

$$
a \rightarrow b \rightarrow a
$$

$$
b \rightarrow a \rightarrow b
$$

$$
a \longrightarrow a
$$

$$
\begin{aligned}
& a\left[\begin{array}{ll}
a & b \\
1 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]
\end{aligned}
$$

Copyright (c) 2015-2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Relation Examples

$$
\begin{aligned}
& R_{1} \in\{(1, a),(2, b),(3, a), \cdot(3, \dot{b})\} \\
& R_{2} \in\{(a, x),(a, y),(b, y),(b, z)\}
\end{aligned}
$$

$\left(\begin{array}{l}(2, \eta) \\ \hline\end{array}\right.$
(j, h)

R

Composite Relation Examples

$$
\begin{aligned}
& R_{1} \in\{(1, a),(2, b),(3, a),(3, b)\} \\
& R_{2} \in\{(a, x),(a, y),(b, y),(b, z)\}
\end{aligned}
$$

$$
R_{2} \circ R_{1} \in\{(1, x),(1, y),(2, y),(2, z),(3, x),(3, y),(3, z)\}
$$

Composite Relation Examples

$R_{1} \in\{(1, a),(2, b),(3, a),(3, b)\}$
$R_{2} \in\{(a, x),(a, y),(b, y),(b, z)\}$

$$
A_{1}={ }_{2}^{1}\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right] \quad A_{2}={ }_{\mathrm{b}}^{\mathrm{a}}\left[\begin{array}{ccc}
x & y & z \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

$$
R_{2} \circ R_{1} \in
$$

$$
\{(1, x),(1, y),(2, y),(2, z),(3, x),(3, y),(3, z)\}
$$

$A_{1} A_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]=\begin{array}{r}1 \\ 2\end{array}\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 1\end{array}\right]$

Matrix of a Relation

$$
\begin{array}{ll}
R_{1} \in\{(1, a),(2, b),(3, a),(3, b)\} & A_{1}=\begin{array}{l}
2 \\
3
\end{array}\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right] \\
R_{2} \in\{(a, x),(a, y),(b, y),(b, z)\} & A_{2}={ }_{b}^{a}\left[\begin{array}{ccc}
x & y & z \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] \\
R_{2} \circ R_{1} \in\{(1, x),(1, y),(2, y),(2, z),(3, x),(3, y),(3, z)\}
\end{array}
$$

$$
A_{1} A_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]=\underset{2}{1}\left[\begin{array}{lll}
x & y & z \\
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 2 & 1
\end{array}\right]
$$

Composite Relation Properties

Composite Relation Examples

$$
\begin{aligned}
& R_{1} \in\{(1, a),(2, b),(3, a),(3, b)\} \\
& R_{2} \in\{(a, x),(a, y),(b, y),(b, z)\} \\
& R_{2} \circ R_{1} \in\{(1, x),(1, y),(2, y),(2, z),(3, x),(3, y),(3, z)\} \\
& A_{1}=\begin{array}{r}
1 \\
2 \\
3
\end{array}\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right] \quad A_{2}={ }_{b}^{a}\left[\begin{array}{ccc}
x & y & z \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] \quad A_{1} A_{2}=\left[\begin{array}{lll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& R_{1}=\{(1, a),(2, b),(3, a),(3, b)\} \\
& R_{2}=\{(a, x),(a, y),(b, y),(b, z)\} \\
& \left.A_{1}=2 \cdot \begin{array}{cc}
a & b \\
3 & \cdot\left[\begin{array}{cc}
4 & 4 \\
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]
\end{array}\right] \\
& A_{2}=b\left[\begin{array}{lll}
x & y & z \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] \\
& R_{2} \circ R_{1} \quad A_{1} \cdot A_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] \\
& \left\{\begin{array}{l}
(1, x),(1 . y),(2, y),(2, z),\} \\
(3,1),(3,2),(3, z)
\end{array}\right\}={ }_{2}\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 2 & 1
\end{array}\right]
\end{aligned}
$$

Composite Relation Property Examples

$$
\begin{aligned}
& A_{1} A_{2} \Rightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 2 & 1
\end{array}\right] \\
& A_{1}=\begin{array}{l}
1 \\
2 \\
3
\end{array}\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right] \\
& A_{2}={ }_{b}\left[\begin{array}{lll}
x & y & z \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{array}{ll}
i \in\{1,2,3\} & s \in\{0,1\} \\
k \in\{x, y, z\} & t \in\{0,1\} \\
& u \in\{0,1\} \\
& v \in\{0,1\}
\end{array}
$$

$$
\begin{aligned}
& s u+t v \neq 0 \quad \text { nonzero }(i, k)^{t h} \text { element of } A_{1} A_{2} \\
& (s u \neq 0) \vee(t v \neq 0) \\
& (s=1 \wedge u=1) \vee(t=1 \wedge v=1) \\
& \\
& \longmapsto(i, k) \in R_{2} \circ R_{1}
\end{aligned}
$$

