \frac{1}{2^{3}} + \cdots + \frac{1}{2^{n+1}}$$

$$= \frac{\frac{1}{2^2}\left(\left|-\frac{1}{2}y\right|\right)}{\left(\left|-\frac{1}{2}y\right|\right)} = \frac{1}{2}\left(\left|-\frac{1}{2}y\right|\right) = \frac{2}{2} - \frac{2y+1}{2}$$

Signed Digit Recoding

the rotation after recoding

— a fixed initial rotation ϕ_o

a sequence of \oplus/\ominus rotations

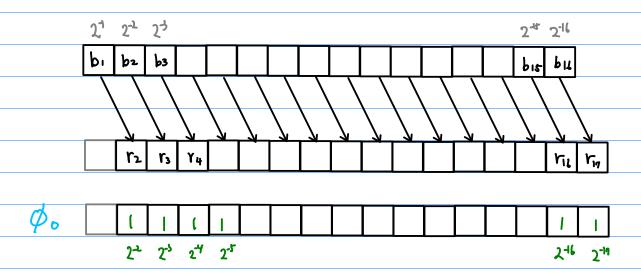
$$bk = 1$$
 + 2^{-k-1} rotation
 $bk = 0$ - 2^{-k-1} rotation

$$Y_{R} = (2b_{R-1} - 1)$$

$$2 \cdot | -1 = + | b_{R-1} = 1 \longrightarrow Y_{R} = + |$$

$$2 \cdot | -1 = - | b_{R-1} = 0 \longrightarrow Y_{R} = - |$$

The recoding need not be explicitly penformed


Simply replacing be = 0 with -1

This recoding maintains

a constant saling factor |

$$0 = \sum_{k=1}^{N} b_{k} 2^{-k} = \phi_{0} + \sum_{k=2}^{N+1} r_{k} 2^{-k}$$

Binary Representation { be }

Signed Digit Recoding { Tk }

The Scaling K.

The initial rotation ϕ .

rotation Starting point $(X_0, Y_0) = (K \cos \phi_0, K \sin \phi)$

- fixed
- no error buildup
- rotation direction

immediately obtained from the binary representation immediately obtained from the binary representation

the subangles $\Theta_k = 2^{-k}$ used in recoding the subangles $\Theta_k = \tan^2(2^{-k})$ used in CORDIC

tan Ok multipliers used

in the first few subrotation stages

Cannot be implemented

OS a Simple Shift-and-add Operations

-> ROM Implementation

Veduced Chip area higher operating Speed.

Architecture

	phase accumulator	$\phi \in [1,+1]$
(2)	radian conventer	Ø→Ø∈[0,4]
3	Sine/cosine generator	$Sin(\Theta)$ (0)
	J J	

(4) Out put Stage $Sin(\pi\phi)$ (0) $(\pi\phi)$

Overflowing 2's complement accumulator

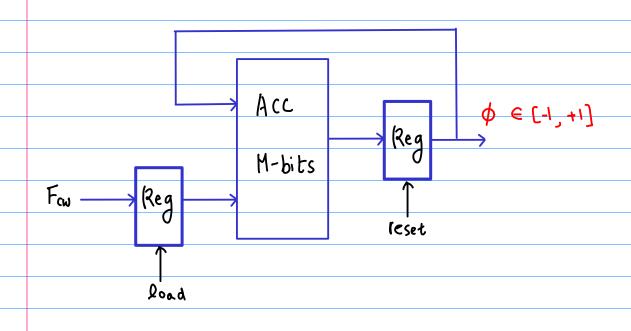
normalized by TI angle ϕ

need radian angle 0 ∈ [0,]

0 < 0 < 1 rad

N-bit binary representation of O

controls the direction of subrotation


N-bit precision of cos 0 & sin 0

Out put stage $\Theta \rightarrow \Pi \Phi$

 $\sin \Theta \rightarrow \sin \pi \phi$

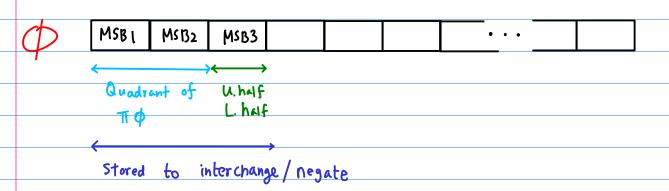
 $\phi \Gamma z \circ j \leftarrow 0 z \circ j$

