

Copyright (c) 2015 – 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

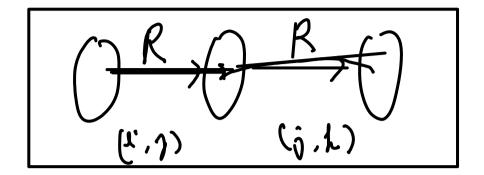
Please send corrections (or suggestions) to youngwlim@hotmail.com.

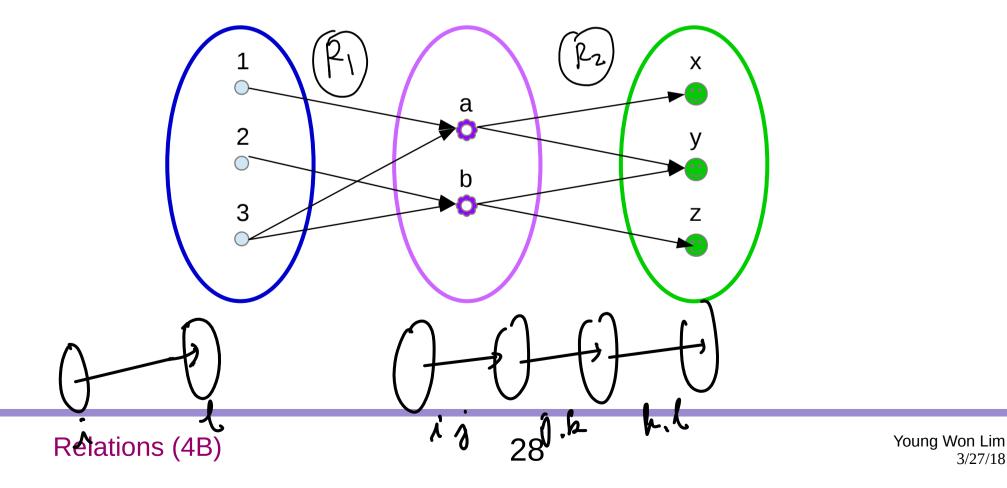
This document was produced by using LibreOffice and Octave.

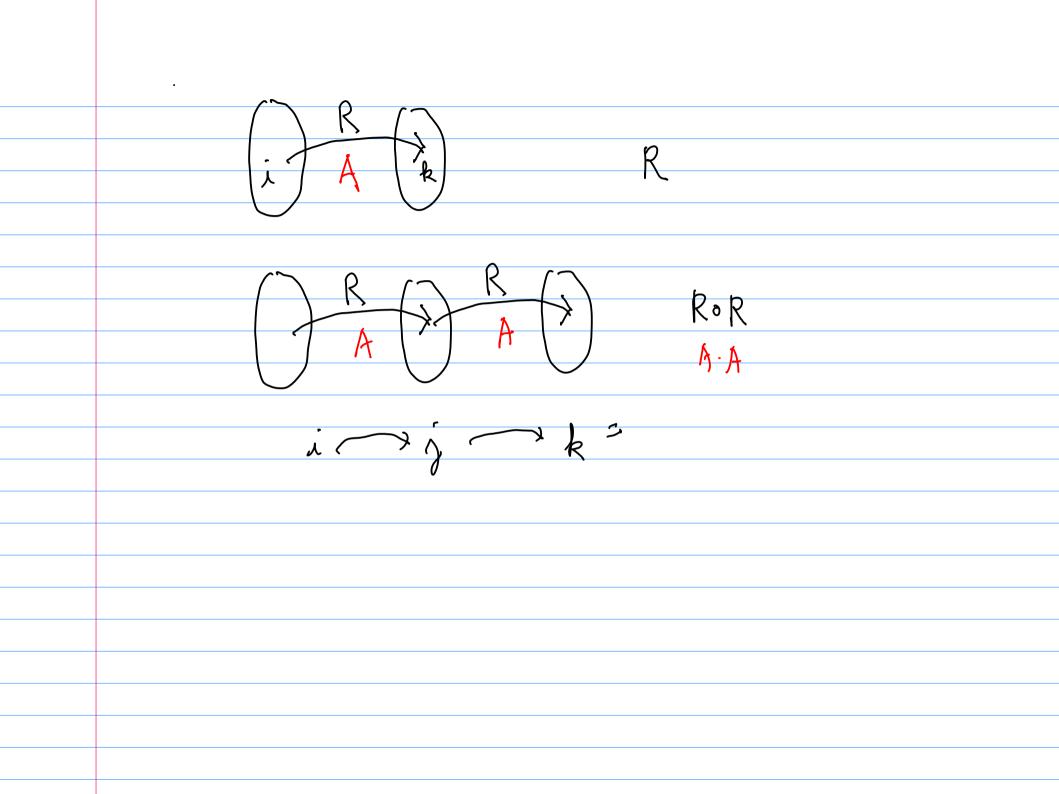
Relation Examples

 $R_1 \in \{(1,a), (2,b), (3,a), (3,b)\}$

 $R_2 \in \{(a, x), (a, y), (b, y), (b, z)\}$



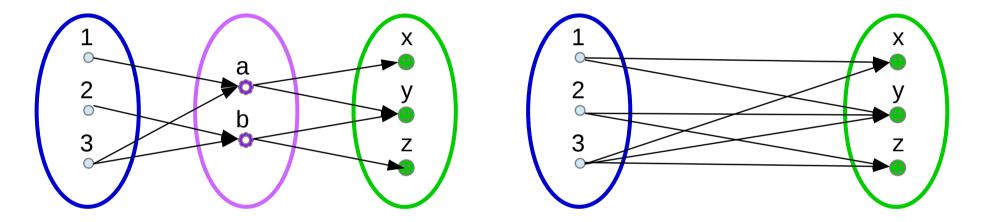




Composite Relation Examples

 $\mathbf{R}_1 \in \{(1,a), (2,b), (3,a), (3,b)\}$

```
R_2 \in \{(a, x), (a, y), (b, y), (b, z)\}
```



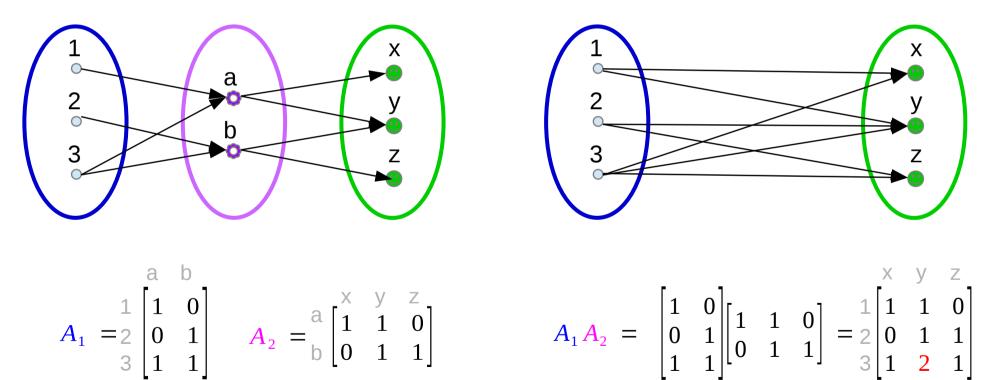
 $\mathbf{R}_{2} \circ \mathbf{R}_{1} \in \{(1, x), (1, y), (2, y), (2, z), (3, x), (3, y), (3, z)\}$

Composite Relation Examples

 $R_1 \in \{(1,a), (2,b), (3,a), (3,b)\}$

 $\mathbf{R}_2 \in \{(a, x), (a, y), (b, y), (b, z)\}$

 $\frac{R_2 \circ R_1}{\{(1,x), (1,y), (2,y), (2,z), (3,x), (3,y), (3,z)\}}$



Matrix of a Relation

$$R_{1} \in \{(1,a), (2,b), (3,a), (3,b)\}$$

$$A_{1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

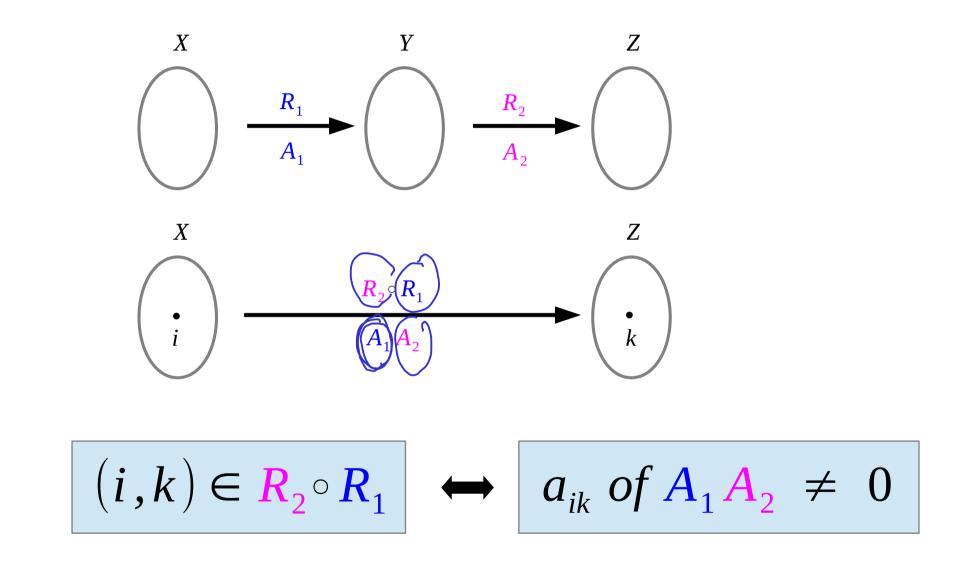
$$R_{2} \in \{(a,x), (a,y), (b,y), (b,z)\}$$

$$A_{2} = \begin{bmatrix} x & y & z \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

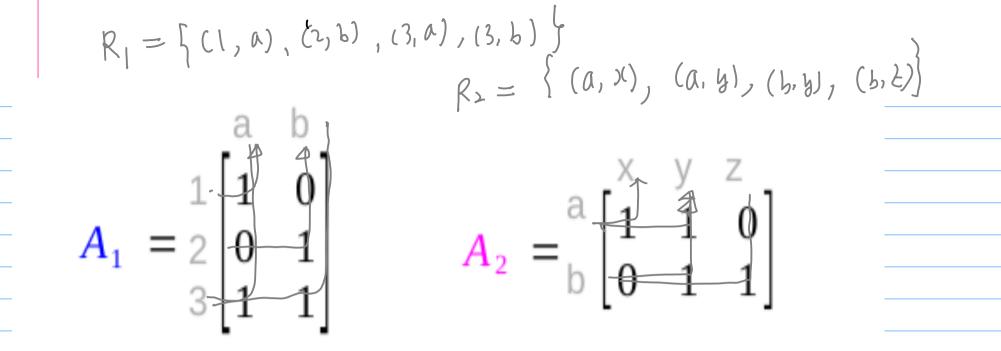
 $\mathbf{R}_{2} \circ \mathbf{R}_{1} \in \{(1, x), (1, y), (2, y), (2, z), (3, x), (3, y), (3, z)\}$

$$A_{1}A_{2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} x & y & z \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 3 \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$$

Composite Relation Properties



33



 $A \cdot A z = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ R20 R1 (3,)(), (3, 2), (3, 2)

Composite Relation Property Examples

$$A_{1}A_{2} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{array} \right] \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} = \left[\begin{array}{c} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 1 \end{array} \right] \qquad A_{1} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{array} \right] \qquad A_{1} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{array} \right] \qquad A_{2} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{array} \right] \qquad A_{2} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{array} \right] \qquad A_{2} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{array} \right] \qquad A_{2} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{array} \right] \qquad A_{2} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{array} \right] \qquad A_{2} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{array} \right] \qquad A_{2} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{array} \right] \qquad A_{2} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array} \right] \qquad A_{2} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array} \right] \qquad A_{3} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array} \right] \qquad A_{4} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array} \right] \qquad A_{4} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array} \right] \qquad A_{4} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array} \right] \qquad A_{4} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array} \right] \qquad A_{4} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array} \right] \qquad A_{4} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array} \right] \qquad A_{4} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array} \right] \qquad A_{4} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array} \right] \qquad A_{4} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array} \right] \qquad A_{4} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array} \right] \qquad A_{4} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array} \right] \qquad A_{4} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array} \right] \qquad A_{4} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array} \right] \qquad A_{4} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array} \right] \qquad A_{4} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array} \right] \qquad A_{4} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right] \qquad A_{4} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right] \qquad A_{4} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right] \qquad A_{4} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right]$$

 $i \in \{1, 2, 3\}$ s $k \in \{x, y, z\}$ t

$$s \in \{0, 1\}$$
 su

 $t \in \{0, 1\}$
 (su

 $u \in \{0, 1\}$
 (s=

 $v \in \{0, 1\}$
 (s=

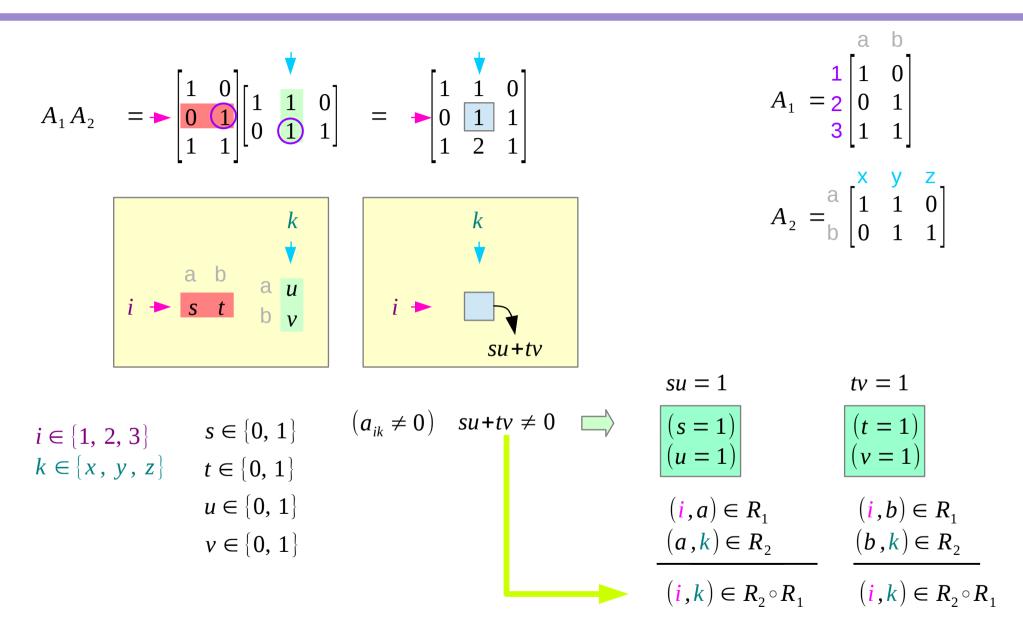
$$su+tv \neq 0 \quad nonzero(i,k)^{th} element of A_1A_2$$
$$(su\neq 0) \lor (tv\neq 0)$$
$$(s=1 \land u=1) \lor (t=1 \land v=1)$$
$$(i,k) \in R_2 \circ R_1$$

х.

