OpenStax University Physics Volume 1/Formulas

Introduction:

metric prefixes

da	h	k	M	G	T	P	E	Z	Y
deca	hecto	kilo	mega	giga	tera	peta	exa	zetta	yotta
$1 E+01$	$1 E+02$	$1 E+03$	$1 E+06$	$1 E+09$	$1 E+12$	$1 E+15$	$1 E+18$	$1 E+21$	$1 E+24$
d	c	m	μ	n	p	f	a	z	y
deci	centi	milli	micro	nano	pico	femto	atto	zepto	yocto
$1 E-01$	$1 E-02$	$1 E-03$	$1 E-06$	$1 E-09$	$1 E-12$	$1 E-15$	$1 E-18$	$1 E-21$	$1 E-24$

1. Units_and_Measurement: The base SI units are mass: kg (kilogram); length: m (meter); time: s (second). ${ }^{[1]}$ Percent error] is $(\delta A / A) \times 100 \%$
2. Vectors: Vector $\vec{A}=A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k}$ involves components ($\mathrm{A}_{\mathrm{x}}, \mathrm{A}_{\mathrm{y}}, \mathrm{A}_{\mathrm{z}}$) and [2] unit vectors. [3] \square If $\vec{A}+\vec{B}=\vec{C}$, then $\mathrm{A}_{\mathrm{x}}+\mathrm{B}_{\mathrm{x}}=\mathrm{C}_{\mathrm{x}}$, etc, and vector subtraction is defined by $\vec{B}=\vec{C}-\vec{A}$.

- The two-dimensional displacement from the origin is $\vec{r}=x \hat{i}+y \hat{j}$. The magnitude is $A \equiv|\vec{A}|=\sqrt{A_{x}^{2}+A_{y}^{2}}$. The angle (phase) is $\theta=\tan ^{-1}(y / x) . \square \underline{\text { Scalar multiplication }}$
 $\alpha \vec{A}=\alpha A_{x} \hat{i}+\alpha A_{y} \hat{j}+\ldots \quad \square$ Any vector divided by its magnitude is a unit vector and has unit magnitude: $|\hat{V}|=1$ where $\hat{V} \equiv \vec{V} / V \square$ Dot product $\vec{A} \cdot \vec{B}=A B \cos \theta=A_{x} B_{x}+A_{y} B_{y}+\ldots \quad$ and $\vec{A} \cdot \vec{A}=A^{2} \square$ Cross product $\vec{A}=\vec{B} \times \vec{C} \Rightarrow A_{\alpha}=\overline{B_{\beta} C_{\gamma}-C_{\gamma}} A_{\beta}$ where (α, β, γ) is any cyclic permutation of (x, y, z), i.e., ($\left.\alpha, \beta, \gamma\right)$ represents either (x,y,z) or (y,z,x) or (z,x,y). \square Cross-product magnitudes obey $A=B C \sin \theta$ where θ is the angle between \vec{B} and \vec{C}, and $\vec{A} \perp\{\vec{B}, \vec{C}\}$ by the right hand rule. \square Vector identities $c(\mathbf{A}+\mathbf{B})=c \mathbf{A}+c \mathbf{B} \quad \square \mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$
$\mathbf{A}+(\mathbf{B}+\mathbf{C})=(\mathbf{A}+\mathbf{B})+\mathbf{C}$
$\mathbf{A} \cdot \mathbf{B}=\mathbf{B} \cdot \mathbf{A} \quad \square \mathbf{A}$
$\mathbf{A} \times \mathbf{B}=-\mathbf{B} \times \mathbf{A}$
$\square(\mathbf{A}+\mathbf{B}) \cdot \mathbf{C}=\mathbf{A} \cdot \mathbf{C}+\mathbf{B} \cdot \mathbf{C}$ [4]

3. Motion_Along_a_Straight_Line: [5] ם Average velocity $\bar{v}=\Delta x / \Delta t \rightarrow v=d x / d t$ (instantaneous velocity)
 $v(t)=\int_{0}^{t} a\left(t^{\prime}\right) d t^{\prime}+v_{0}, \quad x(t)=\int_{0}^{t} v\left(t^{\prime}\right) d t^{\prime}+x_{0}=x_{0}+\bar{v} t^{[6]} \quad \square \quad$ At constant acceleration: $\bar{v}=\frac{v_{0}+v}{2}, \quad v=v_{0}+a t, \quad x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}, v^{2}=v_{0}^{2}+2 a \Delta x . \square$ For free fall, replace $x \rightarrow y$ (positive up) and $a \rightarrow-g$, where $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$ at Earth's surface).
4. Motion_in_Two_and_Three_Dimensions:

Instantaneous
velocity:
$\vec{v}(t)=v_{x}(t) \hat{i}+v_{y}(t) \hat{j}+v_{z}(t) \hat{k}=\frac{d x}{d t} \hat{i}+\frac{d y}{d t} \hat{j}+\frac{d z}{d t} \hat{k} \quad \square \quad \vec{v}(t)=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{r}}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{\vec{r}(t+\Delta t)-\vec{r}(t)}{\Delta t}, \quad$ where $\vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}+z(t) \hat{k} \square$ Acceleration $\vec{a}=a_{x} \hat{i}+a_{y} \hat{j}+a_{z} \hat{k}$, where $a_{x}(t)=d v_{x} / d t=d^{2} x / d t^{2} . \underline{\text { [7] } \square \underline{U n i f o r m ~}}$
circular motion: position $\vec{r}(t)$, velocity $\vec{v}(t)=d \vec{r}(t) / d t$, and acceleration $\vec{a}(t)=d \vec{v}(t) / d t: \vec{r}=A \cos \omega t \hat{i}+A \sin \omega t \hat{j}$, $\vec{v}=-A \omega \sin \omega t \hat{i}+A \omega \cos \omega t \hat{j}, \vec{a}=-A \omega^{2} \cos \omega t \hat{i}-A \omega^{2} \sin \omega t \hat{j}$. Note that if $A=r$ then $|\vec{a}|=a_{C}=\omega^{2} r=v^{2} / r$ where $v \equiv|\vec{v}|=\omega r$. ${ }^{[8]} \square$ Relative motion: ${ }^{[9]} \vec{v}_{P S}=\vec{v}_{P S^{\prime}}+\vec{v}_{S^{\prime} S}$, ${ }^{[10]}$
5. Newton's_Laws_of_Motion: ${ }^{[11]} m \vec{a}=d \vec{p} / d t=\sum \vec{F}_{j}$, where $\vec{p}=m \vec{v}$ is momentum, ${ }^{[12]} \sum \vec{F}_{j}$ is the sum of all forces This sum needs only include external forces ${ }^{[13]} \vec{F}_{A B}=-\vec{F}_{B A}$. $\underline{[14]}$
$\square \underline{\text { Weight }}=\vec{w}=m \vec{g}$. \square normal force $^{[15]}|\vec{N}|=N=m g \cos \theta^{[16]} \square \underline{[17]} F=-k x$ where k is the spring constant.
6. Applications_of_Newton's_Laws: $f_{s} \leq \mu_{s} N$ and $f_{k}=\mu_{k} N: f=$ friction, $\mu_{s, k}=$ coefficient of (static,kinetic) friction, $N=$ normal force. \square Centripetal force
 $F_{c}=m v^{2} / r=m r \omega^{2}$ for uniform circular motion. Angular velocity ω is measured in radians per second. ${ }^{[18]} \square$ Drag equation $F_{D}=\frac{1}{2} C \rho A v^{2}$ where $C=$ Drag coefficient, $\rho=\underline{\text { mass density, }} A=$ area, $v=$ speed. Holds approximately for large Reynold's number ${ }^{[19]}$
7. Work_and_Kinetic_Energy: Infinitesimal work ${ }^{[20]} d W=\vec{F} \cdot d \vec{r}=|\vec{F}||d \vec{r}| \cos \theta$ leads to the path integral $W_{A B}=\int_{A}^{B} \vec{F} \cdot d \vec{r} \square$ Work done from $\mathrm{A} \rightarrow \mathrm{B}$ by friction $-f_{k}\left|\ell_{A B}\right|$, gravity $-m g\left(y_{B}-y_{A}\right)$, and spring $-\frac{1}{2} k\left(x_{B}^{2}-x_{A}^{2}\right)$ \square Work-energy theorem: [21] $W_{n e t}=K_{B}-K_{A}$ where kinetic energy $=K=\frac{1}{2} m v^{2}=\frac{p^{2}}{2 m}$. $\square \quad \underline{\text { Power }}$ $=P=d W / d t=\vec{F} \cdot \vec{v}$.
8. Potential_Energy_and_Conservation_of_Energy: Potential Energy: $\Delta U_{A B}=U_{B}-U_{A}=-W_{A B}$; PE at \vec{r} WRT \vec{r}_{0} is $\Delta U=U(\vec{r})-U\left(\vec{r}_{0}\right) \quad U=m g y+\mathcal{C}$ (gravitational PE Earth's surface. $U=\frac{1}{2} k x^{2}+\mathcal{C}$ (ideal spring) - Conservative force: $\oint \vec{F}_{\text {cons }} \cdot d \vec{r}=0$. In $\underline{2 D}, \quad \vec{F}(x, y)$ is conservative if and only if $\vec{F}=-(\partial U / \partial x) \hat{i}-(\partial U / \partial y) \hat{j} \Longleftrightarrow \partial F_{x} / \partial y=\partial F_{y} / \partial x \quad \square$ Mechanical energy is conserved if no non-conservative forces are present: $0=W_{n c, A B}=\Delta(K+U)_{A B}=\Delta E_{A B}$
9. Linear_Momentum_and_Collisions: $\vec{F}(t)=d \vec{p} / d t$, where $\vec{p}=m \vec{v}$ is momentum. \square Impulse-momentum theorem $\vec{J}=F_{\text {ave }} \Delta t=\int_{t_{i}}^{t_{f}} \vec{F} d t=\Delta \vec{p}$. \square For 2 particles in 2D If $\vec{F}_{e x t}=0$ then $\sum_{j=1}^{N} \vec{p}_{j}=0 \Rightarrow p_{f, \alpha}=p_{1, i, \alpha}+p_{2, i, \alpha}$ where $\quad(\alpha, \beta)=(\mathrm{x}, \mathrm{y}) \quad \square \quad$ Center \quad of \quad mass: $\quad \vec{r}_{C M}=\frac{1}{M} \sum_{j=1}^{N} m_{j} \vec{r}_{j} \rightarrow \frac{1}{M} \int \vec{r} d m, \quad \vec{v}_{C M}=\frac{d}{d t} \vec{r}_{C M}, \quad$ and $\vec{p}_{C M}=\sum_{j=1}^{N} m_{j} \vec{v}_{j}=M \vec{v}_{C M} . \square \vec{F}=\frac{d}{d t} \vec{p}_{C M}=m \vec{a}_{C M}=\sum_{j=1}^{N} m_{j} \vec{a}_{j} \underline{[22]}$