Sufficient Part

$$
\begin{aligned}
& A_{1} A_{2} \Rightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 2 & 1
\end{array}\right] \\
& A_{1}=\begin{array}{l}
1 \\
2 \\
3
\end{array}\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right] \\
& A_{2}={ }_{b}\left[\begin{array}{lll}
x & y & z \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] \\
& \begin{array}{ll}
s u=1 & t v=1 \\
\begin{array}{ll}
(s=1) \\
(u=1)
\end{array} & \begin{array}{l}
(t=1) \\
(v=1) \\
(i, a) \in R_{1} \\
(a, k) \in R_{2}
\end{array} \\
\hline(i, k) \in R_{2} \circ R_{1} & \begin{array}{l}
(i, b) \in R_{1} \\
(b, k) \in R_{2} \\
(i, k) \in R_{2} \circ R_{1}
\end{array}
\end{array}
\end{aligned}
$$

Necessary Part

$$
\begin{aligned}
& A_{1} A_{2} \Longrightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 2 & 1
\end{array}\right] \\
& A_{1}=\begin{array}{l}
1 \\
2
\end{array}\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right] \\
& A_{2}={ }_{b}\left[\begin{array}{lll}
x & y & z \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] \\
& i \in\{1,2,3\} \quad s \in\{0,1\} \\
& k \in\{x, y, z\} \quad t \in\{0,1\} \\
& u \in\{0,1\} \\
& v \in\{0,1\} \\
& (i, a) \in R_{1} \quad(i, b) \in R_{1} \\
& (a, k) \in R_{2} \quad(b, k) \in R_{2} \\
& \begin{array}{cc}
\hline(s=1) & \left(\begin{array}{c}
t=1) \\
(u=1) \\
(v=1) \\
\hline s u=1
\end{array}\right. \\
\hline t v=1
\end{array} \\
& s u+t v \neq 0 \quad\left(a_{i k} \neq 0\right)
\end{aligned}
$$

Transitivity Test Examples

$R \in\{(a, a),(b, b),(c, c),(d, d),(b, c),(c, b)\} \quad$ the same relation

$$
\begin{aligned}
& R \circ R \in\{(a, a),(b, b),(c, c),(b, c),(c, b)\} \\
& A=\underset{c}{a} \mathrm{~b}\left[\begin{array}{llll}
a & b_{1} & c & d \\
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& A A=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\frac{\mathrm{b}}{\mathrm{~b}}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
\mathrm{c} & 2 & 2 & 0 \\
0 & 2 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{cic}_{\substack{(8 i 2) \\
b \rightarrow b}}^{\substack{1 \\
i \rightarrow c \\
i \rightarrow c d}} \\
& \operatorname{bich}^{2} \rightarrow d \lambda d \\
& (a) \rightarrow(a) \rightarrow(a) \quad a \rightarrow a \\
& (b) \rightarrow(b) \rightarrow(b) \\
& b \rightarrow b \\
& \begin{array}{l}
b \rightarrow c \\
c \rightarrow b \\
c \rightarrow c
\end{array} \\
& c \rightarrow c \\
& (\% 04)\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 4 & 4 & 0 \\
0 & 4 & 4 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& (\% 05)\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 8 & 8 & 0 \\
0 & 8 & 8 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \text { (o) } \\
& \text { (c) } \rightarrow(c) \\
& b \rightarrow b \\
& \begin{array}{l}
b \rightarrow c \\
c \rightarrow b \\
c
\end{array} \\
& c \rightarrow c \\
& (d) \rightarrow \text { (d) } \rightarrow \text { (d) } \\
& d \rightarrow d
\end{aligned}
$$

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

$$
R=\{(1,1),(1,2),(2,3)\}
$$

(1) \rightarrow (1) \rightarrow (1) $\quad 1 \rightarrow 1$
$(1) \rightarrow(2) \rightarrow(3) \quad 1+3$
(2) $\rightarrow(3) \quad x \quad x$