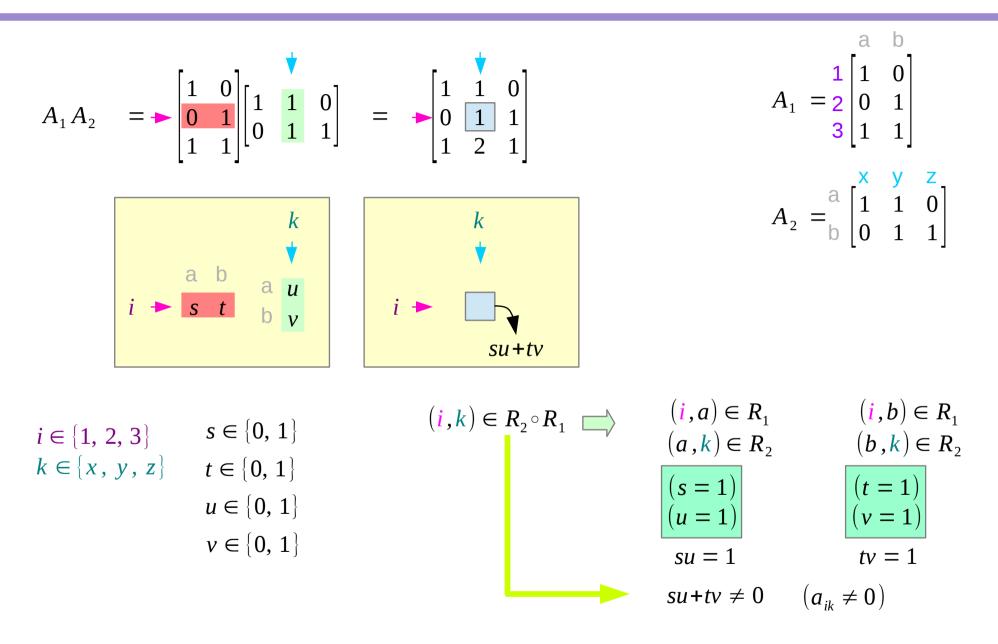
Ζ

0 1

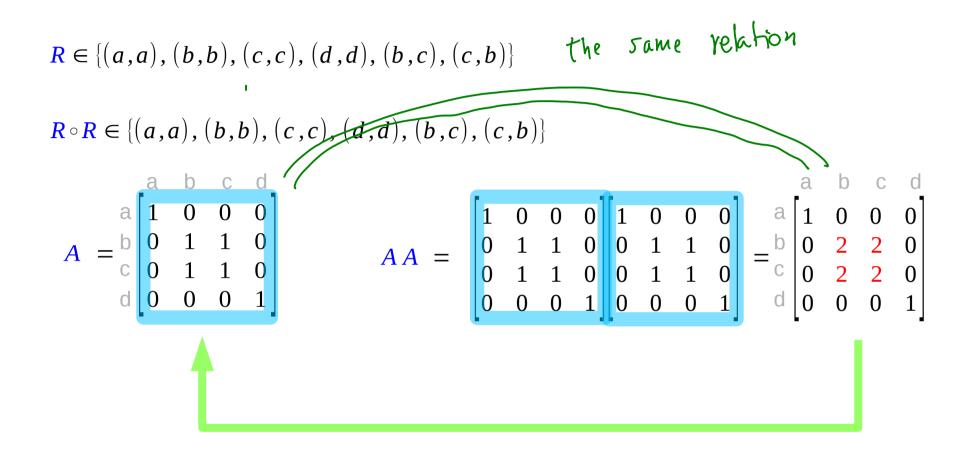
Sufficient Part

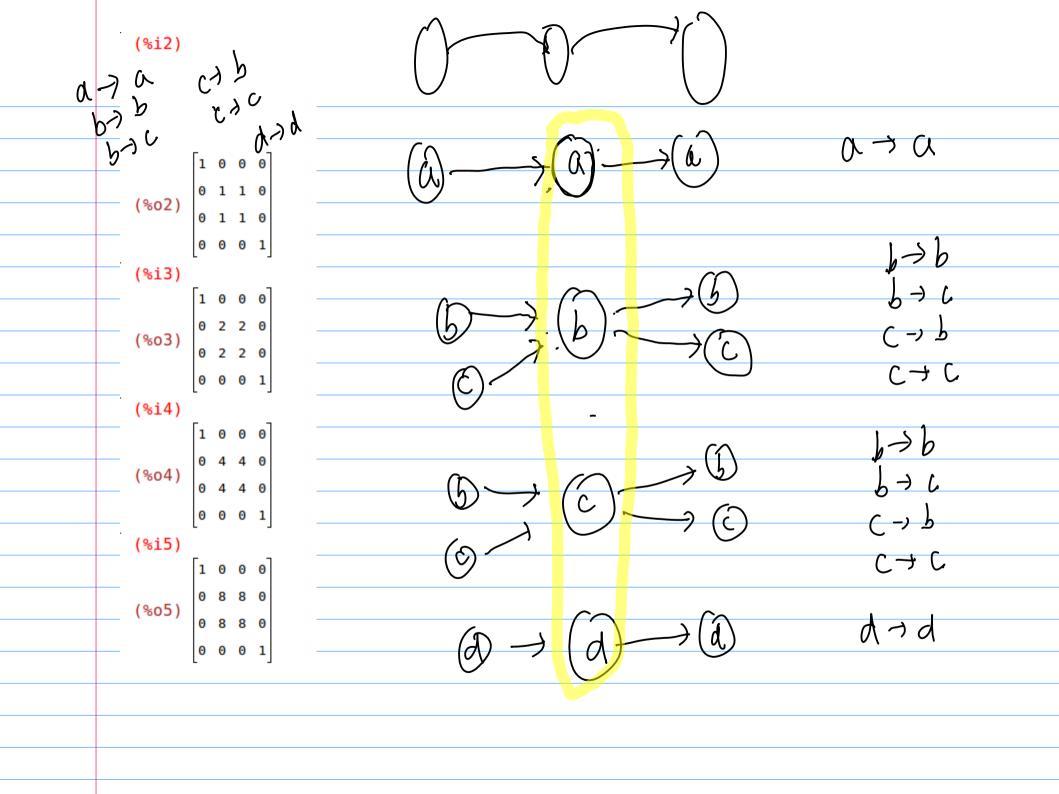


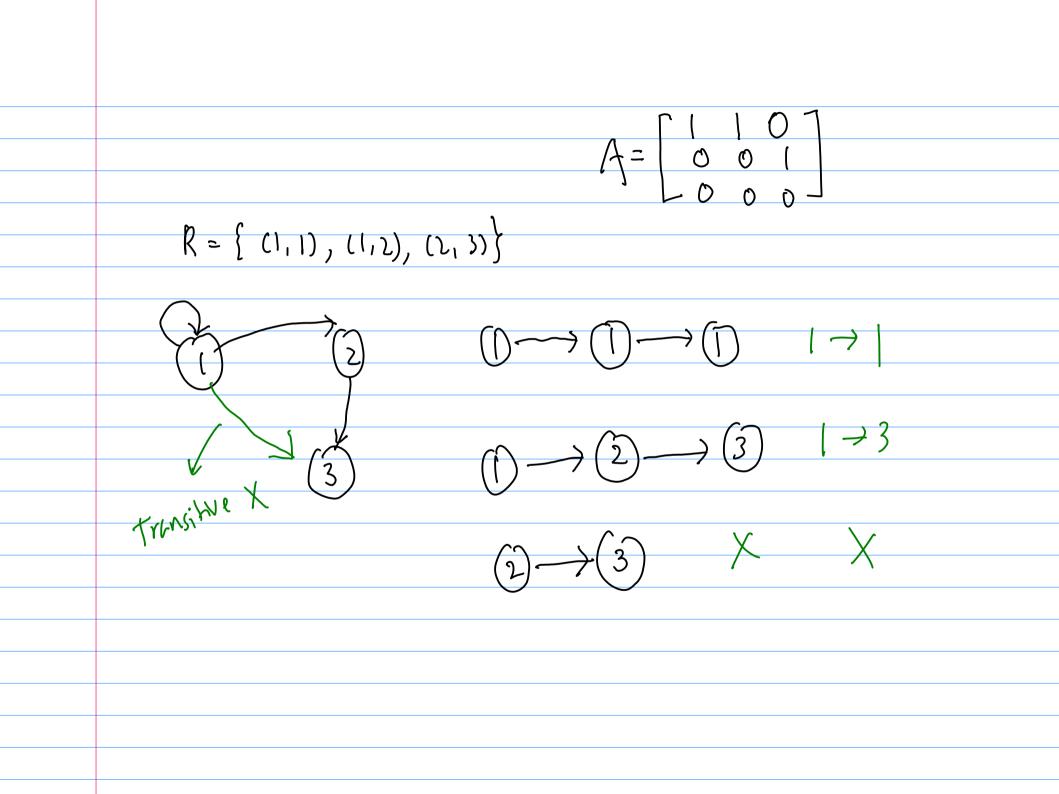
Necessary Part

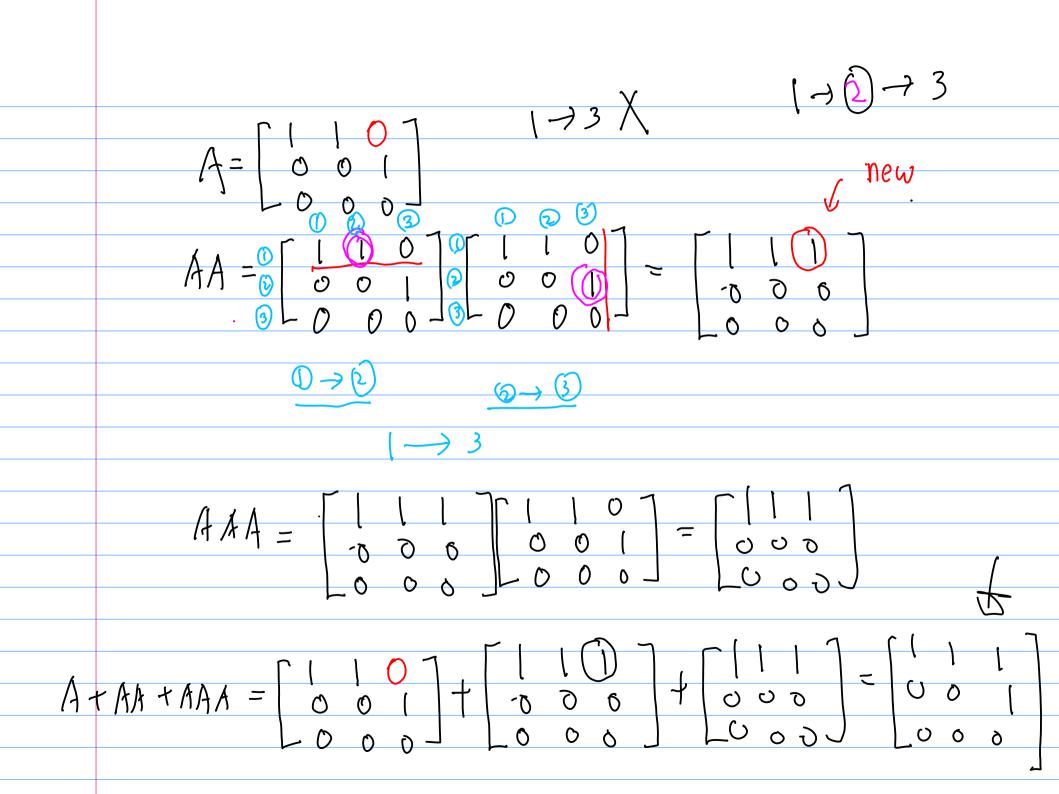


Transitivity Test Examples

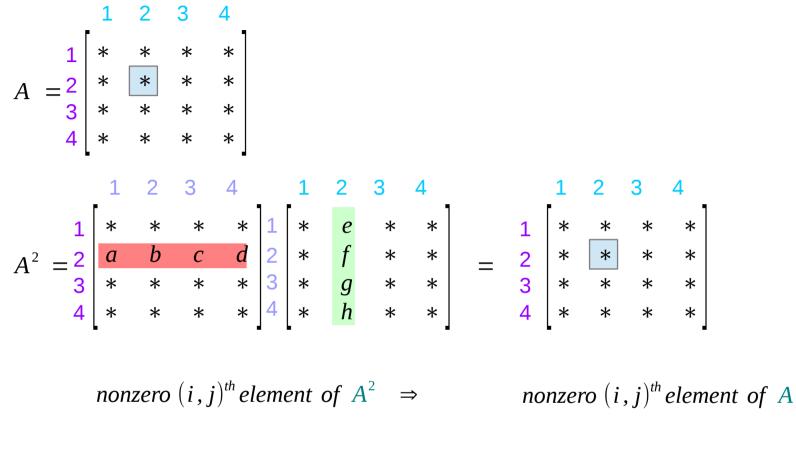




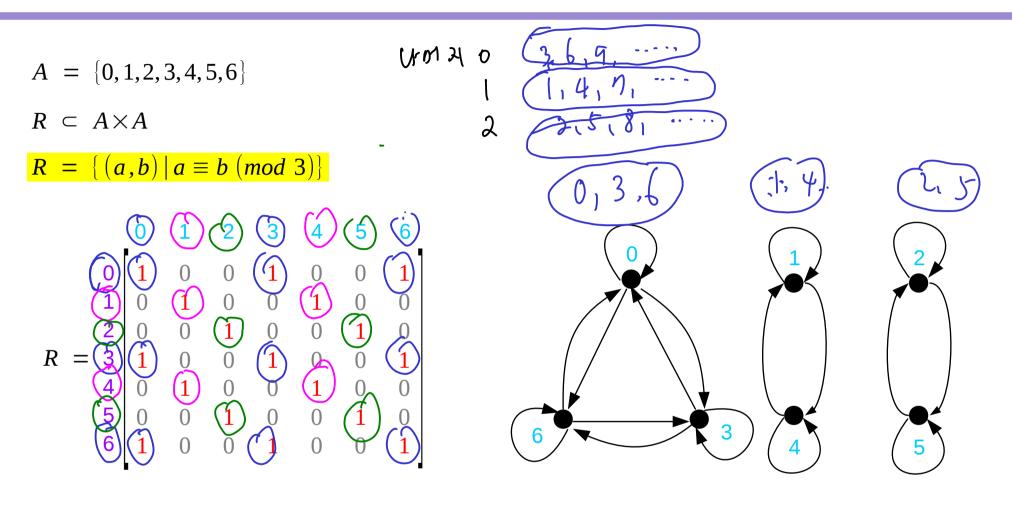




Transitivity Test



Binary Relations and Digraphs



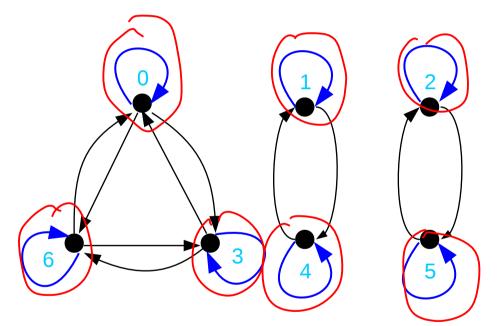
http://www.math.fsu.edu/~pkirby/mad2104/SlideShow/s7_1.pdf

Reflexive Relation

 $A = \{0, 1, 2, 3, 4, 5, 6\}$

 $R \subset A \times A$

 $R = \{ (a,b) \mid a \equiv b \pmod{3} \}$ R =

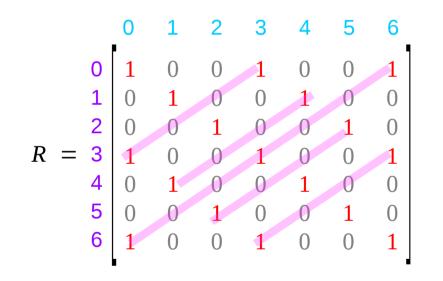


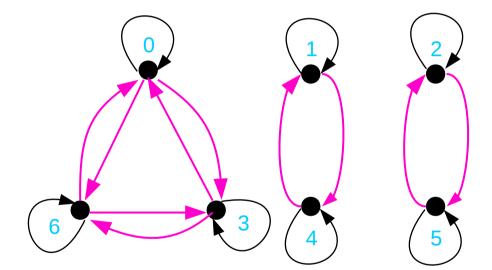
Symmetric Relation

 $A = \{0, 1, 2, 3, 4, 5, 6\}$

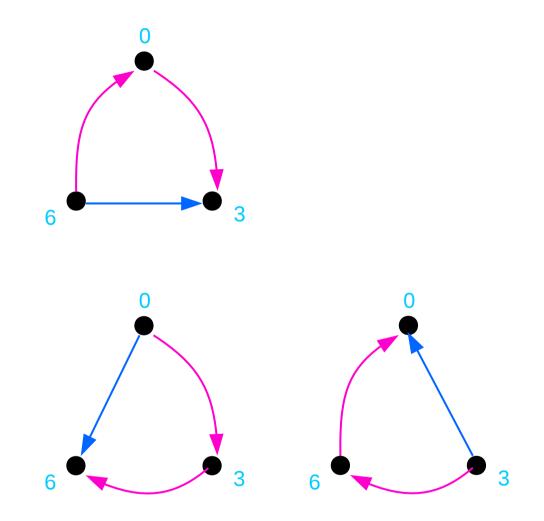
 $R \subset A \times A$

 $R = \{ (a,b) \mid a \equiv b \pmod{3} \}$





Transitive Relation



Transitive Relation

(%i2)]]]]]]	1, 0, 1, 0, 1,	0, 0, 0, 1, 0,	0, 0, 1, 0, 0,	1, 0, 1, 0, 1,	1, 0, 0, 1, 0,	0, 1, 0, 1, 0,	1], 0], 1], 0], 0], 0], 1]
(%02)	[1	θ	θ	1	θ	θ	1	
	θ	1	θ	θ	1	θ	θ	
	θ	θ	1	θ	θ	1	θ	
(%02)	1	θ	θ	1	θ	θ	1	
	θ	1	θ	θ	1	θ	θ	
	θ	θ	1	θ	θ	1	θ	
	1	θ	θ	1	θ	θ	1	

(%i4)								
	3	Θ	Θ	3	Θ	Θ	з	
	0	2	0	0	2	0		
	Θ	Θ	2	Θ	Θ	2	Θ	
(%04)	3	Θ	Θ	3	Θ	Θ	3	
	Θ	2	Θ	Θ	2	Θ	Θ	
	Θ	0	2	Θ	Θ	2	Θ	
(%04)	3	Θ	Θ	3	Θ	Θ	з	

(%i7) R3: R.R.R;

	9	Θ	Θ	9	Θ	Θ	9
(%07)	Θ	4	Θ	Θ	4	Θ	0
	Θ	Θ	4	Θ	Θ	4	θ
(%07)	9	Θ	Θ	9	Θ	Θ	9
	Θ	4	Θ	Θ	4	Θ	θ
	Θ	Θ	4	Θ	Θ	4	θ
	9	Θ	Θ	9	Θ	Θ	9

(%i11)

.

	(%111)	
		27 0 0 27 0 0 27
		0 8 0 0 8 0 0
		0 0 8 0 0 8 0
•	(%011)	27 0 0 27 0 0 27
		0 8 0 0 8 0 0 (%i14)
		0 0 8 0 0 8 0
		27 0 0 27 0 0 27
	(%i12)	0 0 64 0 0 64 0
	(`-==',	81 0 0 81 0 0 81 (%014) 729 0 0 729 0 0 729
		0 16 0 0 16 0 0
		0 0 16 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0
	(%012)	
	(~012)	
	(0.122)	81 0 0 81 0 0 81
	(%i13)	Г – – – – – – – – – – – – – – – – – – –
		243 0 0 243 0 0 243
		0 32 0 0 32 0 0
		0 0 32 0 0 32 0
	(%013)	243 0 0 243 0 0 243
		0 32 0 0 32 0 0
		0 0 32 0 0 32 0
		243 0 0 243 0 0 243

Reflexive and Symmetric Closure

	1	2	3	4	5
1					
2					
3					
4					
5					

Not Reflexive R

	1	2	3	4	5
1					
2					
3					
4					
5					

Not Symmetric R

	1	2	3	4	5
1					
2					
3					
4					
5					

the minimal addition

	1	2	3	4	5
1					
2 3					
3					
4					
5					

the minimal addition

	1	2	3	4	5
1					
2					
3					
4					
5					

Reflexive Closure of R

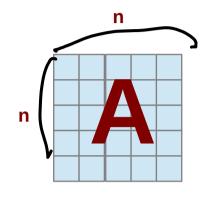
	1	2	3	4	5
1					
2					
2 3					
4					
5					

Symmetric Closure of R

Transitive Closure Examples

