
Young Won Lim
9/18/18

State Monad – MonadState Class (6D)

Young Won Lim
9/18/18

 Copyright (c) 2016 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

State Monad (6D)
MonadState Class 3 Young Won Lim

9/18/18

Based on

Haskell in 5 steps

https://wiki.haskell.org/Haskell_in_5_steps

State Monad (6D)
MonadState Class 4 Young Won Lim

9/18/18

Monad typeclass and Instances

Maybe a

IO a

ST a

State s a

m a

class Monad m where

 return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m b

 (>>) :: m a -> m b -> m b

 fail :: String -> m a

instance Monad Maybe where

 return x = Just x

 Nothing >>= f = Nothing

 Just x >>= f = f x

 fail _ = Nothing

instance Monad IO where

 m >> k = m >>= \ _ -> k

 return = ...

 (>>=) = …

 fail s = …

State Monad (6D)
MonadState Class 5 Young Won Lim

9/18/18

class Monad m => MonadState s m | m -> s where

 -- | Return the state from the internals of the monad.

 get :: m s

 get = state (\s -> (s, s))

 -- | Replace the state inside the monad.

 put :: s -> m ()

 put s = state (_ -> ((), s))

 -- | Embed a simple state action into the monad.

 state :: (s -> (a, s)) -> m a

 state f = do

 s <- get

 let ~(a, s') = f s

 put s'

 return a

https://stackoverflow.com/questions/23149318/get-put-and-state-in-monadstate

Default Implementations in MonadState s m

The mtl package

Control.Monad.State.Class module

State Monad (6D)
MonadState Class 6 Young Won Lim

9/18/18

the definitions of get, put,state in the Monad class declaration

● the default implementations,

● to be overridden in actual instances of the class.

the dead loop in the default definition does not happen:

● put and get in terms of state

● state in terms of put and get

* minimal definition is either both of get and put or just state

https://stackoverflow.com/questions/23149318/get-put-and-state-in-monadstate

No dead loop in the default implementation

 get :: m s

 get = state (\s -> (s, s))

 put :: s -> m ()

 put s = state (_ -> ((), s))

 state :: (s -> (a, s)) -> m a

 state f = do

 s <- get

 let ~(a, s') = f s

 put s'

 return a

State Monad (6D)
MonadState Class 7 Young Won Lim

9/18/18

class Monad m => MonadState s m | m -> s where …

functional dependencies

to constrain the parameters of type classes. s and m

s can be determined from m,

so that s can be the return type

but m can not be the return type

in a multi-parameter type class,

one of the parameters can be determined from the others,

so that the parameter determined by the others can be the return type

but none of the argument types of some of the methods.

https://stackoverflow.com/questions/23149318/get-put-and-state-in-monadstate

Functional Dependency | (vertical bar)

class Monad m where

 return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m b

 (>>) :: m a -> m b -> m b

 fail :: String -> m a

m a

Maybe a

IO a

ST a

State s a

m → s

State s → s

State Monad (6D)
MonadState Class 8 Young Won Lim

9/18/18

class Monad m => MonadState s m | m -> s where …

MonadState s

a typeclass

instance MonadState s MM where …

its type instance itself does not specify values

MonadState s m =>

● can be used as class constraint

● all the Monad m

which supports state operations with state of type s.

https://stackoverflow.com/questions/25438575/states-put-and-get-functions

Typeclass MonadState s

:t get

:t put

s ← m functional dependencies

m á State s → s

state operations

defined in the

typeclass definition

State Monad (6D)
MonadState Class 9 Young Won Lim

9/18/18

:t get ► get :: MonadState s m => m s

for all Monad m which supports state operations over state of type s,

we have a value of type m s - that is,

the monad operation which yields the current state

:t put ► put :: MonadState s m => s -> m ()

a function that takes a value of type s

and returns a polymorphic value

representing any Monad m

which supports state operations over a state of type s

https://stackoverflow.com/questions/25438575/states-put-and-get-functions

Types of get and put

get :: m s

put :: s -> m ()

State Monad (6D)
MonadState Class 10 Young Won Lim

9/18/18

class Monad m => MonadState s m | m -> s where

instance Monad m => MonadState s (Lazy.StateT s m) where …

instance Monad m => MonadState s (Strict.StateT s m) where …

instance MonadState s m => MonadState s (ContT r m) where …

instance MonadState s m => MonadState s (ReaderT r m) where …

instance (Monoid w, MonadState s m) => MonadState s (Lazy.WriterT w m) where …

instance (Monoid w, MonadState s m) => MonadState s (Strict.WriterT w m) where …

https://stackoverflow.com/questions/23149318/get-put-and-state-in-monadstate

Instances of MonadState s m

The mtl package

Control.Monad.State.Class module

m

Lazy.StateT s m

Strict.StateT s m

ContT r m

ReaderT r m

Lazy.WriterT w m

Strict.WriterT w m

State Monad (6D)
MonadState Class 11 Young Won Lim

9/18/18

MonadState s is the class of types that are monads with state.

instance MonadState s (State s) where

 get = Control.Monad.Trans.State.get

 put = Control.Monad.Trans.State.put

instance MonadState s (StateT s) where

 get = Control.Monad.Trans.State.get

 put = Control.Monad.Trans.State.put

https://stackoverflow.com/questions/25438575/states-put-and-get-functions

Instances of the typeclass MonadState s

State s is an instance of that typeclass:

StateT s is an instance of that typeclass:

(the state monad transformer

which adds state to another monad)

State Monad (6D)
MonadState Class 12 Young Won Lim

9/18/18

instance MonadState s (State s) where

 get = Control.Monad.Trans.State.get

 put = Control.Monad.Trans.State.put

This overloading was introduced so that

if you’re using a stack of monad transformers,

you do not need to explicitly lift operations

between different transformers.