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \\
& \operatorname{lo}^{\rightarrow} x \\
& 1 \rightarrow 2)+3 \\
& A A=\left[\begin{array}{lll}
1 & (1) & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
(3)
\end{array}\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & (3) \\
0 & 0 & (1) \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right. \\
& \text { (1) } \rightarrow \text { (2) } \\
& \text { (2) } \rightarrow \text { (3) } \\
& A A A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& A+A A+A A A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Transitivity Test

$$
\begin{aligned}
& A=\begin{array}{r}
1 \\
2 \\
3 \\
4
\end{array}\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { nonzero }(i, j)^{\text {th }} \text { element of } A^{2} \Rightarrow \quad \text { nonzero }(i, j)^{\text {th }} \text { element of } A \\
& \begin{array}{l|l|l|l}
\begin{array}{l}
a e=1 \\
(2,1) \in R \\
(1,2) \in R
\end{array} & \begin{array}{l}
b f=1 \\
(2,2) \in R \\
(2,2) \in R
\end{array} & \begin{array}{l}
c g=1 \\
(2,3) \in R \\
(3,2) \in R
\end{array} & \begin{array}{l}
\text { dh=1} \\
(2,4) \in R \\
(4,2) \in R
\end{array} \\
\hline
\end{array} \quad \square(2,2) \in R
\end{aligned}
$$

Binary Relations and Digraphs

$A=\{0,1,2,3,4,5,6\}$
$R \subset A \times A$
$R=\{(a, b) \mid a \equiv b(\bmod 3)\}$

http://www.math.fsu.edu/~pkirby/mad2104/SlideShow/s7_1.pdf

Reflexive Relation

$$
\begin{aligned}
& A=\{0,1,2,3,4,5,6\} \\
& R \subset A \times A \\
& R=\{(a, b) \mid a \equiv b(\bmod 3)\}
\end{aligned}
$$

Symmetric Relation

$$
\begin{aligned}
& A=\{0,1,2,3,4,5,6\} \\
& R \subset A \times A \\
& R=\{(a, b) \mid a \equiv b(\bmod 3)\}
\end{aligned}
$$

Transitive Relation

$$
\begin{aligned}
& A=\{0,1,2,3,4,5,6\} \\
& R \subset A \times A \\
& R=\{(a, b) \mid a \equiv b(\bmod 3)\}
\end{aligned}
$$

	0	1	2	3	4			6
	\| 3	0	0	3	0			3
1	0	2	0	0	2			0
2	0	0	2	0	0			0
$R R=3$	3	0	0	3	0			3
4	0	2	0	0	2			0
5	0	0	2	0	0			0
6	3	0	0	3				3

Transitive Relation

$$
\begin{aligned}
& \text { (\%i2) R:matrix(} \\
& \text { [1, } 0,0,1,0,0,1] \text {, } \\
& {[0,1,0,0,1,0,0] \text {, }} \\
& \text { [} 0,0,1,0,0,1,0] \text {, } \\
& \text { [1,0,0,1, } 0,0,1] \text {, } \\
& \text { [0, 1, 0, 0, 1, 0, 0], } \\
& {[0,0,1,0,0,1,0] \text {, }} \\
& \text { [1, 0, } 0,1,0,0,1] \\
& (\% 02)\left[\begin{array}{lllllll}
1 & \theta & \theta & 1 & \theta & \theta & 1 \\
\theta & 1 & \theta & \theta & 1 & \theta & \theta \\
\theta & \theta & 1 & \theta & \theta & 1 & \theta \\
1 & \theta & \theta & 1 & \theta & \theta & 1 \\
0 & 1 & \theta & \theta & 1 & \theta & \theta \\
\theta & \theta & 1 & \theta & \theta & 1 & \theta \\
1 & \theta & \theta & 1 & \theta & \theta & 1
\end{array}\right]
\end{aligned}
$$

(\%14) R2: R.R;
(\%04) $\left[\begin{array}{lllllll}3 & 0 & 0 & 3 & 0 & 0 & 3 \\ 0 & 2 & 0 & 0 & 2 & 0 & 0 \\ 0 & \theta & 2 & \theta & \theta & 2 & \theta \\ 3 & \theta & \theta & 3 & \theta & \theta & 3 \\ 0 & 2 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 2 & 0 \\ 3 & \theta & \theta & 3 & \theta & \theta & 3\end{array}\right]$
(\%17) R3: R.R.R;