(%i9) A: matrix([1,0,1], [0,1,0], [1,1,0]); [1 0 1]	$(\$i18) A4: A.A.A.A; (\$o18) \begin{bmatrix} 5 & 4 & 3 \\ 0 & 1 & 0 \\ 3 & 3 & 2 \end{bmatrix}$	transitive closure
$(\$09) \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$ $(\$i11) A2: A.A;$	(%i20) A5: A.A.A.A.; (%o20) 8 7 5 0 1 0	
(%011) 2 1 1 0 1 0 1 1 1	<pre>[5 5 3] (%i19) matrix([1,1,1], [0,1,0],</pre>	$\begin{bmatrix} 6 & 3 & 4 \\ 0 & 3 & 0 \\ 4 & 4 & 2 \end{bmatrix}$
(%i12) A3: A.A.A; (%o12) $\begin{bmatrix} 3 & 2 & 2 \\ 0 & 1 & 0 \\ 2 & 2 & 1 \end{bmatrix}$	[1,1,1]); (%019) 1 1 1 0 1 0 1 1 1	442
$ \begin{array}{c} (\$i13) A+A2+A3; \\ (\$o13) \begin{bmatrix} 6 & 3 & 4 \\ 0 & 3 & 0 \\ 4 & 4 & 2 \end{bmatrix} $	$A + A^2 + A^3 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 \\ 1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 & 22 \\ 0 & 10 \\ 22 \end{bmatrix}$

Transitive Closure



R

$$R^* = \bigcup_{n=1}^{\infty} R^n$$
$$= R \bigcup R^2 \bigcup \cdots \bigcup R^n$$

$$A^2 \wedge A^2 \wedge \cdots \wedge A^n$$

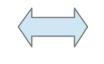
$$A + A^2 + \cdots + A^n$$

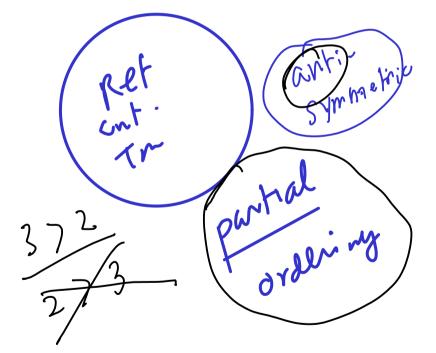
then non-zero $\rightarrow 1$

> trans' tive closure

Equivalence Relation

Equivalence Relation



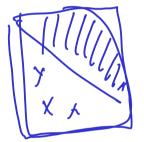


Reflexive Relation & Symmetric Relation & Transitive Relation

$$A = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$$

 $R \subset A \times A$

$$R = \{ (a,b) \mid a \equiv b \pmod{3} \}$$



$$(1,1) \in R$$
 $a \equiv 1 \pmod{3}$

$$(1,4) \in R$$
 $1 \equiv 4 \pmod{3}$

$$(4,1) \in R \quad 4 \equiv 1 \pmod{3}$$

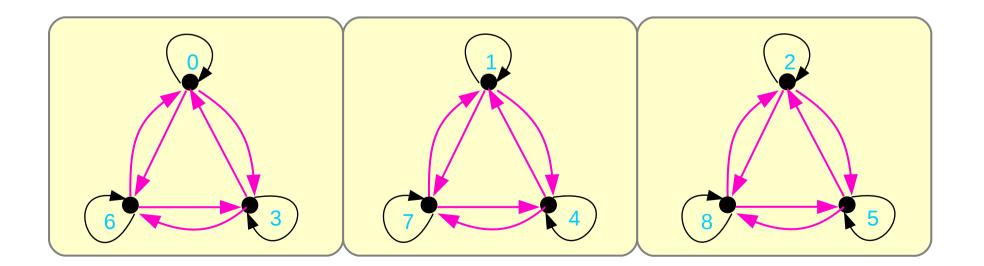
 $(1,4) \in R$ $1 \equiv 4 \pmod{3}$

$$(4,7) \in R \qquad 4 \equiv 7 \pmod{3}$$

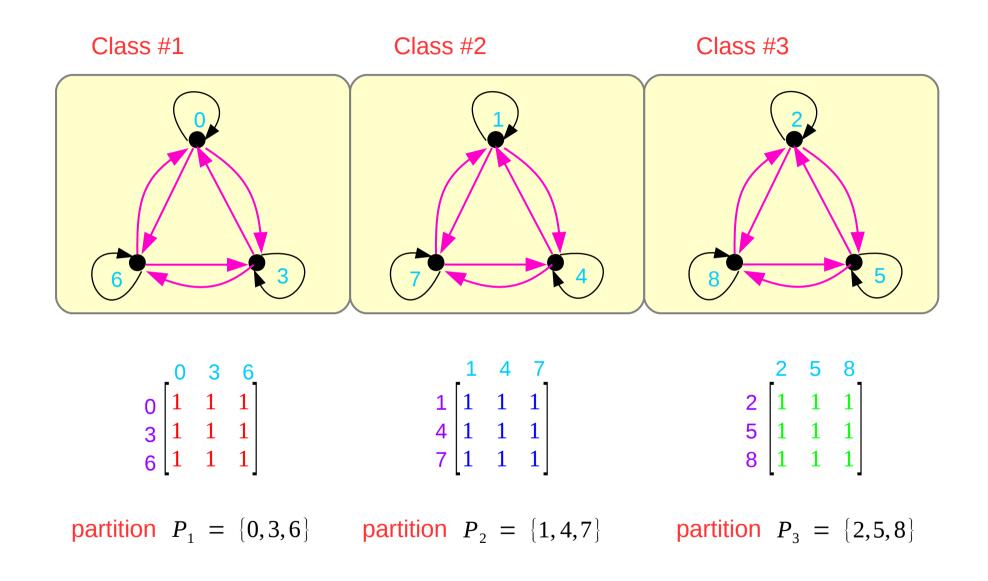
 $(1,7) \in R$ $1 \equiv 7 \pmod{3}$

Equivalence Relation Examples

 $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$ 0 0 1 0 0 1 0 1 0 0 $R \subset A \times A$ 1 0 0 1 0 0 $R = \{ (a,b) \mid a \equiv b \pmod{3} \}$ 0 1 0 0 1 0 1 0 0 RR =1 0 0 1 0 0 0 0 1 0 1 0 1 0 0



Equivalence Classes



Equivalence Class

$$A = \mathbf{Z}^{+} = \{0, 1, 2, 3, 4, 5, 6, \cdots\}$$

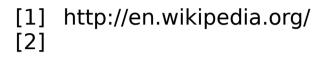
 $R \subset A \times A$

$R = \{ (a,b) \mid a \equiv b \pmod{3} \}$

$\{0, 3, 6, 9, \cdots\}$	[0]	[33]
$\{1, 4, 7, 10, \cdots\}$	[1]	[331]
{2, 5, 8, 11, ····}	[2]	[3332]

https://www.cse.iitb.ac.in/~nutan/courses/cs207-12/notes/lec7.pdf

References



The Growth of Functions (2A)

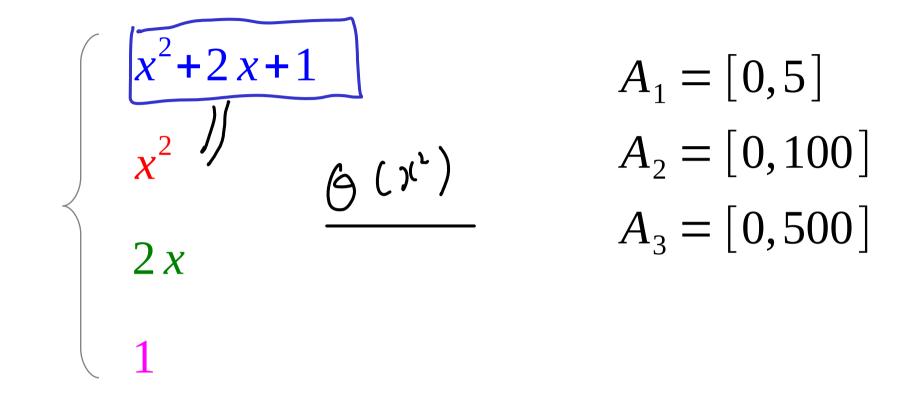
Copyright (c) 2015 - 2018 Young W. Lim.

