
Young Won Lim
9/28/18

Haskell Implementation - Background (1A)

Young Won Lim
9/28/18

 Copyright (c) 2016 - 2018 Young W. Lim.
 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

CORDIC in Haskell
Background (1A)

3 Young Won Lim
9/28/18

Based on

The original work :

expression-oriented/cordic github
https://github.com/expression-oriented/cordic

Copyright Ben Barnes (c) 2016
All rights reserved.
https://github.com/expression-oriented/cordic/blob/master/LICENSE

This work is based on the work of Ben Barnes.

https://github.com/expression-oriented/cordic/blob/master/LICENSE

CORDIC in Haskell
Background (1A)

4 Young Won Lim
9/28/18

module CORDIC

(

 cordic

) where

import Util

https://github.com/expression-oriented/cordic

cordic source (1)

CORDIC in Haskell
Background (1A)

5 Young Won Lim
9/28/18

-- | (index, remainder, (x, y)) used in fold

type State = (Int, Double, (Double, Double))

-- | Initialize (x, y) and index, execute fold, scale result

-- | Parameter `a` is the angle in radians, `n` is the number of iterations

-- | The result is a pair (cos a, sin a)

cordic :: Double -> Int -> (Double, Double)

cordic a n = let

 initial = (0, a, (1, 0))

 (i, _, (c, s)) = foldl step initial $ take n alist

 k = klist !! i

in (k * c, k * s)

cordic source (2)

https://github.com/expression-oriented/cordic

CORDIC in Haskell
Background (1A)

6 Young Won Lim
9/28/18

-- |Core of the algorithm - generates next (x, y) from current

step :: State -> Double -> State

step (i, a, v) d

 | a > 0 = (i', a - d, mult i 1 v)

 | a < 0 = (i', a + d, mult i (-1) v)

 | otherwise = (i', a, v)

where i' = i + 1

cordic source (3)

https://github.com/expression-oriented/cordic

CORDIC in Haskell
Background (1A)

7 Young Won Lim
9/28/18

-- | Multiplies 'vector' (x, y) by i'th rotation matrix

mult :: Int -> Double -> (Double, Double) -> (Double, Double)

mult i sign (x, y) = let

 mu = if sign < 0

 then negate

 else id

 x' = x - mu (s y (-i))

 y' = y + mu (s x (-i))

 in (x', y')

cordic source (4)

https://github.com/expression-oriented/cordic

CORDIC in Haskell
Background (1A)

8 Young Won Lim
9/28/18

{- Provides constants used by the CORDIC algorithm.

 - `alistF` is a list of angles [atan 1, atan (1/2), atan (1/4, ...]

 - `klistF` is a list of the scaling constants for each iteration

 - Traditionally these would have been hard-coded for performance; they are

 - generated programmatically here for simplicity.

 -}

module Util

(

 alist,

 klist

) where

cordic util (1)

https://github.com/expression-oriented/cordic

CORDIC in Haskell
Background (1A)

9 Young Won Lim
9/28/18

-- |Infinite list of angles with tangent ratios [1, 1/(2^i)]

alist :: [Double]

alist = [atan (1 / 2 ^ e) | e <- [0 ..]]

cordic util (2)

https://github.com/expression-oriented/cordic

CORDIC in Haskell
Background (1A)

10 Young Won Lim
9/28/18

-- |Infinite list of scaling factors

klist :: [Double]

klist = klist' 1 (k 0)

-- |Recursive generator for scaling factors

klist' :: Int -> Double -> [Double]

klist' i n = n : klist' (i + 1) (k i * n)

-- |Scaling factor k at iteration i

k :: Int -> Double

k i = 1 / sqrt (1 + 2 ^^ ((-2) * i))

cordic util (3)

https://github.com/expression-oriented/cordic

CORDIC in Haskell
Background (1A)

11 Young Won Lim
9/28/18

take :: Int -> [a] -> [a]

base Prelude, base Data.List

take n, applied to a list xs, returns the prefix of xs of length n,

or xs itself if n > length xs:

> take 5 "Hello World!" == "Hello"

> take 3 [1,2,3,4,5] == [1,2,3]

> take 3 [1,2] == [1,2]

> take 3 [] == []

> take (-1) [1,2] == []

> take 0 [1,2] == []

It is an instance of the more general Data.List.genericTake,

in which n may be of any integral type.

https://www.haskell.org/hoogle/?hoogle=take

take

CORDIC in Haskell
Background (1A)

12 Young Won Lim
9/28/18

shift :: a -> Int -> a infixl 8

shift x i shifts x left by i bits if i is positive, or right by -i bits otherwise.

Right shifts perform sign extension on signed number types;

i.e. they fill the top bits with 1 if the x is negative and with 0 otherwise.

An instance can define either this unified shift or shiftL and shiftR,

depending on which is more convenient for the type in question.

https://www.haskell.org/hoogle/?hoogle=take

shift

CORDIC in Haskell
Background (1A)

13 Young Won Lim
9/28/18

newtype Fixed

A signed 2s complement 15.16 scale fixed precision number

Constructors

Fixed

getFixed :: Cint

fromFixed :: Fixed -> Double

Source

toFixed :: Double -> Fixed

https://www.haskell.org/hoogle/?hoogle=take

Numeric.Fixed

CORDIC in Haskell
Background (1A)

14 Young Won Lim
9/28/18

(!!) :: [a] -> Int -> a infixl 9

List index (subscript) operator, starting from 0.

It is an instance of the more general genericIndex,

which takes an index of any integral type.

!! indexes lists.

It takes a list and an index, and returns the item at that index.

If the index is out of bounds, it returns .⊥.

http://hackage.haskell.org/package/base-4.7.0.0/docs/Prelude.html#v%3a-33--33-

https://stackoverflow.com/questions/24421934/double-exclamation-marks-in-haskell

!!

http://hackage.haskell.org/package/base-4.7.0.0/docs/Prelude.html#v%3A-33--33-
https://stackoverflow.com/questions/24421934/double-exclamation-marks-in-haskell

Young Won Lim
9/28/18

References

[1] https://github.com/expression-oriented/cordic

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15