(\%ill)
$(\% 011)\left[\begin{array}{ccccccc}27 & 0 & 0 & 27 & 0 & 0 & 27 \\ 0 & 8 & 0 & 0 & 8 & 0 & 0 \\ 0 & 0 & 8 & 0 & 0 & 8 & 0 \\ 27 & 0 & 0 & 27 & 0 & 0 & 27 \\ 0 & 8 & 0 & 0 & 8 & 0 & 0 \\ 0 & 0 & 8 & 0 & 0 & 8 & 0 \\ 27 & 0 & 0 & 27 & 0 & 0 & 27\end{array}\right]$
(\%i12)
(\%i14)
$(\% 012)\left[\begin{array}{ccccccc}81 & 0 & 0 & 81 & 0 & 0 & 81 \\ 0 & 16 & 0 & 0 & 16 & 0 & 0 \\ 0 & 0 & 16 & 0 & 0 & 16 & 0 \\ 81 & 0 & 0 & 81 & 0 & 0 & 81 \\ 0 & 16 & 0 & 0 & 16 & 0 & 0 \\ 0 & 0 & 16 & 0 & 0 & 16 & 0 \\ 81 & 0 & 0 & 81 & 0 & 0 & 81\end{array}\right]$
\qquad
(\%i13)
$(\% 013)\left[\begin{array}{ccccccc}243 & 0 & 0 & 243 & 0 & 0 & 243 \\ 0 & 32 & 0 & 0 & 32 & 0 & 0 \\ 0 & 0 & 32 & 0 & 0 & 32 & 0 \\ 243 & 0 & 0 & 243 & 0 & 0 & 243 \\ 0 & 32 & 0 & 0 & 32 & 0 & 0 \\ 0 & 0 & 32 & 0 & 0 & 32 & 0 \\ 243 & 0 & 0 & 243 & 0 & 0 & 243\end{array}\right]$

Reflexive and Symmetric Closure

Not Reflexive R

	1	2	3	4	5
1					
2					
3					
4					
5					

Not Symmetric R

the minimal addition

	1	2	3	4	5
1					
2					
3					
4					
5					

the minimal addition

$$
\begin{array}{|l|l|l|l|l|l|}
\hline & 1 & 2 & 3 & 4 & 5 \\
\hline 1 & & & & & \\
\hline 2 & & & & & \\
\hline 3 & & & & & \\
\hline 4 & & & & & \\
\hline 5 & & & & & \\
\hline
\end{array}
$$

Reflexive Closure of R

Symmetric Closure of R

Transitive Closure Examples

(\%i9) A: matrix
$[1,0,1]$,
$[0,1,0]$,
$[1,1,0]$
$(\% 09) \quad\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0\end{array}\right]$
(\%i11) A2: A.A;
(\%011) $\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$
(\%i12) A3: A.A.A;
(\%012) $\left[\begin{array}{lll}3 & 2 & 2 \\ 0 & 1 & \theta \\ 2 & 2 & 1\end{array}\right]$
(\%i13) $A+A 2+A 3 ;$
transitive

$\left[\begin{array}{lll}6 & 3 & 4 \\ 0 & 3 & 0 \\ 4 & 4 & 2\end{array}\right]$
(\%013) $\left[\begin{array}{lll}6 & 3 & 4 \\ 0 & 3 & \theta \\ 4 & 4 & 2\end{array}\right]$

$$
A+A 2+A 3=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]+\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]+\left[\begin{array}{lll}
3 & 2 & 2 \\
0 & 1 & 0 \\
2 & 2 & 1
\end{array}\right]
$$

Transitive Closure

$$
\begin{aligned}
R^{*} & =\cup_{n=1}^{\infty} R^{n} \\
& =R \cup R^{2} \cup \cdots \cup R^{(n)}
\end{aligned}
$$

$$
\begin{aligned}
& A_{\text {then non-zero }}^{A^{(2} \vee A^{2}+\cdots+A^{n}} \rightarrow 1 \\
& \rightarrow \text { transitive closure }
\end{aligned}
$$

Equivalence Relation

$$
\begin{aligned}
& A=\{0,1,2,3,4,5,6,7,8\} \\
& R \subset A \times A \\
& R=\{(a, b) \mid a \equiv b(\bmod 3)\} \\
& (1,1) \in R
\end{aligned} \begin{array}{ll}
(1,4) \in R & 1 \equiv 4(\bmod 3) \\
(4,1) \in R & 4 \equiv 1(\bmod 3) \\
(1,4) \in R & 1 \equiv 4(\bmod 3) \\
(4,7) \in R & 4 \equiv 7(\bmod 3) \\
(1,7) \in R & 1 \equiv 7(\bmod 3)
\end{array}
$$

Equivalence Relation Examples

$$
\begin{aligned}
& A=\{0,1,2,3,4,5,6,7,8\} \\
& R \subset A \times A \\
& R=\{(a, b) \mid a \equiv b(\bmod 3)\}
\end{aligned}
$$

$$
R R=\begin{aligned}
& 0 \\
& 1 \\
& 2 \\
& 2 \\
& 3 \\
& 5 \\
& 6 \\
& 7 \\
& 7 \\
& 8
\end{aligned}\left|\begin{array}{lllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right|
$$