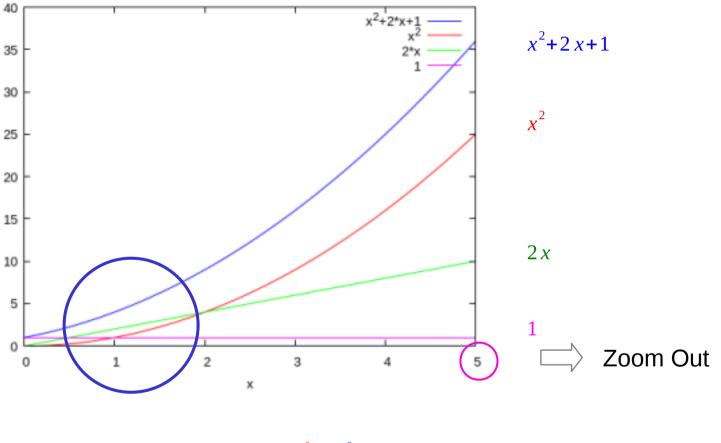
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Functions and Ranges

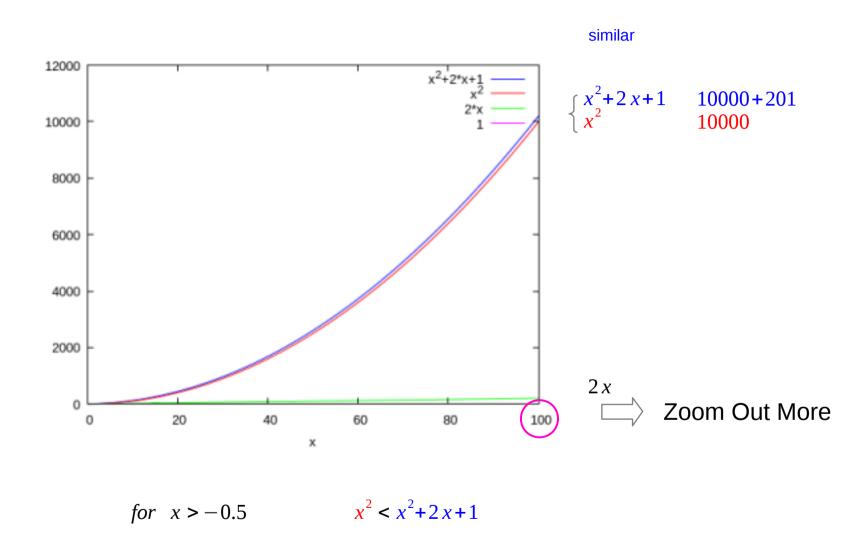


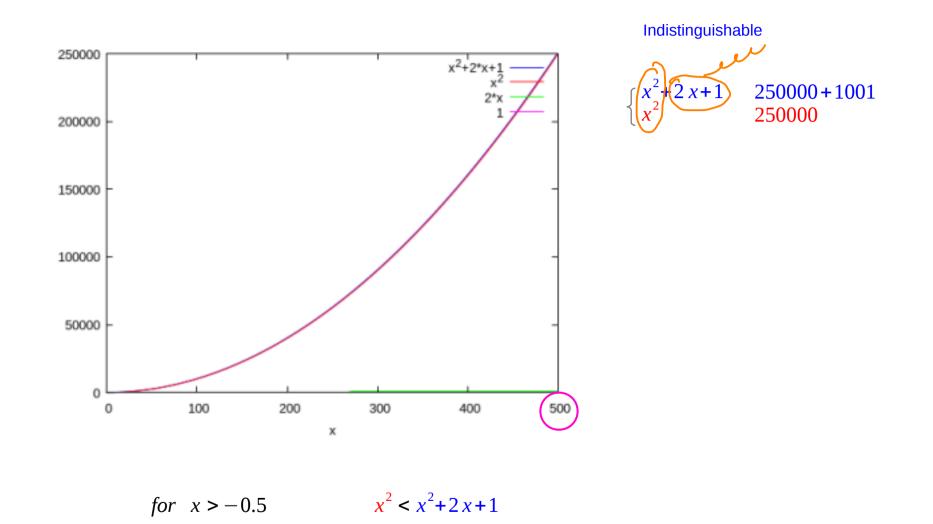


All are distinguishable

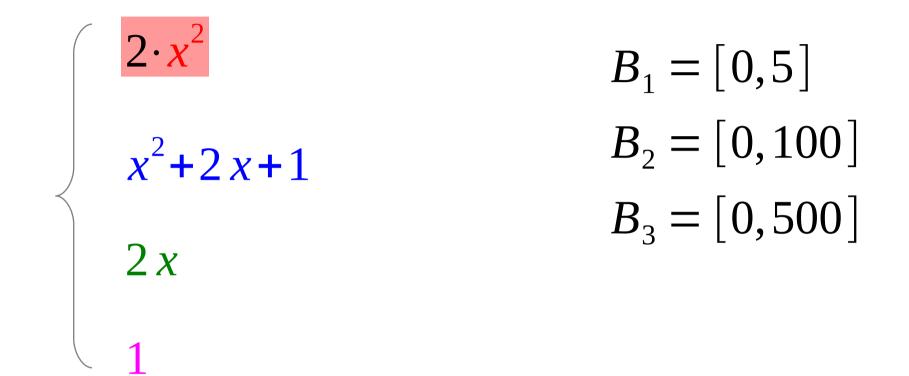
for x > -0.5 $x^2 < x^2 + 2x + 1$

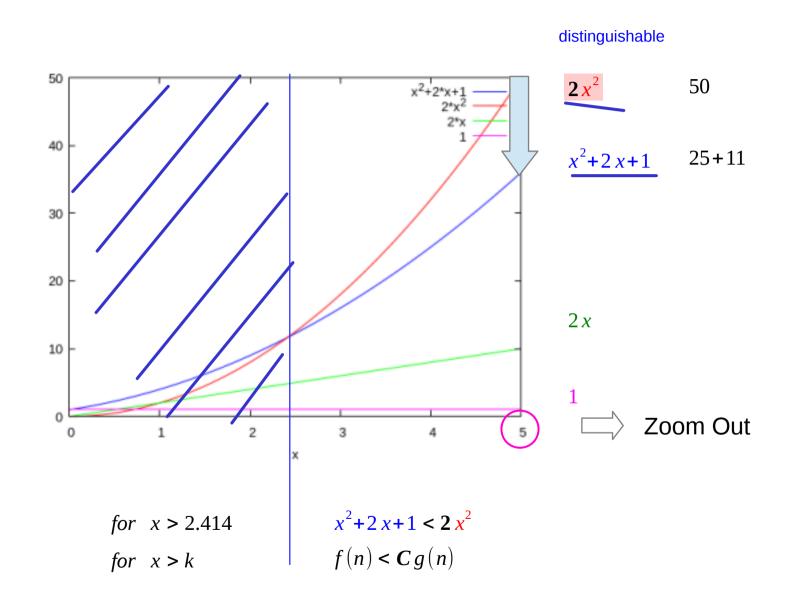
Medium Range





Functions and Ranges

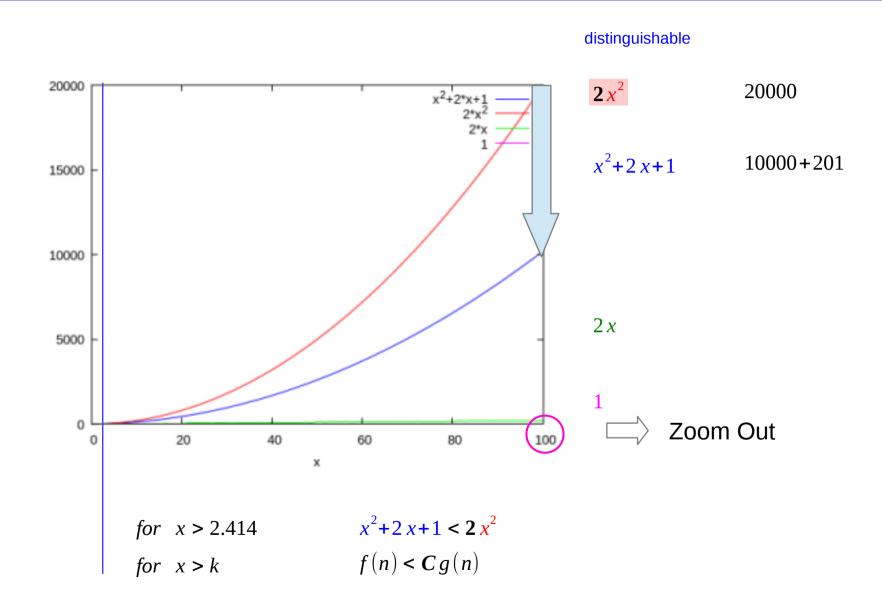




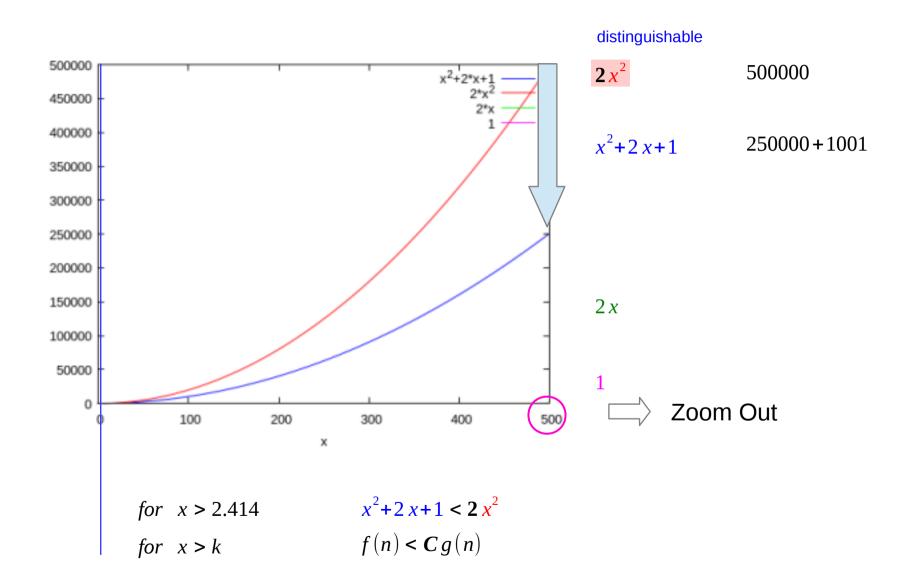
The Growth of Functions (2A)