10. Fixed-Axis_Rotation:

$\theta=s / r$ is angle in radians, $\omega=d \theta / d t$ is angular velocity; $\square v_{t}=\omega r=d s / d t$ is tangential speed. Angular acceleration is $\alpha=d \omega / d t=d^{2} \theta / d t^{2} . a_{t}=\alpha r=d^{2} s / d t^{2}$ is the tangential acceleration.
 \square Constant angular acceleration $\bar{\omega}=\frac{1}{2}\left(\omega_{0}+\omega_{f}\right)$ is average angular velocity. $\square \theta_{f}=\theta_{0}+\bar{\omega} t=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2}$. $\omega_{f}=\omega_{0}+\alpha t . \omega_{f}^{2}=\omega_{0}^{2}+2 \alpha \Delta \theta . \square$ Total acceleration is centripetal plus tangential: $\vec{a}=\vec{a}_{c}+\vec{a}_{t}$. \square Rotational kinetic $\underline{\text { energy }}$ is $K=\frac{1}{2} I \omega^{2}$, where $I=\sum_{j} m_{j} r_{j}^{2} \rightarrow \int r^{2} d m$ is the Moment of inertia. \square parallel axis theorem
$I_{\text {parallel-axis }}=I_{\text {center of mass }}+m d^{2} \square$ Restricting ourselves to fixed axis rotation, r is the distance from a fixed axis; the sum of torques, $\vec{\tau}=\vec{r} \times \vec{F}$ requires only one component, summed as $\tau_{n e t}=\sum \tau_{j}=\sum r_{\perp_{j}} F_{j}=I \alpha$. \square Work done by a torque is $d W=\left(\sum \tau_{j}\right) d \theta . \quad$ The Work-energy theorem is $K_{B}-K_{A}=W_{A B}=\int_{\theta_{A}}^{\theta_{B}}\left(\sum_{j} \tau_{j}\right) d \theta . \square \underline{\text { Rotational power }}=P=\tau \omega$.