Equivalence Classes

Class \#1

Class \#2

$$
\left.\begin{array}{l}
1 \\
4 \\
7 \\
7
\end{array} \begin{array}{lll}
1 & 4 & 7 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

partition $P_{1}=\{0,3,6\} \quad$ partition $P_{2}=\{1,4,7\}$

Class \#3

partition $P_{3}=\{2,5,8\}$

Equivalence Class

$$
\begin{align*}
& A=Z^{+}=\{0,1,2,3,4,5,6, \cdots\} \\
& R \subset A \times A \\
& R=\{(a, b) \mid a \equiv b(\bmod 3)\} \\
& \{0,3,6,9, \cdots\} \\
& \{1,4,7,10, \cdots\} \\
& \{2,5,8,11, \cdots\}
\end{align*}
$$

References

[1] http://en.wikipedia.org/
[2]

The Growth of Functions (2A)

Copyright (c) 2015-2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Functions and Ranges

$$
\begin{aligned}
& x^{2}+2 x+1 \\
& \left.x^{2}\right) \quad \Theta\left(x^{2}\right) \\
& 2 x \\
& 1
\end{aligned}
$$

All are distinguishable

Medium Range

similar

Indistinguishable

$$
\text { for } x>-0.5 \quad x^{2}<x^{2}+2 x+1
$$

Functions and Ranges

$2 \cdot x^{2}$
$x^{2}+2 x+1$

$$
\begin{aligned}
& B_{1}=[0,5] \\
& B_{2}=[0,100] \\
& B_{3}=[0,500]
\end{aligned}
$$

distinguishable

Medium Range, $2 x^{2}$
distinguishable

Functions (2A)

Functions and Ranges

Functions (2A)

Medium Range, $10 x^{2}$

distinguishable

Functions (2A)
distinguishable

Functions (2A)

Functions and Ranges

$$
\begin{array}{ll}
10 \cdot x & D_{1}=[0,5] \\
x^{2}+2 x+1 & D_{2}=[0,100] \\
x^{2} & D_{3}=[0,500]
\end{array}
$$

Small Range, 10x

Medium Range, 10x

Functions (2A)

indistinguishable

Functions (2A)

Big-O Definition

```
Let f and g be functions ( }Z->R\mathrm{ or R }->\textrm{R}
    from the set of integers or
        the set of real numbers
    to the set of real numbers.
We say f(x) is O(g(x)) "f(x) is big-oh of g(x)"
    If there are constants C and k such that
    |f(x)| \leqC|g(x)| whenever x > k.
g(x): upper bound of f(x)
```


Big- Ω Definition

$$
\begin{aligned}
& \text { Let } f \text { and } g \text { be functions } \quad(Z \rightarrow R \text { or } R \rightarrow R) \\
& \text { from the set of integers or } \\
& \text { the set of real numbers } \\
& \text { to the set of real numbers. }
\end{aligned}
$$

We say $f(x)$ is $\Omega(g(x)) \quad$ " $f(x)$ is big-omega of $g(x)$ "
If there are constants C and k such that

$$
\mathrm{C}|\mathrm{~g}(\mathrm{x})| \leq|\mathrm{f}(\mathrm{x})| \quad \text { whenever } \mathrm{x}>\mathrm{k} \text {. }
$$

$g(x)$: lower bound of $f(x)$

Big-O Definition

$$
\begin{aligned}
& \text { for } k<x \\
& f(x) \leq C|g(x)|
\end{aligned}
$$

$$
f(x) \text { is } \boldsymbol{O}(g(x))
$$

$g(x)$: upper bound of $f(x)$
$g(x)$ has a simpler form than $f(x)$
is usually a single term

Big- Ω Definition

$$
\begin{aligned}
& \text { for } k<x \\
& f(x) \geq C|g(x)|
\end{aligned}
$$

$$
f(x) \text { is } \boldsymbol{\Omega}(g(x))
$$

$g(x)$: Iower bound of $f(x)$
$g(x)$ has a simpler form than $f(x)$
is usually a single term

Big-O definition

for $k<x$

$$
f(x) \leq C|g(x)| \Leftrightarrow f(x) \text { is } \boldsymbol{O}(g(x))
$$

$$
C|g(x)| \leq f(x) \quad \Leftrightarrow f(x) \text { is } \boldsymbol{\Omega}(g(x))
$$

$C_{1}|g(x)| \leq f(x) \leq C_{2}|g(x)| \Leftrightarrow f(x)$ is $\boldsymbol{\Theta}(g(x))$ $\Omega(g(x)$ ANE $O(g(x))$

$\operatorname{Big}-\mathbf{O}=\mathrm{Big}-\Omega \cap \mathrm{Big}-\mathbf{O}$
for $k<x$

$$
\begin{aligned}
& \boldsymbol{o (g (x))}{ }^{0.1 x^{2}<x^{2}+2 x+1<10 x^{2}} \\
& \leq C_{2} \mid g(x)
\end{aligned} \Rightarrow \theta\left(x^{2}\right) \in\left(0\left(x^{2}\right)\right) \text { is } \boldsymbol{\Theta}(g(x))
$$