Young Won Lim 4/4/18

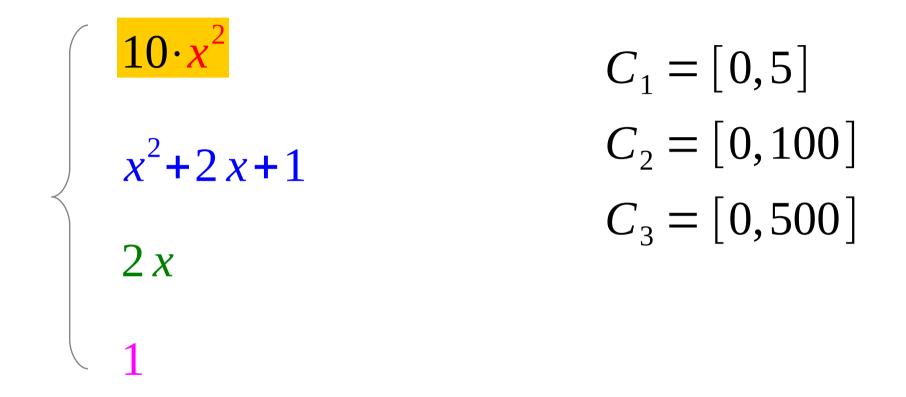
Medium Range, $2x^2$



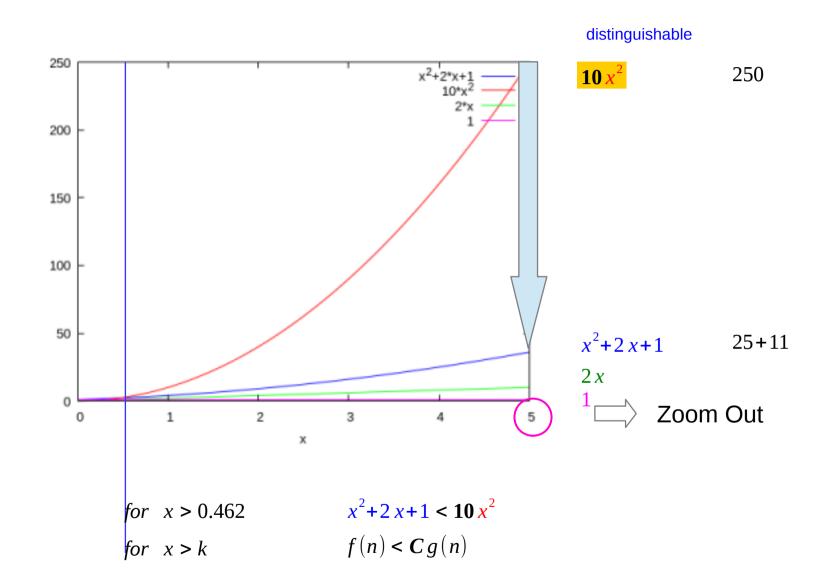
Large Range, $2x^2$



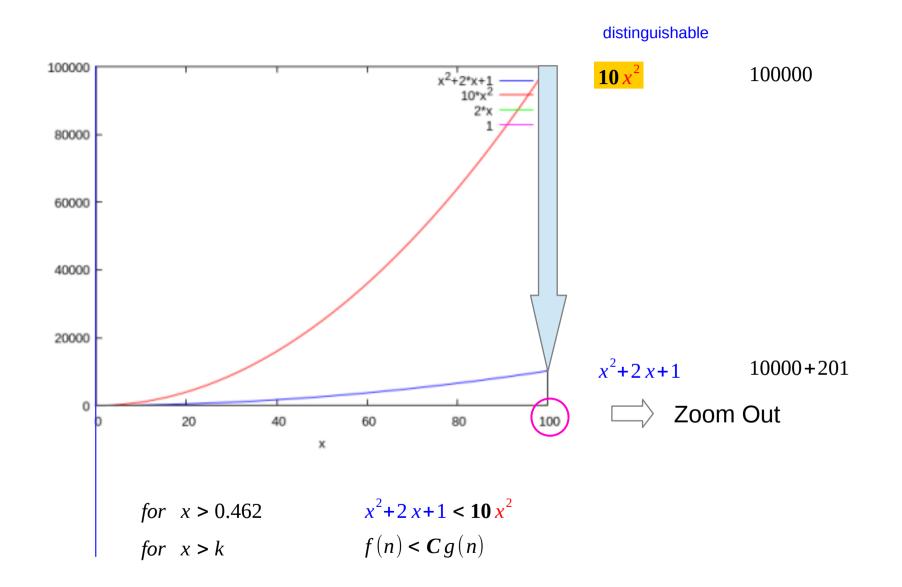
Functions and Ranges

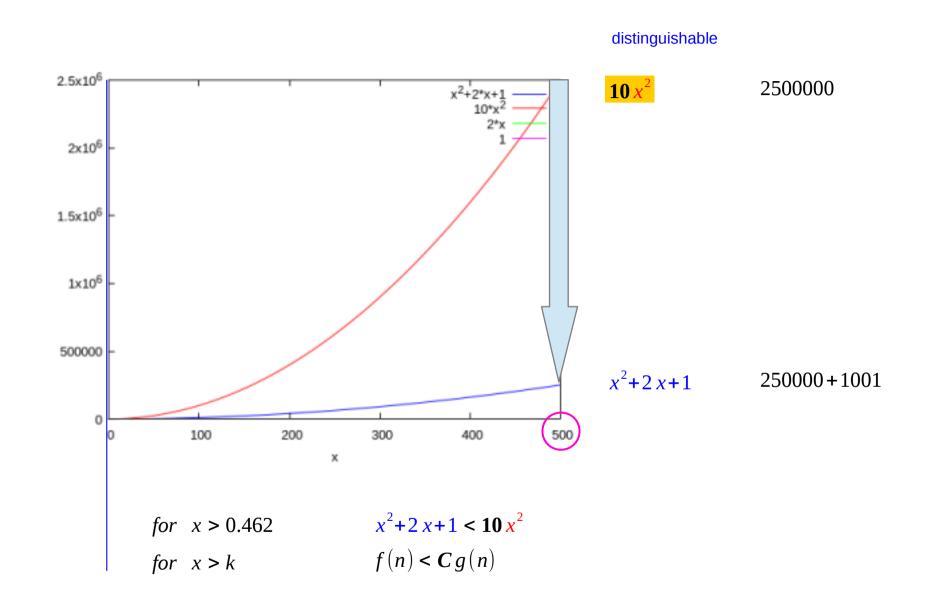


Small Range, *10x*²

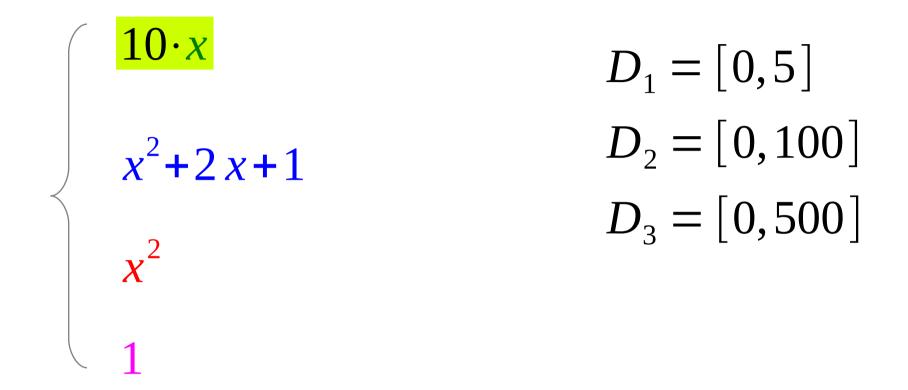


Medium Range, $10x^2$

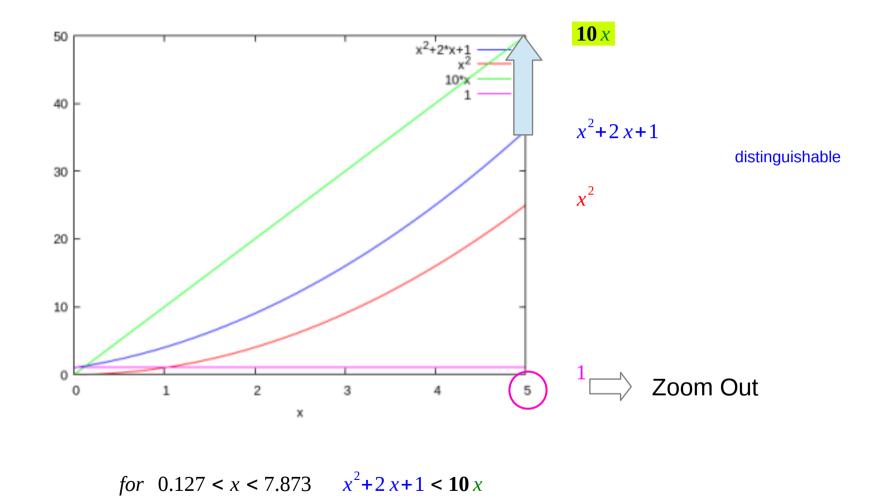




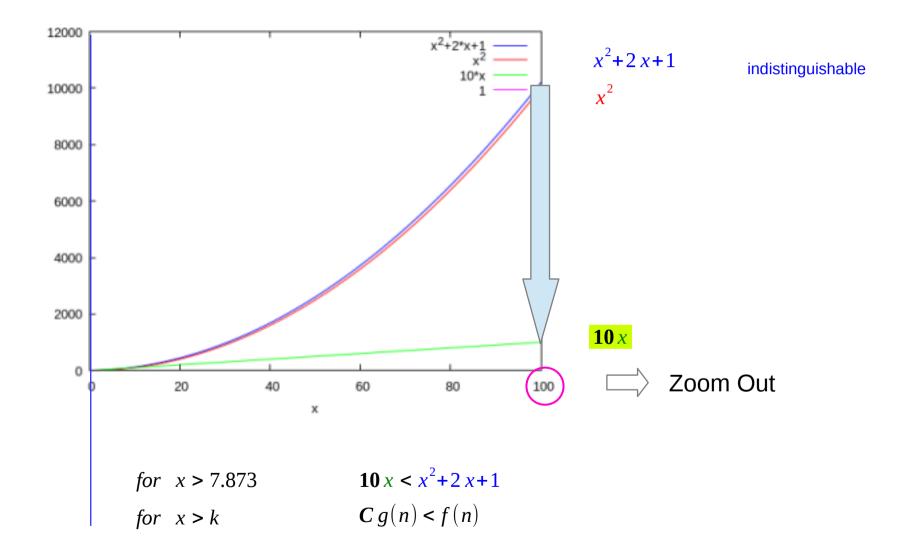
Functions and Ranges

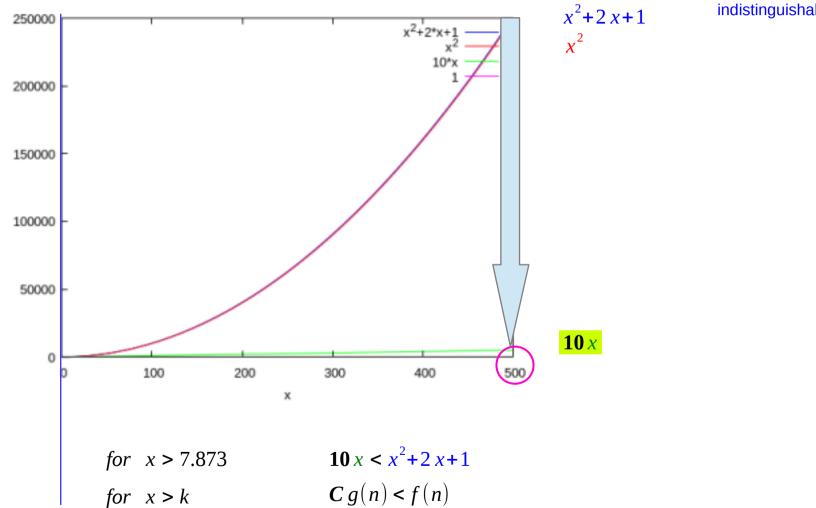


Small Range, *10x*



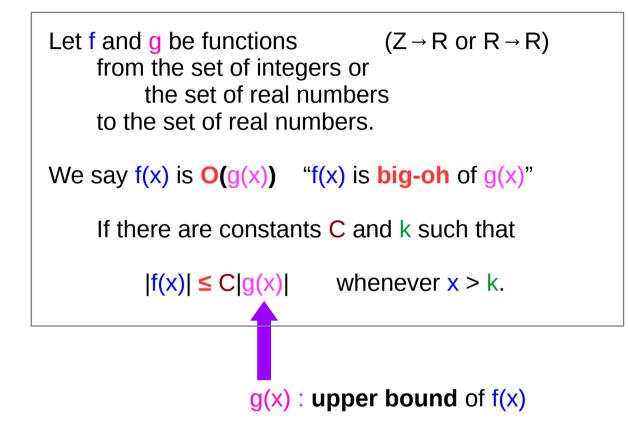
Medium Range, *10x*



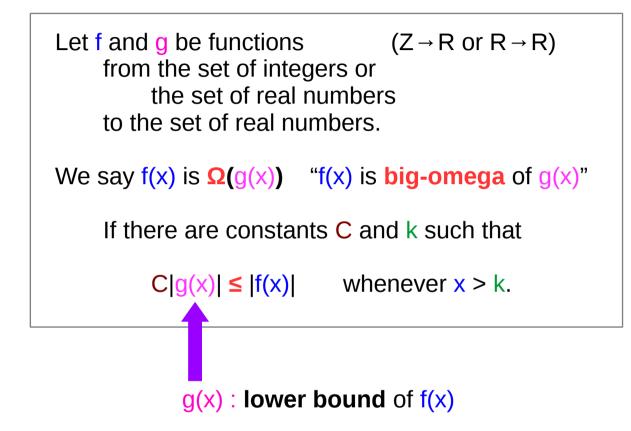


indistinguishable

Big-O Definition



Big- Ω Definition



Big-O Definition

for
$$k < x$$

 $f(x) \le C|g(x)|$
 $f(x) \text{ is } O(g(x))$

g(x) : upper bound of f(x)

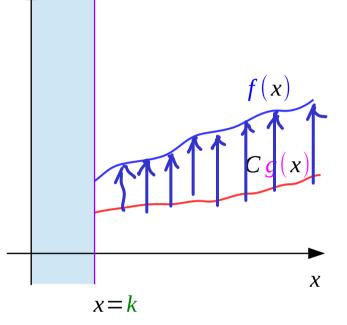
g(x) has a simpler form than f(x) is usually a single term