If you’re not doing that,

you can use the simpler operations from transformers.

https://stackoverflow.com/questions/25438575/states-put-and-get-functions

Overloading get and put

The mtl package provides

auto-lifting

State Monad (6D)
MonadState Class 13 Young Won Lim

9/18/18

class Monad m => MonadState s m | m -> s where …

get :: MonadState s m => m s

for some monad m

storing some state of type s,

get is an action in m

that returns a value of type s.

https://stackoverflow.com/questions/25438575/states-put-and-get-functions

Typeclass Constrain MonadState s m (1)

State Monad (6D)
MonadState Class 14 Young Won Lim

9/18/18

class Monad m => MonadState s m | m -> s where …

put :: MonadState s m => s -> m ()

for some monad m

put is an action in m

storing the given state of type s,

but returns nothing ().

https://stackoverflow.com/questions/25438575/states-put-and-get-functions

Typeclass Constrain MonadState s m (2)

State Monad (6D)
MonadState Class 15 Young Won Lim

9/18/18

https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State-Lazy.html

State Monad

type State s = StateT s Identity

A state monad parameterized by the type s of the state to carry.

The return function leaves the state unchanged,

while >>= uses the final state of the first computation as the initial state of the second.

runState

:: State s a state-passing computation to execute

-> s initial state

-> (a, s) return value and final state

Unwrap a state monad computation as a function. (The inverse of state.)

evalState

:: State s a state-passing computation to execute

-> s initial value

-> a return value of the state computation

Evaluate a state computation with the given initial state

and return the final value, discarding the final state.

State Monad (6D)
MonadState Class 16 Young Won Lim

9/18/18

https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State-Lazy.html

State Monad

execState

:: State s a state-passing computation to execute

-> s initial value

-> s final state

Evaluate a state computation with the given initial state and return the final state,

discarding the final value.

 execState m s = snd (runState m s)

mapState :: ((a, s) -> (b, s)) -> State s a -> State s b

Map both the return value and final state of a computation using the given function.

 runState (mapState f m) = f . runState m

withState :: (s -> s) -> State s a -> State s a

withState f m executes action m on a state modified by applying f.

 withState f m = modify f >> m

State Monad (6D)
MonadState Class 17 Young Won Lim

9/18/18

https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State-Lazy.html

StateT Monad Transformer

newtype StateT s (m :: * -> *) a

A state transformer monad parameterized by:

 s - The state.

 m - The inner monad.

The return function leaves the state unchanged,

while >>= uses the final state of the first computation

as the initial state of the second.

Constructors

StateT (s -> m (a, s))

State Monad (6D)
MonadState Class 18 Young Won Lim

9/18/18

runStateT :: StateT s m a -> s -> m (a, s)

evalStateT :: Monad m => StateT s m a -> s -> m a

Evaluate a state computation with the given initial state and return the final value,

discarding the final state.

 evalStateT m s = liftM fst (runStateT m s)

execStateT :: Monad m => StateT s m a -> s -> m s

Evaluate a state computation with the given initial state and return the final state,

discarding the final value.

 execStateT m s = liftM snd (runStateT m s)

https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State-Lazy.html

StateT Monad Transformer

State Monad (6D)
MonadState Class 19 Young Won Lim

9/18/18

mapStateT :: (m (a, s) -> n (b, s)) -> StateT s m a -> StateT s n b

Map both the return value and final state of a computation using the given function.

 runStateT (mapStateT f m) = f . runStateT m

withStateT :: (s -> s) -> StateT s m a -> StateT s m a

withStateT f m executes action m on a state modified by applying f.

 withStateT f m = modify f >> m

https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State-Lazy.html

StateT Monad Transformer

State Monad (6D)
MonadState Class 20 Young Won Lim

9/18/18

class Monad m => MonadState s m | m -> s where

Minimal definition is either both of get and put or just state

Minimal complete definition

state | get, put

Methods

get :: m s

Return the state from the internals of the monad.

put :: s -> m ()

Replace the state inside the monad.

state :: (s -> (a, s)) -> m a

Embed a simple state action into the monad.

https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State-Lazy.html

MonadState Class

State Monad (6D)
MonadState Class 21 Young Won Lim

9/18/18

modify :: MonadState s m => (s -> s) -> m ()

Monadic state transformer.

Maps an old state to a new state inside a state monad. The old state is thrown away.

 Main> :t modify ((+1) :: Int -> Int)

 modify (...) :: (MonadState Int a) => a ()

This says that modify (+1) acts over any Monad

that is a member of the MonadState class, with an Int state.

modify' :: MonadState s m => (s -> s) -> m ()

A variant of modify in which the computation is strict in the new state.

Since: 2.2

gets :: MonadState s m => (s -> a) -> m a

Gets specific component of the state, using a projection function supplied.

https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State-Lazy.html

MonadState Class

Young Won Lim
9/18/18

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22