$\boldsymbol{\Omega}(g(x))$
$\boldsymbol{\Omega}(g(x)) \wedge \boldsymbol{O}(g(x))$
$\boldsymbol{\Theta}(g(x))$
$\boldsymbol{\Theta}(\mathrm{x})$ and $\boldsymbol{\Theta}(1)$

$$
\begin{array}{rll}
f(x) \leq C \cdot 1 & \Leftrightarrow & f(x) \text { is O(1) } \\
C \cdot 1 \leq f(x) & \Leftrightarrow & f(x) \text { is } \\
C_{1} \cdot 1 \leq f(x) \leq C_{2} \cdot 1 & \Leftrightarrow & f(x) \text { is }
\end{array}
$$

Big-O, Big- Ω, Big-Ө Examples

Many Larger Upper Bounds

the least upper bound?

Functions (2A)

Many Smaller Lower Bounds

$$
\begin{aligned}
& \frac{x^{2}+2 x+1}{x^{2}+2 x+1} \text { is } \text { is } \boldsymbol{\Omega}(x) \\
& x^{2}+2 x+1 \text { is } \boldsymbol{\Omega}(\sqrt{x}) \\
& x^{2}+2 x+1 \text { is } \boldsymbol{\Omega}(\log x)
\end{aligned}
$$

$$
\begin{aligned}
& \downarrow \\
& \downarrow \\
& x^{2}>x>\sqrt{x}>\operatorname{lq} x
\end{aligned}
$$

the greatest lower bound?

Many Upper and Lower Bounds

Simultaneously being lower and upper bound

$$
f(x)=x^{2}+2 x+1 \quad \theta x(n) \quad \theta\left(n^{n}\right)
$$

Big-O Examples (1)

Big-O Examples (2)

Big-O Examples (3)

Tight bound Implications

$$
\begin{aligned}
& f(x) \text { is } \boldsymbol{\Theta}(g(x)) \longrightarrow f(x) \text { is } \boldsymbol{O}(g(x)) \\
& f(x) \text { is } \boldsymbol{\Theta}(g(x)) \longrightarrow f(x) \text { is } \boldsymbol{\Omega}(g(x)) \\
& f(x) \text { is } \boldsymbol{\Theta}(g(x)) \longleftrightarrow f(x) \text { is } \boldsymbol{O}(g(x)) \\
& f(x) \text { is } \boldsymbol{\Theta}(g(x)) \longleftrightarrow f(x) \text { is } \boldsymbol{\Omega}(g(x))
\end{aligned}
$$

Common Growth Functions

Upper bounds

Lower bounds

Example 1

$$
\begin{aligned}
& f(n)=\Omega(n) \\
& f(n)=\Omega(1) \\
& f(n)=\Omega\left(2^{n}\right) \\
& f(n)=\Omega(n)
\end{aligned}
$$

Example 2

$$
\left.\left.\begin{array}{cl}
f(n)=n^{6}+3 n & f(n)=O\left(n^{6}\right) \\
f(n)=2^{n}+12 & f(n)=O\left(2^{n}\right) \\
f(n)=2^{n}+3^{n} & f(n)=O\left(3^{n}\right) \\
f(n)=n^{n}+n & f(n)=O\left(n^{n}\right)
\end{array} \begin{array}{l}
f(n)=\Omega\left(n^{6}\right) \\
f(n)=\Omega\left(2^{n}\right) \\
f(n)=\Omega\left(3^{n}\right) \\
f(n)=\Omega\left(n^{n}\right)
\end{array} \right\rvert\, \begin{array}{l}
f(n)=\Theta\left(n^{6}\right) \\
f(n)=\Theta\left(2^{n}\right) \\
f(n)=\Theta\left(3^{n}\right) \\
f(n)=\Theta\left(n^{n}\right)
\end{array}\right] \begin{aligned}
& 0.5 n^{6} \leqslant n^{6}+3 n \leqslant 2 n^{6} \\
& 0.52^{n} \leqslant 2^{n}+12 \leqslant 22^{n} \\
& 0.53^{n} \leqslant 2^{n}+3^{n} \leqslant 2.3^{n} \\
& 0.5 n^{2} \leqslant n^{2}+n \leqslant 2 . n^{2}
\end{aligned}
$$

Example 3

$f(n)$
$\theta(n) \quad k>O(1)$

$$
\begin{aligned}
\theta(n) & \rightarrow O(n) \\
& \rightarrow \Omega(n)
\end{aligned}
$$

$O(1)$

Example 4

Example 5

https://discrete.gr/complexity/

Functions (2A)

References

[1] http://en.wikipedia.org/
[2]

The Complexity of Algorithms (3A)

Copyright (c) 2015-2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Complexity Analysis