Big- Ω Definition

for
$$k < x$$

$$f(x) \ge C|g(x)|$$

$$f(x) \text{ is } \Omega(g(x))$$



g(x) : lower bound of f(x)

g(x) has a simpler form than f(x) is usually a single term

for
$$k < x$$

$$f(x) \leq C|g(x)| \iff f(x) \text{ is } O(g(x))$$

$$C|g(x)| \leq f(x) \iff f(x) \text{ is } \Omega(g(x))$$

$$C_1|g(x)| \leq f(x) \leq C_2|g(x)| \iff f(x) \text{ is } \Theta(g(x))$$

$$\Omega(g^{(x)}) \qquad O(g^{(x)})$$

$Big-\Theta = Big-\Omega \cap Big-O$

for
$$k < x$$

$$0.|x^{k} < x^{k} + 2x + | < |0x^{k}$$

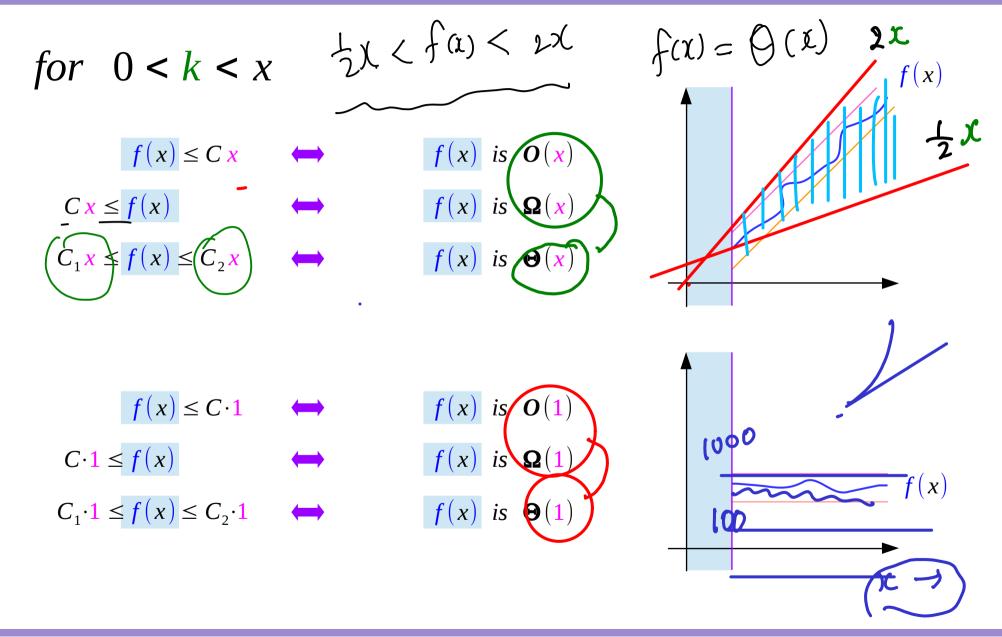
$$0.|x^{k} < x^{k} + 2x + | < |0x^{k}$$

$$Q(g(x)) \Rightarrow Q(x^{k}) \in (0(x^{k}))$$

$$C_{1}|g(x)| \le f(x) \le C_{2}|g(x)| \iff f(x) \text{ is } \Theta(g(x))$$

$$Q(g(x)) \Rightarrow Q(g(x))$$

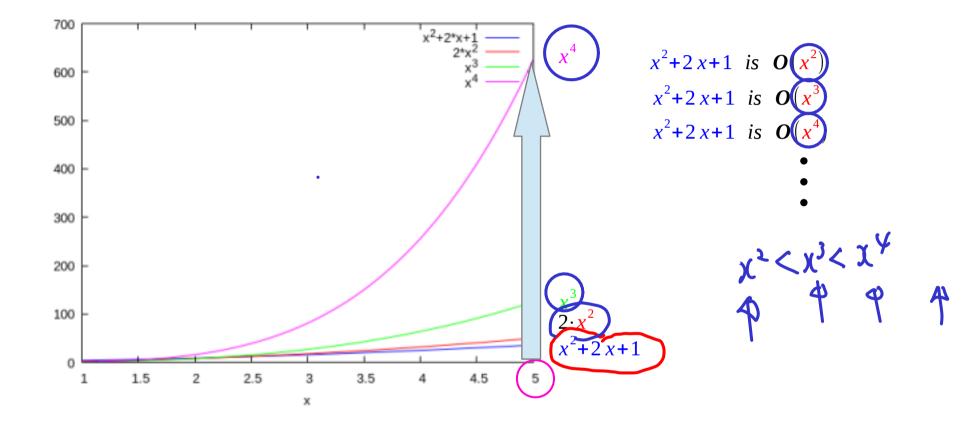
$$\Omega(g(x)) \wedge O(g(x)) \iff \Theta(g(x))$$



Big-O, Big- Ω , Big- Θ Examples

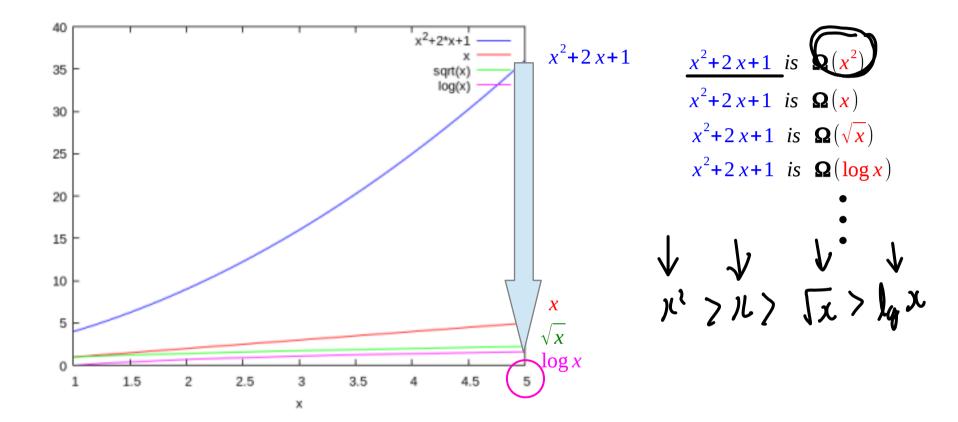


Many Larger Upper Bounds



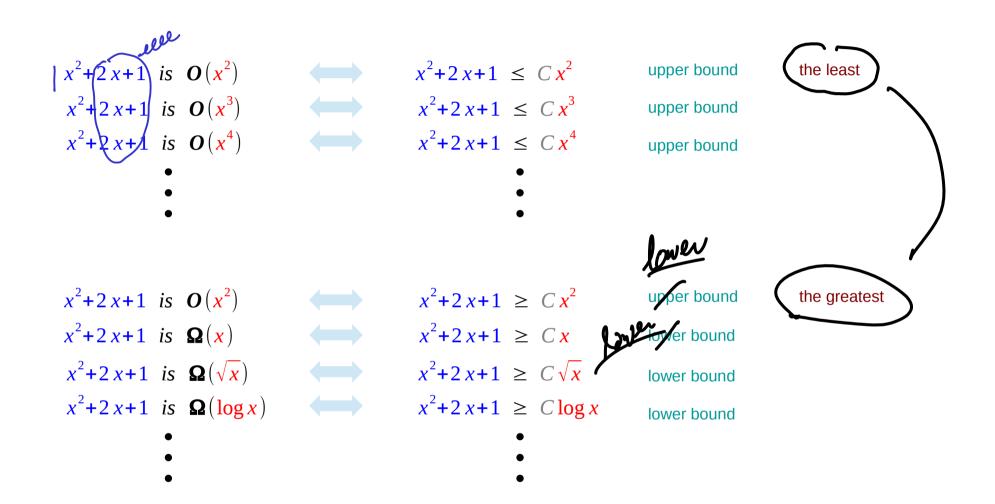
the least upper bound?

Many Smaller Lower Bounds

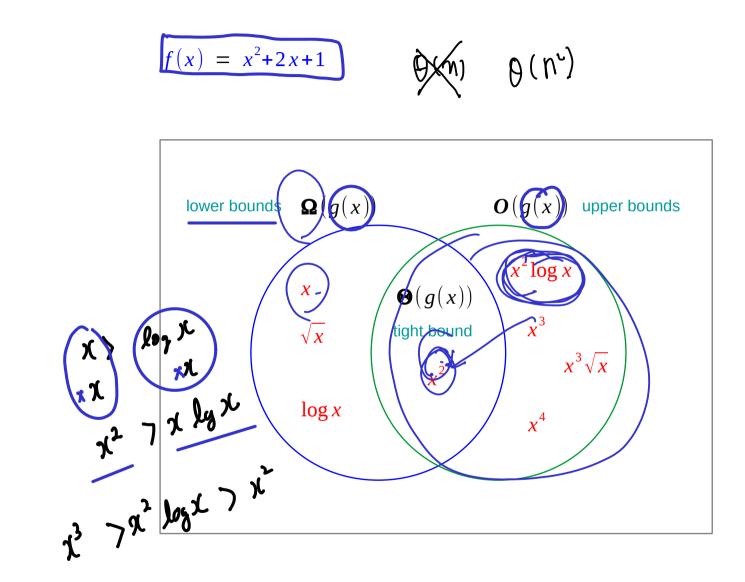


the greatest lower bound?

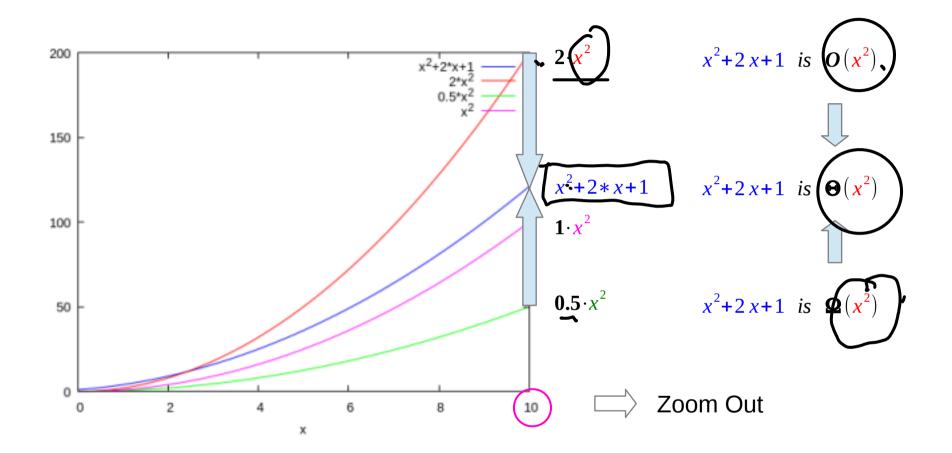
Many Upper and Lower Bounds



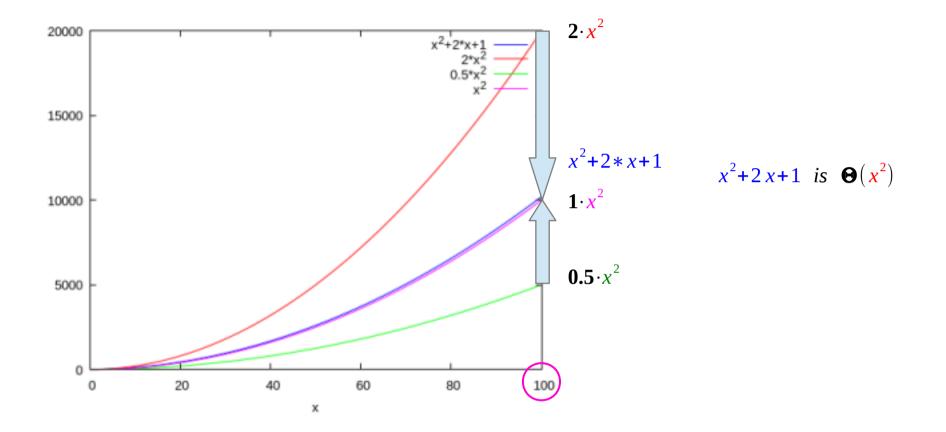
Simultaneously being lower and upper bound



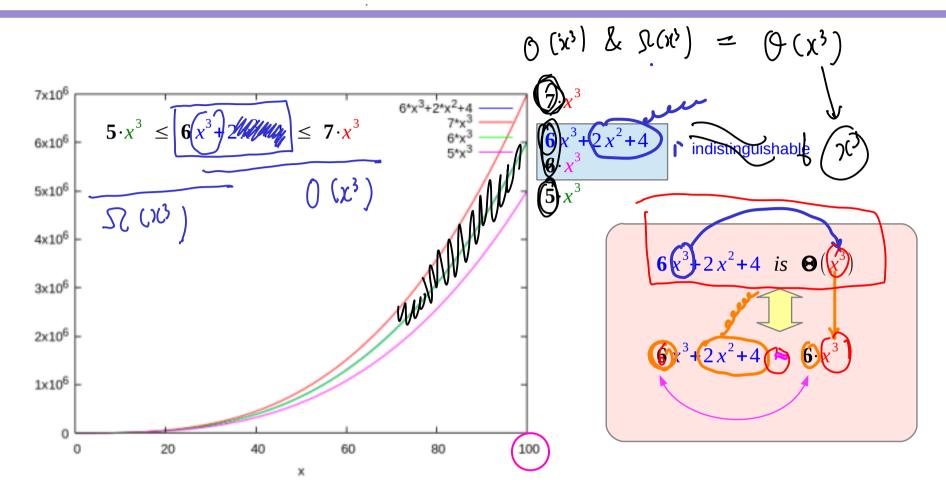
Big-**O** Examples (1)



Big-**O** Examples (2)



Big-**O** Examples (3)