Point of
application
11. Angular_Momentum: Center of mass (rolling without slip) $d_{C M}=r \theta$, $v_{C M}=r \omega, a_{M C}=R \alpha=\frac{m g \sin \theta /}{m+\left(I_{c m} / r^{2}\right)} \quad \square$ Total angular momentum and net torque: $d \vec{L} / d t=\sum \vec{\tau}=\vec{l}_{1}+\vec{l}_{2}+\ldots ; \vec{l}=\vec{r} \times \vec{p}$ for a single particle. $L_{\text {total }}=I \omega$. \square Precession of a top $\omega_{P}=m r g /(I \omega)$. 12. Static_Equilibrium_and_Elasticity: Equilibrium $\sum \vec{F}_{j}=0=\sum \vec{\tau}_{j}$. Stress $=$ elastic modulus \cdot strain (analogous to Force $=k \cdot \Delta x$)
 (Young's $, \underline{\text { Bulk }}, \underline{\text { Shear) }}$ modulus: $\left(\frac{F_{\perp}}{A}=Y \cdot \frac{\Delta L}{L_{0}}, \Delta p=B \cdot \frac{-\Delta V}{V_{0}}, \frac{F_{\|}}{A}=S \cdot \frac{\Delta x}{L_{0}}\right)$
13. Gravitation: Newton's law of gravity $\vec{F}_{12}=G \frac{m_{1} m_{2}}{r^{2}} \hat{r}_{12} \square \underline{\text { Earth's gravity }} g=G \frac{M_{E}}{r^{2}} \square \underline{\text { Gravitational PE beyond }}$ Earth $U=-G \frac{M_{E} m}{r} \square$ Energy conservation $\frac{1}{2} m v_{1}^{2}-G \frac{M m}{r_{1}}=\frac{1}{2} m v_{2}^{2}-G \frac{M m}{r_{2}} \quad \square$ Escape velocity $v_{e s c}=\sqrt{\frac{2 G M_{E}}{r}}$ $\square \underline{\text { Orbital speed }} v_{\text {orbit }}=\sqrt{\frac{G M_{E}}{r}} \square \underline{\text { Orbital period }} T=2 \pi \sqrt{\frac{r^{3}}{G M_{E}}}$ ■ Energy in circular orbit $E=K+U=-\frac{G m M_{E}}{2 r}$ Conic section $\frac{\alpha}{r}=1+e \cos \theta \square \underline{\text { Kepler's third law }} T^{2}=\frac{4 \pi^{2}}{G M} a^{3} \square \underline{\text { Schwarzschild radius }} R_{S}=\frac{2 G M}{c^{2}}$
14. Fluid_Mechanics: Mass density $\rho=m / V \square$ Pressure $P=F / A \square$ Pressure vs depth/height (constant density) $p=p_{o}+\rho g h \Leftarrow d p / d y=-\rho g \square$ Absolute vs gauge pressure $p_{a b s}=p_{g}+p_{a t m} \square$ Pascal's principle: F / A depends only on depth, not on orientation of $\underline{\text { A. }} \square \underline{\text { Volume flow rate }} Q=d V / d t \square$ Continuity equation $\rho_{1} A_{1} v_{1}=\rho_{2} A_{2} v_{2}$ $\Rightarrow A_{1} v_{1}=A_{2} v_{2}$ if $\rho=$ const.
15. Oscillations: Frequency f, period T and angular frequency ω : $f T=1, \quad \omega T=2 \pi \square \underline{\text { Simple harmonic motion }}$ $x(t)=A \cos (\omega t+\phi), \quad v(t)=-A \omega \sin (\omega t+\phi), a(t)=-A \omega^{2} \cos (\omega t+\phi)$ also models the x-component of uniform circular motion. \square For (A, ω) positive: $\quad x_{\max }=A, v_{\max }=A \omega, a_{\max }=A \omega^{2} \quad \square \quad$ Mass-spring $\omega=2 \pi / T=2 \pi f=\sqrt{k / m}$; \square Energy $E_{T o t}=\frac{1}{2} k x^{2}+\frac{1}{2} m v^{2}=\frac{1}{2} k A^{2} \Rightarrow v= \pm \sqrt{\frac{k}{m}\left(A^{2}-x^{2}\right)} \square$ Simple pendulum $\omega \approx \sqrt{g / L} \square \underline{\text { Physical pendulum }} \tau=-M g L \sin \theta \approx-M g L \theta \Rightarrow \omega=\sqrt{m g L / I}$ and L measures from pivot to CM. \square Torsional pendulum $\tau=-\kappa \theta \Rightarrow \omega=\sqrt{I / \kappa} \quad \square \quad \underline{\text { Damped harmonic oscillator }} m \frac{d^{2} x}{d t^{2}}=-k x-b \frac{d x}{d t}$ $\Rightarrow x=A_{0} e^{\frac{b}{2 m} t} \cos (\omega t+\phi)$ where $\omega=\sqrt{\omega_{0}^{2}-\left(\frac{b}{2 m}\right)^{2}}$ and $\omega_{0}=\sqrt{\frac{k}{m}}$. \quad [23] Forced harmonic oscillator (MIT wiki!)] $m \frac{d^{2} x}{d t^{2}}=-k x-b \frac{d x}{d t}+F_{0} \sin \omega t \Rightarrow x=A e^{\frac{b}{2 m} t} \cos (\omega t+\phi)$ where $A=\frac{F_{0}}{\sqrt{m^{2}\left(\omega-\omega_{0}\right)^{2}+b^{2} \omega^{2}}}$.
16. Waves: [24] Wave speed] (phase velocity) $v=\lambda / T=\lambda f=\omega / k$ where $k=2 \pi / \lambda$ is wavenumber. \square Wave and pulse speed of a stretched string $=\sqrt{F_{T} / \mu}$ where F_{T} is tension and μ is linear mass density. \square Speed of a compression wave in a fluid $v=\sqrt{B / \rho}$. \square Periodic travelling wave $y(x, t)=A \sin (k x \mp \omega t)$ travels in the positive/negative direction. The phase is $k x \mp \omega t$ and the amplitude is A. \square The resultant of two waves with identical amplitude and
frequency $y_{R}(x, t)=\left[2 A \cos \left(\frac{\phi}{2}\right)\right] \sin \left(k x-\omega t+\frac{\phi}{2}\right)$ where ϕ is the phase shift. \square This wave equation $\partial^{2} y / \partial t^{2}=v_{w}^{2} \partial^{2} y / \partial x^{2}$ is linear in $y=y(x, t) \square$ Power in a tranverse stretched string wave $P_{\text {ave }}=\frac{1}{2} \mu A^{2} \omega^{2} v$.
 symmetric boundary conditions $\lambda_{n}=2 \pi / k_{n}=\frac{2}{\pi} L n=1,2,3, \ldots$, or equivalently $f=n f_{1}$ where $f_{1}=\frac{v}{2 L}$ is the fundamental frequency.
17. Sound: Pressure and displacement fluctuations in a sound wave $P=\Delta P_{\max } \sin (k x \mp \omega t+\phi)$ and
 $\sqrt{\gamma R T / M}$, \square in air $331 \frac{m}{s} \sqrt{\frac{T_{K}}{273 K}}=331 \frac{m}{s} \sqrt{1+\frac{T_{C}}{273^{\circ} C}} \square \underline{\text { Decreasing intensity spherical wave }} I_{2}=I_{1}\left(\frac{r_{1}}{r_{2}}\right)^{2} \square \underline{\text { Sound }}$ intensity $I=\frac{\langle P\rangle}{A}=\frac{\left(\Delta P_{\max }\right)^{2}}{2 \rho v} \square \quad \ldots$ level $10 \log _{10} I / I_{0} \square$ Resonance tube One end closed: $\lambda_{n}=\frac{4}{n} L, f_{n}=n \frac{v}{4 L}$, $n=1,3,5, \ldots$ Both ends open: $\lambda_{n}=\frac{2}{n} L, f_{n}=n \frac{v}{2 L}, n=1,2,3, \ldots \square$ Beat frequency $f_{\text {beat }}=\left|f_{2}-f_{1}\right|$ \square (nonrelativistic) Doppler effect $f_{O}=f_{s} \frac{v \pm v_{o}}{v \mp v_{s}}$ where v is the speed of sound, v_{s} is the velocity of the source, and v_{o} is the velocity of the observer. \square Angle of shock wave $\sin \theta=v / v_{s}=1 / M$ where v is the speed of sound, v_{s} is the speed of the source, and M is the Mach number.

$\mathrm{I}=\mathrm{Jr} \mathrm{r}^{2} \mathrm{dm}$ for a hoop, disk, cylinder, box, plate, rod, and spherical shell or solid can be found from this figure.

Retrieved from "https://en.wikiversity.org/w/index.php?
title=OpenStax_University_Physics_Volume_1/Formulas\&oldid=1796524"

This page was last edited on 2 January 2018, at 02:18.
Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy.