- to compare algorithms at the idea level ignoring the low level details
- To measure how fast a program is
- To explain how an algorithm behaves as the input grows larger

Counting Instructions

- Assigning a value to a variable
- Accessing a value of a particular array element
- Comparing two values
- Incrementing a value
- Basic arithmetic operations
- Branching is not counted
$x=100$;
A[i]
($\mathrm{x}>\mathrm{y}$)
i++
$+,-,{ }^{*}, /$
if else

Asymptotic Behavior

- avoiding tedious instruction counting
- eliminate all the minor details
- focusing how algorithms behaves when treated badly
- drop all the terms that grow slowly
- only keep the ones that grow fast as \mathbf{n} becomes larger

Finding the Maximum

```
M = A[0];
for (i=0; i<n; ++i) {
    if (A[i] >= M) {
        M = A[i];
    }
}
```

int $A[n] ; \quad / / n$ element integer array A
int M ; // the current maximum value found so far
// set to the $1^{\text {st }}$ element, initially

Worst and Best Cases

int A[4];

$\mathrm{i}=0$	A[0]
$\mathrm{i}=1$	A[1]
$\mathrm{i}=2$	A[2]
i=3	A[3]

for (i=0; i<n; ++i) \{
if $(A[i]>=M)$ \{ // always \mathbf{n} comparisons
$\mathrm{M}=\mathrm{A}[\mathrm{i}]$; // the updating of M depends on the data
\}

Case 1:
Worst Case

Case 2:
Best Case

$$
\begin{array}{|l|}
\hline \mathrm{A}[0]=4 \\
\hline \mathrm{~A}[1]=3 \\
\hline \mathrm{~A}[2]=2 \\
\hline \mathrm{~A}[3]=1 \\
\hline
\end{array} \quad \rightarrow \mathrm{M}=4
$$

Assignment

```
M = A[0];
    // 2 instructions
for (i=0; i<n; ++i) {
    if (A[i] >= M) {
                M = A[i];
    }
}
A[0] -1 instruction
M = -1 instruction
```


Loop instructions

Initialization * 1
$\mathrm{i}=0$ $: \mathbf{1}$ instruction $\mathrm{i}<\mathrm{n}$ $: \mathbf{1}$ instruction

Update * \mathbf{n}
++i
$\mathrm{i}<\mathrm{n}$
: 1 instruction
instruction

Loop body * \mathbf{n}

$\begin{aligned} & A[i] \\ & >=M \end{aligned}$	1 instruction 1 instruction	$\} \mathrm{n}$ always
$A[i]$ $M=$	1 instruction 1 instruction	\} $\mathbf{1 \sim n}$ depending on the comparison

Worst case examples

$\mathrm{i}=0$			i=1		$\begin{gathered} \left.>=\begin{array}{l} M \\ M=1 \\ M \end{array}\right)=2 \end{gathered}$
\Rightarrow	A [0] $=1$	$>=\begin{aligned} & M=1 \\ & M=1\end{aligned}$		A $[0]=1$	
	A[1] $=2$		-	A[1] $=2$	
	A[2] $=3$			A[2] $=3$	
	$A[3]=4$			A[3] $=4$	
$i=2$		$\begin{aligned} >= & M=2 \\ M & =3 \end{aligned}$	i=		
\square	$\mathrm{A}[0]=1$			A $[0]=1$	
	$\mathrm{A}[1]=2$			A[1] $=2$	
	A[2] $=3$			A[2] $=3$	
	$A[3]=4$			$A[3]=4$	>= M=2

$$
\begin{aligned}
& \text { for }(\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ;++\mathrm{i})\{ \\
& \quad \text { if }(\mathrm{A}[\mathrm{i}]>=\mathrm{M})\{ \\
& \quad \mathrm{M}=\mathrm{A}[\mathrm{i}] ; \\
& \quad\} \\
& 2 \mathbf{n}+2 \mathbf{n}=4 \mathbf{n} \\
& \text { Instructions } \\
& \mathbf{n} \text { comparisons } \\
& \mathbf{n} \text { updates }
\end{aligned}
$$