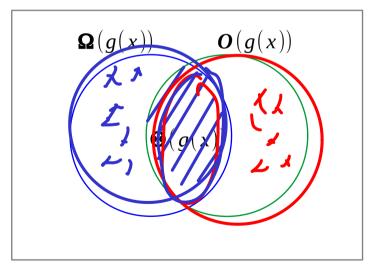
Tight bound Implications

$$f(x) \text{ is } \Theta(g(x)) \longrightarrow f(x) \text{ is } O(g(x))$$

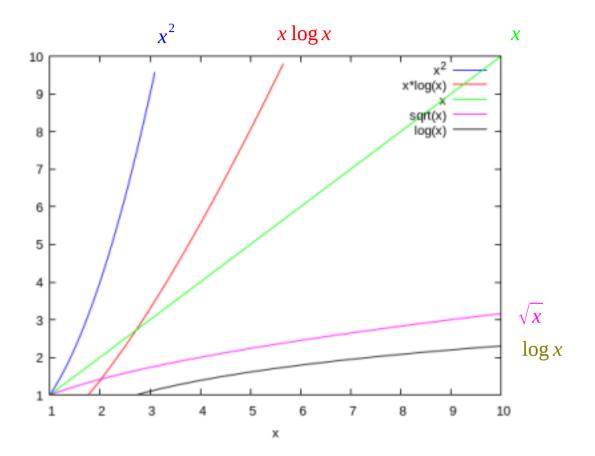
$$f(x) \text{ is } \Theta(g(x)) \longrightarrow f(x) \text{ is } \Omega(g(x))$$

$$f(x) \text{ is } \Theta(g(x)) \longrightarrow f(x) \text{ is } O(g(x))$$

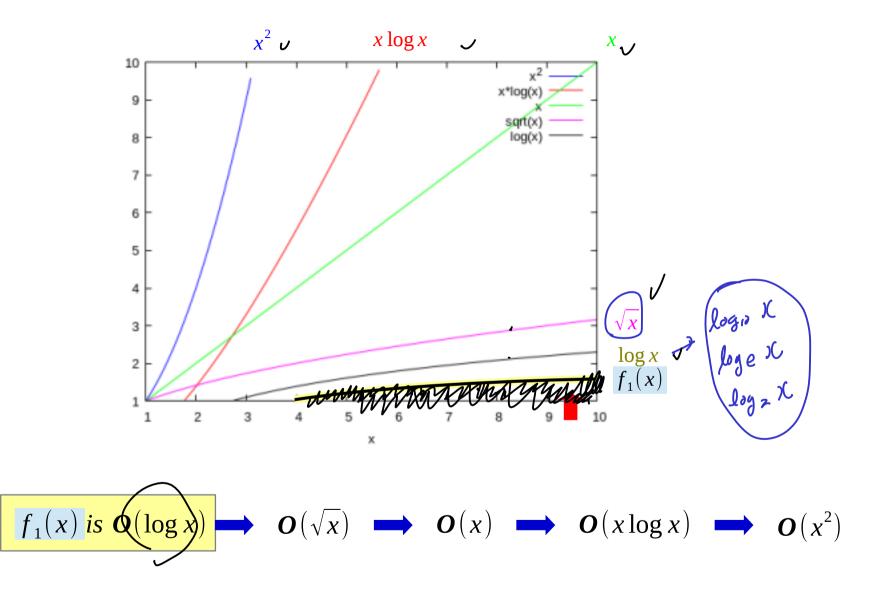
$$f(x) \text{ is } \Theta(g(x)) \longrightarrow f(x) \text{ is } \Omega(g(x))$$



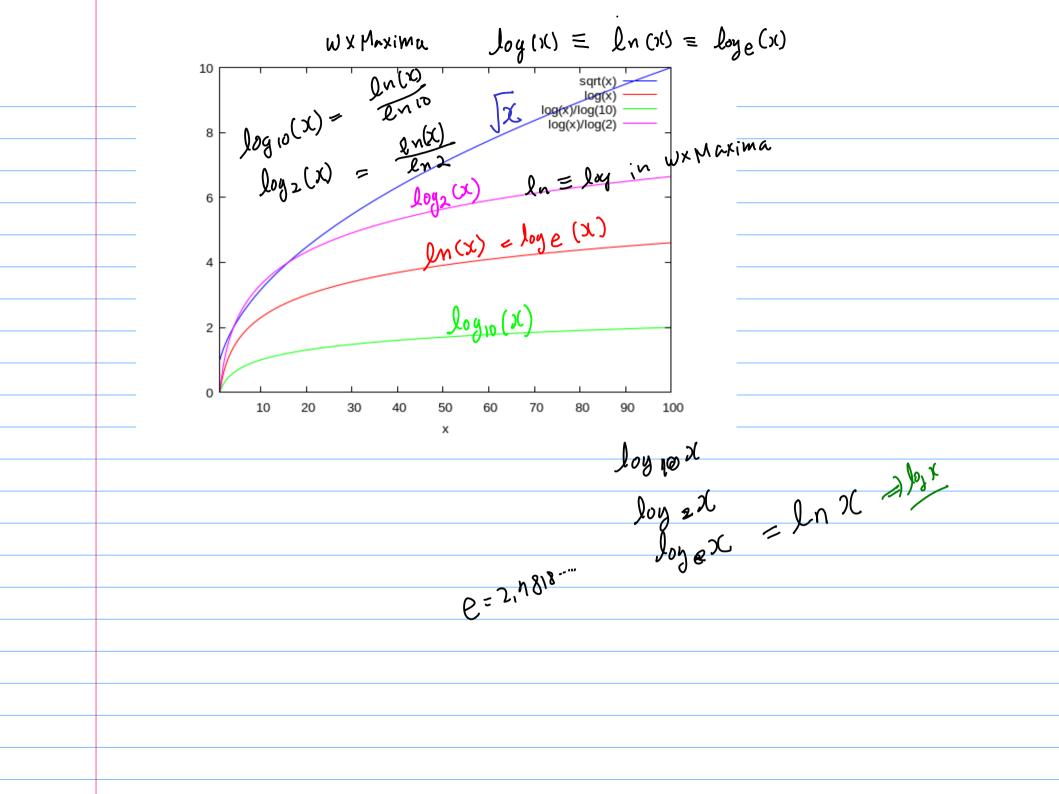
Common Growth Functions



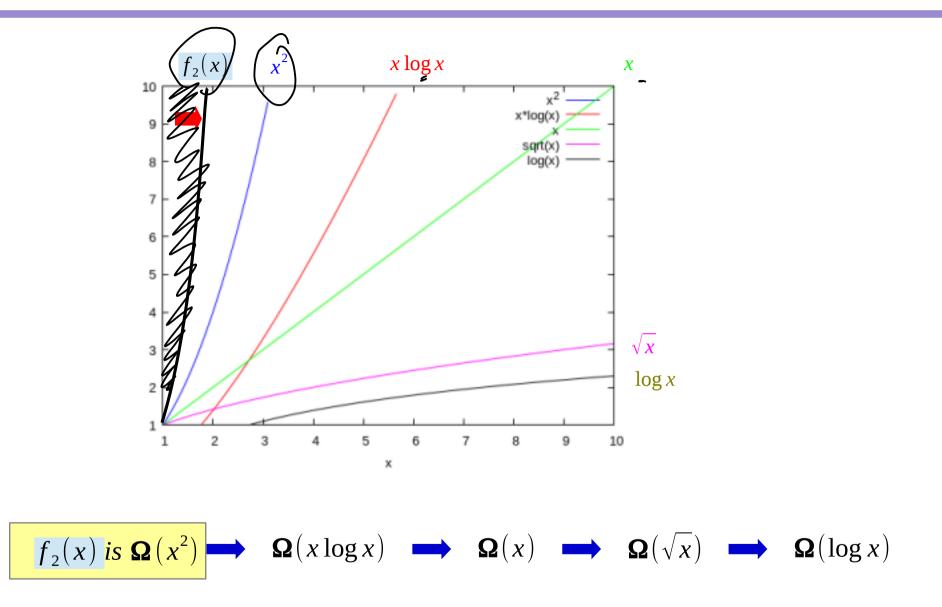
Upper bounds



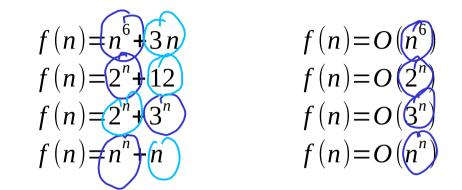
•

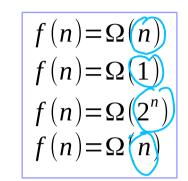


Lower bounds



Example 1





https://discrete.gr/complexity/

Example 2

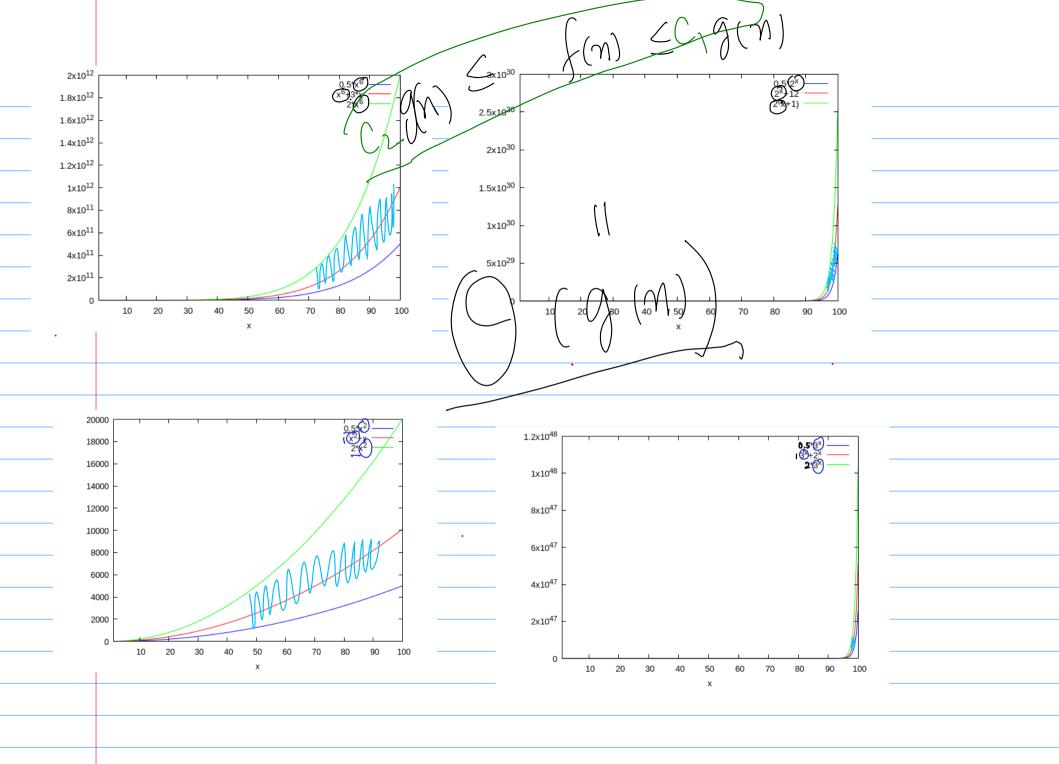
$$\begin{array}{ll} f(n) = n^{6} + 3n & f(n) = O(n^{6}) \\ f(n) = 2^{n} + 12 & f(n) = O(2^{n}) \\ f(n) = 2^{n} + 3^{n} & f(n) = O(3^{n}) \\ f(n) = n^{n} + n & f(n) = O(n^{n}) \end{array} \begin{array}{ll} f(n) = \Omega(n^{6}) \\ f(n) = \Omega(2^{n}) \\ f(n) = \Omega(3^{n}) \\ f(n) = \Omega(n^{n}) \end{array} \begin{array}{ll} f(n) = \Omega(2^{n}) \\ f(n) = \Omega(3^{n}) \\ f(n) = \Omega(n^{n}) \end{array} \begin{array}{ll} f(n) = O(2^{n}) \\ f(n) = O(3^{n}) \\ f(n) = \Omega(n^{n}) \end{array}$$

$$\begin{array}{rcl} 0.5 \, \eta^6 &\leq & \eta^6 + 3\eta &\leq & 2 \, \eta^6 \\ 0.5 \, 2^n &\leq & 2^n + 1 \, 2 &\leq & 2 \, 2^n \\ 0.5 \, 3^n &\leq & 2^n + 3^n &\leq & 2 \, 3^n \\ 0.5 \, \eta^n &\leq & & \eta^n + \eta &\leq & 2 \, \eta^n \end{array}$$

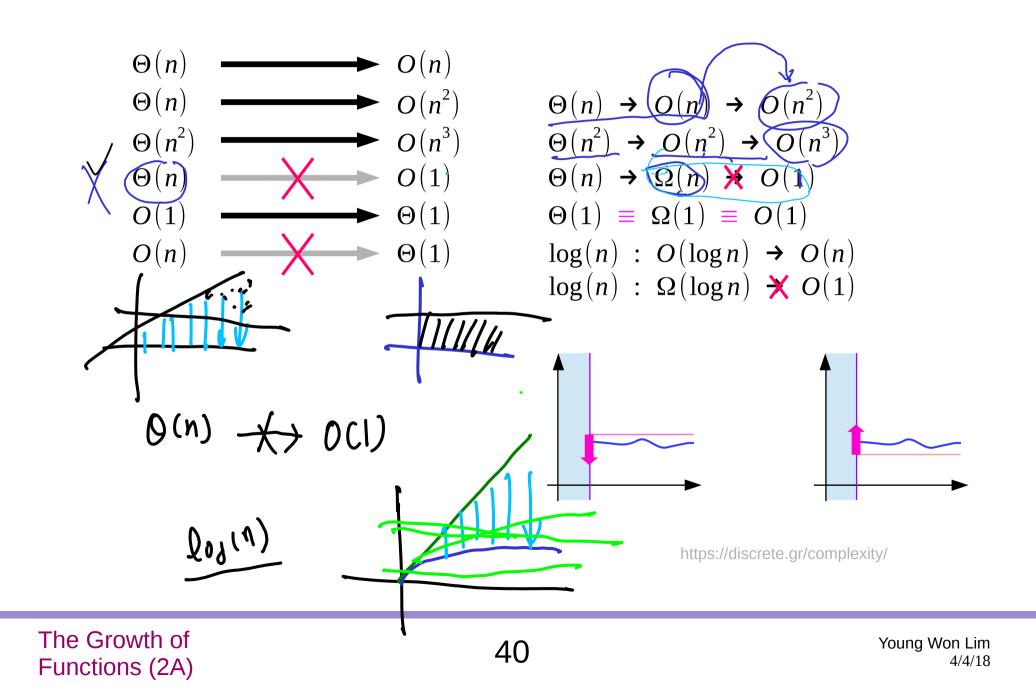
https://discrete.gr/complexity/

The Growth of Functions (2A)