phase accumulator

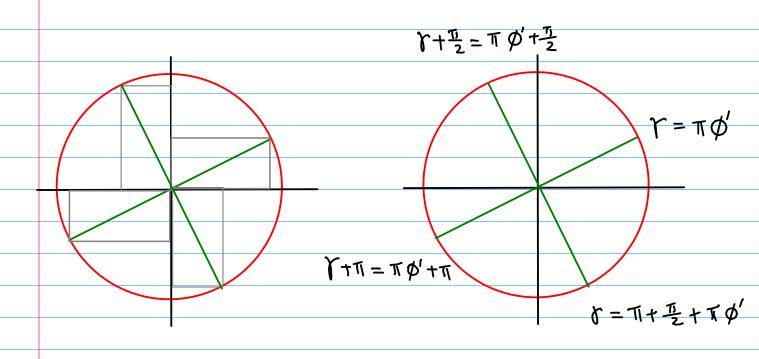
M-bit adder

repeatedly increments the phase angle

by Fow at each clock cycle

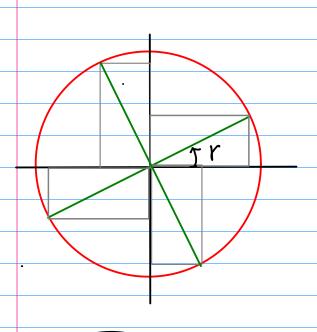

frequency control word

at time n, $\phi = n F_{cw}/2M$


$$\cos \phi = \cos (nF_{cw}/2^n)$$

 $\sin \phi = \sin (nF_{cw}/2^n)$

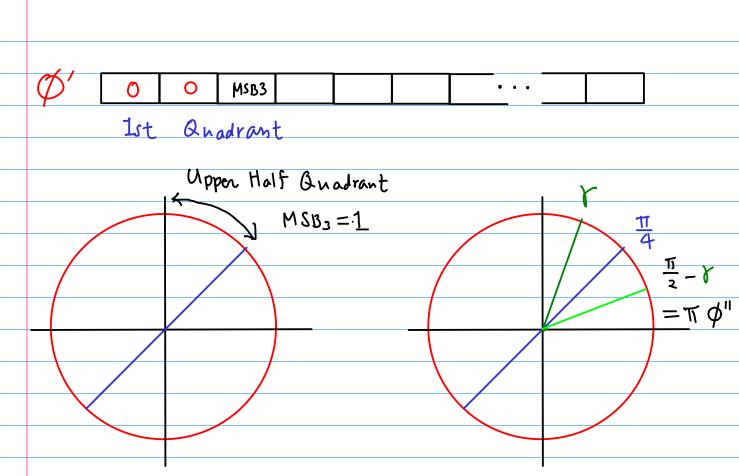
Radian Conventer


normalized angle \$

Quadrant Symmetry

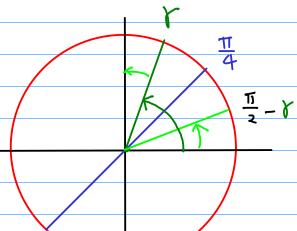
 $\uparrow + \pi = \qquad \qquad \uparrow + \frac{3\pi}{2} =$ $\pi \phi' + \pi \qquad \qquad \pi \phi' + \frac{3\pi}{2}$