Best case examples

$\mathrm{i}=0$			$\mathrm{i}=1$		< M=4
\rightarrow	$\mathrm{A}[0]=4$	$\begin{gathered} >= \\ M=4 \\ M=4 \end{gathered}$	\Rightarrow	$\mathrm{A}[0]=4$	
	A[1] $=3$			$\mathrm{A}[1]=3$	
	A[2] $=2$			A[2] $=2$	
	A[3] $=1$			$A[3]=1$	
$\mathrm{i}=2$		< M=4	i=		< M=4
\cdots	$\mathrm{A}[0]=4$			$\mathrm{A}[0]=4$	
	$A[1]=3$			A[1] $=3$	
	$\mathrm{A}[2]=2$			A[2] $=2$	
	$\mathrm{A}[3]=1$		$=$	A[3]=1	

$$
\begin{aligned}
& \text { for (i=0; } \mathrm{i}<\mathrm{n} ;++\mathrm{i})\{ \\
& \quad \text { if }(\mathrm{A}[\mathrm{i}]>=\mathrm{M})\{ \\
& \quad \mathrm{M}=\mathrm{A}[\mathrm{i}] ; \\
& \quad\} \\
& 2 \mathrm{n}+2 \\
& \text { Instructions } \\
& \mathbf{n} \text { comparisons } \\
& \mathbf{1} \text { update }
\end{aligned}
$$

Asymptotic behavior

$$
f(n)= \begin{cases}6 n+4 & \text { instructions for the worst case } \\ 4 n+6 & \text { instruction for the best case }\end{cases}
$$

$$
\begin{aligned}
& f(n)=O(n) \\
& f(n)=\Omega(n) \\
& f(n)=\Theta(n)
\end{aligned}
$$

$\mathrm{O}(\mathbf{n})$ codes

```
// Here c is a positive integer constant
for (i=1; i <= n; i += c) {
    // some O(1) expressions
}
for (int i= n; i>0; i -= c) {
    // some O(1) expressions
}
```


$\mathrm{O}\left(\mathbf{n}^{2}\right)$ codes

```
for (i=1; i <=n; i += c) {
        for (j = 1; j <=n; j += c) {
            // some O(1) expressions
    }
}
for (i=n; i>0;i+=c) {
    for ( j = i+1; j <=n; j += c) {
        // some O(1) expressions
}
```


O(log $\mathbf{n})$ codes

```
for (int i=1; i <=n; i *= c) {
    // some O(1) expressions
}
for (int i = n; i> 0; i /= c) {
    // some O(1) expressions
}
```


$\mathrm{O}(\mathrm{n})$ vs. $\mathrm{O}(\log \mathrm{n})$

O(log $\mathbf{n})$ codes

```
// Here c is a constant greater than 1
for(int i= 2; i <=n; i = pow(i, c)) { // i= i^c }\quadi=\mp@subsup{i}{}{2},i=\mp@subsup{i}{}{3
    // some O(1) expressions
}
//Here fun is sqrt or cuberoot or any other constant root
for (int i = n; i > 0; i = fun(i)) {
    // i = i^(1/c)
    // some O(1) expressions
}
```


O(log $\log \mathbf{n})$ codes

```
// Here c is a constant greater than 1
for (int i=2; i <=n; i = pow(i, c)) { // i = i^c c i= i
    // some O(1) expressions
}
//Here fun is sqrt or cuberoot or any other constant root
for (int i = n; i > 0; i = fun(i)) {
// i = i^(1/c)
i=\mp@subsup{i}{}{\frac{1}{2}}}(n,\mp@subsup{n}{}{\frac{1}{2}},\mp@subsup{n}{}{\frac{1}{4}},\mp@subsup{n}{}{\frac{1}{8}},\mp@subsup{n}{}{\frac{1}{16}},\cdots
    // some O(1) expressions
}
```


O(log $\log \mathbf{n})$ codes

```
// Here c is a constant greater than 1
for (int i=2; i <=n; i = pow(i, c)) { // i = i^c c i= i
    // some O(1) expressions
}
//Here fun is sqrt or cuberoot or any other constant root
for (int i = n; i > 0; i = fun(i)) {
// i = i^(1/c)
i=\mp@subsup{i}{}{\frac{1}{2}}}(n,\mp@subsup{n}{}{\frac{1}{2}},\mp@subsup{n}{}{\frac{1}{4}},\mp@subsup{n}{}{\frac{1}{8}},\mp@subsup{n}{}{\frac{1}{16}},\cdots
    // some O(1) expressions
}
```


Some Algorithm Complexities and Examples (1)

O(1) - Constant Time
not affected by the input size \mathbf{n}.

O(n) - Linear Time
Proportional to the input size \mathbf{n}.
$\mathrm{O}(\log \mathrm{n})$ - Logarithmic Time
recursive subdivisions of a problem
binary search algorithm

O(n $\log \mathrm{n})$ - Linearithmic Time
Recursive subdivisions of a problem and then merge them
merge sort algorithm.

Some Algorithm Complexities and Examples (2)

O(n2) - Quadratic Time
bubble sort algorithm

O(n3) - Cubic Time
straight forward matrix multiplication
$O\left(2^{\wedge} n\right)$ - Exponential Time
Tower of Hanoi

O(n!) - Factorial Time
Travel Salesman Problem (TSP)

References

[1] http://en.wikipedia.org/
[2]