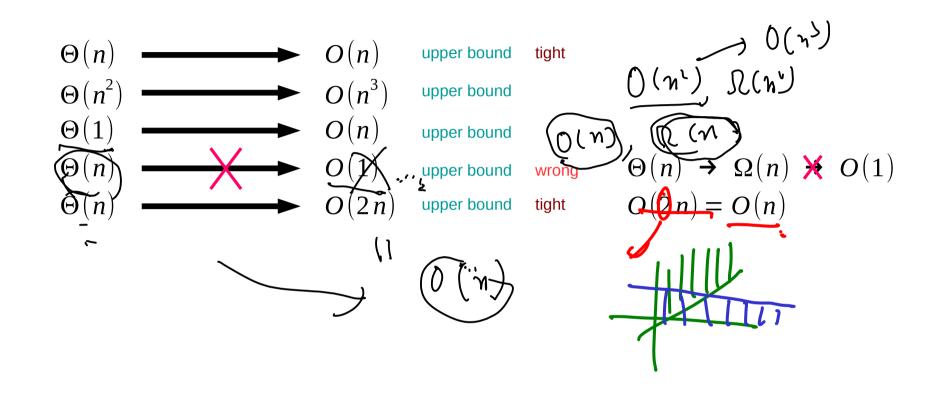
Young Won Lim 4/4/18



Example 3



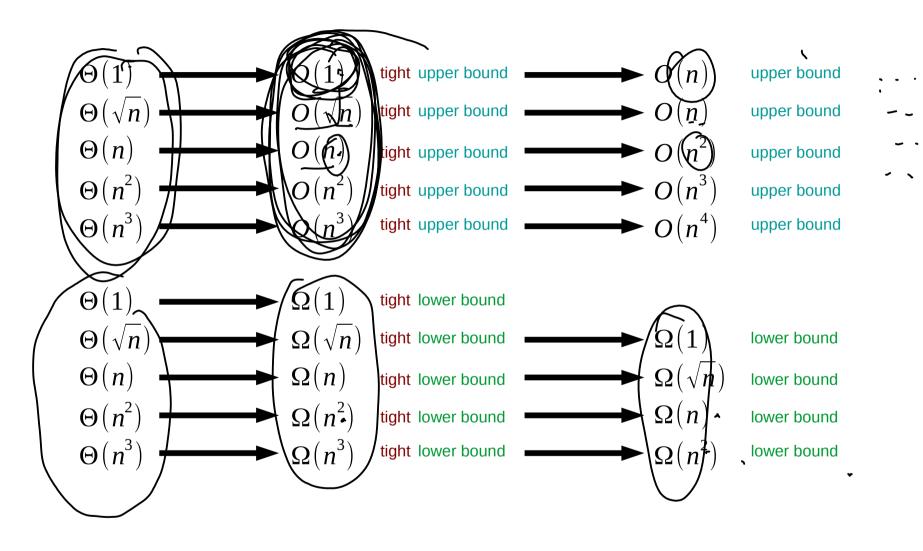
f(n) f(n $O(n) \rightarrow O(l)$ • $\begin{array}{c} O(n) \longrightarrow O(n) \\ \longrightarrow \mathcal{N}(n) \end{array}$ f.()) O(I)



https://discrete.gr/complexity/

The Growth of Functions (2A)

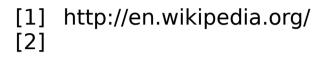
Example 5



https://discrete.gr/complexity/

The Growth of Functions (2A)

References



The Complexity of Algorithms (3A)

Copyright (c) 2015 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Complexity Analysis

- to <u>compare</u> algorithms at the <u>idea</u> level <u>ignoring</u> the low level <u>details</u>
- To measure how <u>fast</u> a program is
- To explain how an algorithm behaves as the <u>input grows larger</u>

Counting Instructions

 Assigning a value to a variable 	x= 100;
 Accessing a value of a particular array element 	A[i]
 Comparing two values 	(x > y)
 Incrementing a value 	j++
 Basic arithmetic operations 	+, -, *, /
 Branching is not counted 	if else

https://discrete.gr/complexity/

4

Asymptotic Behavior

- <u>avoiding tedious</u> instruction counting
- <u>eliminate</u> all the <u>minor</u> details
- focusing how algorithms behaves when treated badly
- drop all the terms that grow slowly
- only keep the ones that grow fast as **n** becomes larger

Finding the Maximum

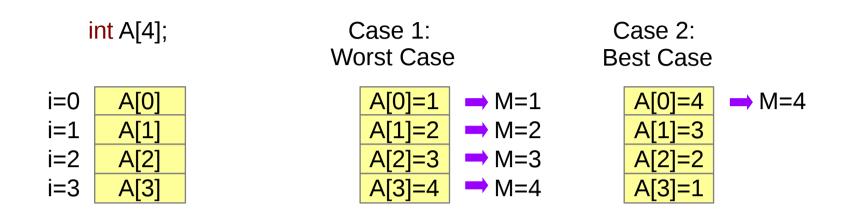
// M is set to the $\mathbf{1}^{st}$ element

// if the (i+1)th element is greater than M,// M is set to that element (new maximum value)

- int A[n]; // n element integer array A
- int M; // the current maximum value found so far

// set to the 1st element, initially

Worst and Best Cases



Assignment

A[0] - 1 instructionM = -1 instruction

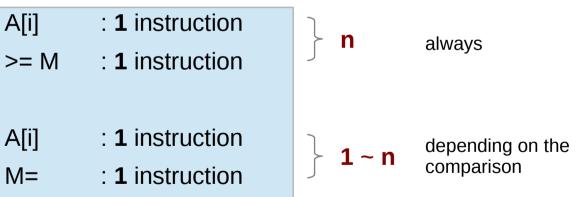
// 2 instructions

Loop instructions

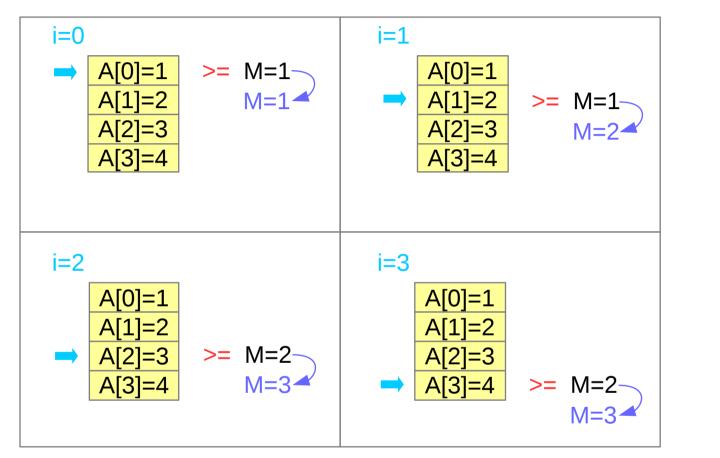
Initialization * 1

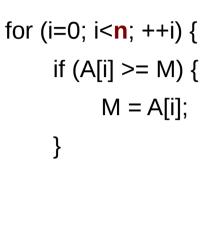
i=0	: 1 instruction
i <n< td=""><td>: 1 instruction</td></n<>	: 1 instruction
Update	* n
++i	: 1 instruction
i <n< td=""><td>: 1 instruction</td></n<>	: 1 instruction

Loop body * **n**



Worst case examples

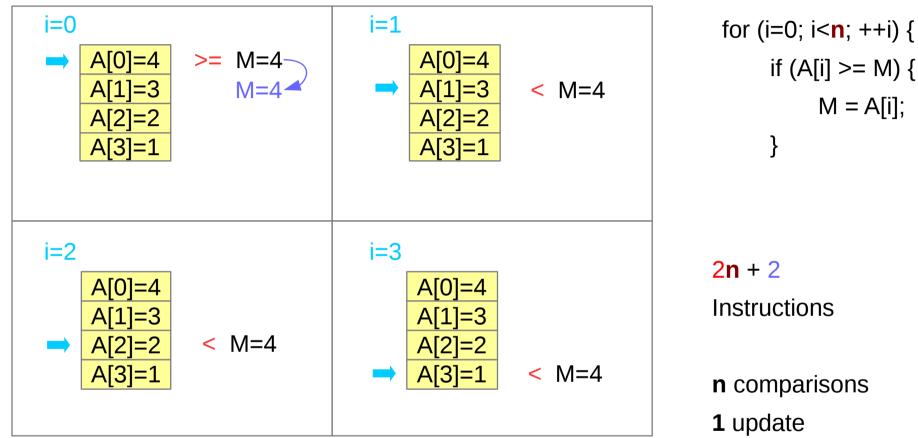




2n + 2n = 4nInstructions

n comparisonsn updates

Best case examples



if (A[i] >= M) { M = A[i];} Instructions

n comparisons

1 update

Asymptotic behavior

$$M = A[0]; -----2 \qquad \text{instructions}$$
for (i=0; i= M) { -----2n \qquad \text{instructions}}
$$M = A[i]; -----2 \sim 2n \qquad \text{instructions}}$$
}
$$f(n) = \begin{cases} 6n+4 \qquad \text{instructions for the worst case}} \\ 4n+6 \qquad \text{instructions for the worst case} \end{cases}$$

4n+6 instruction for the best case

$$f(\mathbf{n}) = O(\mathbf{n})$$
$$f(\mathbf{n}) = \Omega(\mathbf{n})$$
$$f(\mathbf{n}) = \Theta(\mathbf{n})$$

O(n) codes

// Here c is a positive integer constant
for (i = 1; i <= n; i += c) {
 // some O(1) expressions
}</pre>

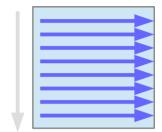
for (int i = **n**; i > 0; i -= c) {

// some O(1) expressions

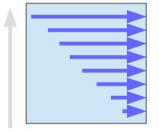
https://stackoverflow.com/questions/11032015/how-to-find-time-complexity-of-an-algorithm

O(n²) codes

for (i = 1; i <=n; i += c) {
 for (j = 1; j <=n; j += c) {
 // some O(1) expressions
 }
}</pre>



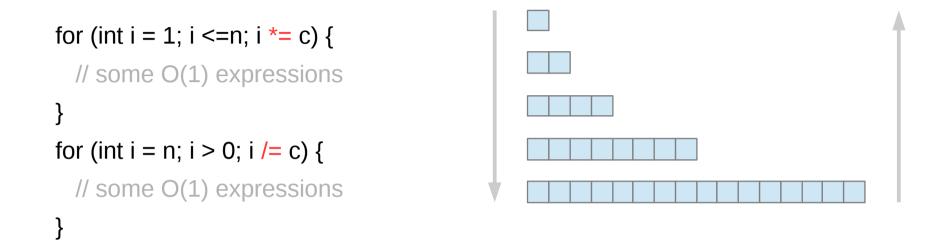
for (i = **n**; i > 0; i += c) { for (j = i+1; j <=**n**; j += c) { // some O(1) expressions



https://stackoverflow.com/questions/11032015/how-to-find-time-complexity-of-an-algorithm

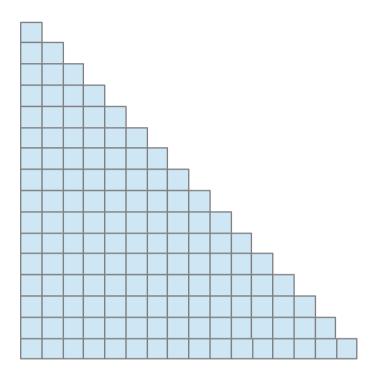
The Complexity of Algorithms (3A)

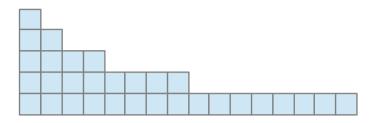
O(log n) codes



https://stackoverflow.com/questions/11032015/how-to-find-time-complexity-of-an-algorithm

O(**n**) vs. O(log **n**)





https://stackoverflow.com/questions/11032015/how-to-find-time-complexity-of-an-algorithm

The Complexity of Algorithms (3A)

O(log n) codes

// Here c is a constant greater than 1

for (int i = 2; i <=n; i = pow(i, c)) { // i = i^c $i = i^2, i = i^3$ // some O(1) expressions }

//Here fun is sqrt or cuberoot or any other constant root

for (int i = n; i > 0; i = fun(i)) { $// i = i^{(1/c)}$

// some O(1) expressions

https://stackoverflow.com/questions/11032015/how-to-find-time-complexity-of-an-algorithm

O(log log n) codes

// Here c is a constant greater than 1

for (int i = 2; i <=n; i = pow(i, c)) { // i = i^c $i = i^2 (2, 2^2, 2^4, 2^8, 2^{16}, \cdots)$ // some O(1) expressions }

//Here fun is sqrt or cuberoot or any other constant root

for (int i = n; i > 0; i = fun(i)) { // i = i^{(1/c)} i = i^{\frac{1}{2}} (n, n^{\frac{1}{2}}, n^{\frac{1}{4}}, n^{\frac{1}{8}}, n^{\frac{1}{16}}, \cdots)

// some O(1) expressions

https://stackoverflow.com/questions/11032015/how-to-find-time-complexity-of-an-algorithm

O(log log n) codes

// Here c is a constant greater than 1

for (int i = 2; i <=n; i = pow(i, c)) { // i = i^c $i = i^2 (2, 2^2, 2^4, 2^8, 2^{16}, \cdots)$ // some O(1) expressions }

//Here fun is sqrt or cuberoot or any other constant root

for (int i = n; i > 0; i = fun(i)) { // i = i^{(1/c)} i = i^{\frac{1}{2}} (n, n^{\frac{1}{2}}, n^{\frac{1}{4}}, n^{\frac{1}{8}}, n^{\frac{1}{16}}, \cdots)

// some O(1) expressions

https://stackoverflow.com/questions/11032015/how-to-find-time-complexity-of-an-algorithm

Some Algorithm Complexities and Examples (1)

O(1) – Constant Time

not affected by the input size **n**.

O(n) – Linear Time

Proportional to the input size **n**.

O(log n) – Logarithmic Time

recursive subdivisions of a problem binary search algorithm

O(n log n) – Linearithmic Time

Recursive subdivisions of a problem and then merge them merge sort algorithm.

https://stackoverflow.com/questions/11032015/how-to-find-time-complexity-of-an-algorithm

Some Algorithm Complexities and Examples (2)

O(n2) – Quadratic Time

bubble sort algorithm

O(n3) – Cubic Time straight forward matrix multiplication

O(2^n) – Exponential Time

Tower of Hanoi

O(n!) – Factorial Time

Travel Salesman Problem (TSP)

https://stackoverflow.com/questions/11032015/how-to-find-time-complexity-of-an-algorithm

References