10

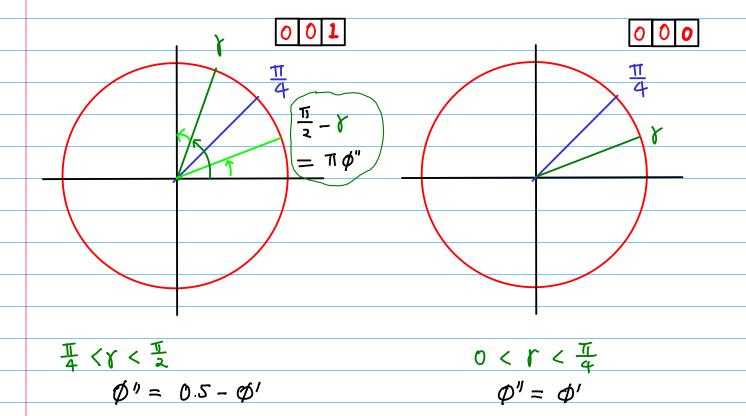

1 1

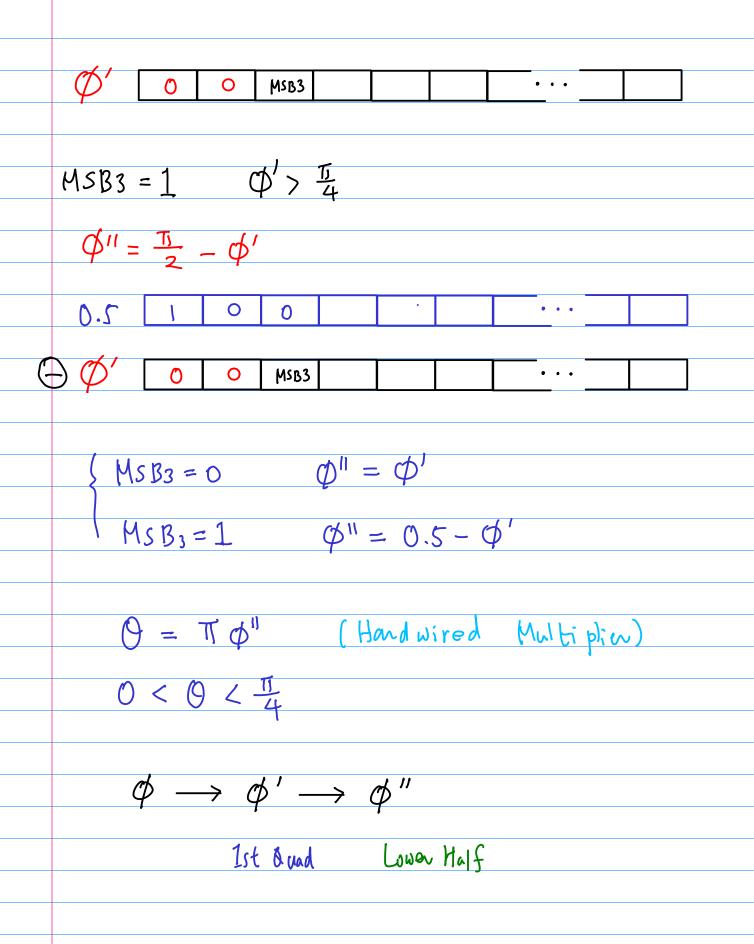
0 0

$$0 = \pi \phi \longrightarrow 0' = \pi \phi'$$


$$\varphi \in [-\pi, +\pi] \longrightarrow \varphi = [0, \frac{\pi}{2}]$$

$$\varphi \in [-1, +1] \longrightarrow \varphi' = [0, 0.5]$$




$$(OS r = Sin(\frac{\pi}{2} - r))$$

$$Sin r = cos(\frac{\pi}{2} - r)$$

T/4 Mirror

* radian converter

Sine / Cosine Generator

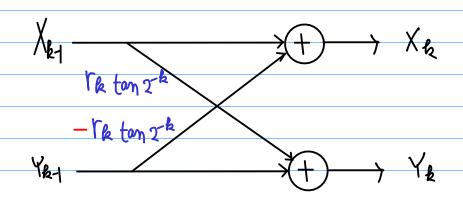
given angle
$$O$$
 (in radian) $0 \le O \le \pi/4$ < 1
Compute cos O , Sin O 0.785398163

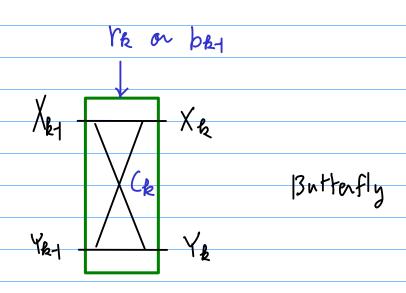
$$\begin{bmatrix} X_0 \\ Y_0 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \phi & \cos \theta \end{bmatrix} \begin{bmatrix} X_0 \\ Y_0 \end{bmatrix}$$

$$= \cos \left[1 & -\tan \theta \\ \tan \theta & 1 \end{bmatrix} \begin{bmatrix} X_0 \\ Y_0 \end{bmatrix}$$

$$= \cos \left[1 & -\tan \theta \\ \tan \theta & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Suppose:
$$\Theta$$
 as a sequence of sub-rotation $\{\Theta_i\}$ the sub-rotation angles are \underline{k} -nown a priori


then
$$\theta = \sigma_0 \theta_0 + \sigma_1 \theta_1 + \cdots + \sigma_N \theta_N$$


$$0 = \sigma_0 \theta_0 + \sigma_1 \theta_1 + \cdots + \sigma_N \theta_N$$

$$\sigma_R = \{-1, 0, +1\}$$

$$\begin{bmatrix} X_0 \\ -t_{0} & V_{0} \\ Y_{0} \end{bmatrix} = \begin{bmatrix} 1 & -t_{0} & V_{0} \\ t_{0} & V_{0} \\ -t_{0} & V_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & V_{0} \\ -t_{0} & V_{0} \\ -t_{0} & V_{0} \end{bmatrix} \begin{bmatrix} X_0 \\ Y_0 \end{bmatrix}$$

Subrotation

