Characteristics of Multiple Random Variables

Young W Lim

June 15, 2019

Copyright (c) 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

Based on
Probability, Random Variables and Random Signal Principles, P.Z. Peebles,Jr. and B. Shi

Outline

(1) Joint Characteristic Functions

Joint Characteristic Function

 two random variables
Definition

The joint characteristic function of two random variables X and Y is given by

$$
\Phi_{X, Y}\left(\omega_{1}, \omega_{2}\right)=E\left[e^{j \omega_{1} X+j \omega_{2} Y}\right]
$$

where ω_{1} and ω_{2} are real numbers. An equivalent form is

$$
\Phi_{X, Y}\left(\omega_{1}, \omega_{2}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) e^{j \omega_{1} x+j \omega_{2} y} d x d y
$$

Joint Characteristic Function and Fourier Transform

 two random variables
Definition

the 2-dimension Fourier transform of $f_{X, Y}(x, y)$ when signs of ω_{1} and ω_{2} are reversed

$$
\Phi_{X, Y}\left(\omega_{1}, \omega_{2}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) e^{j \omega_{1} x+j \omega_{2} y} d x d y
$$

the inverse Fourier transform

$$
f_{X, Y}(x, y)=\frac{1}{(2 \pi)^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Phi_{X, Y}\left(\omega_{1}, \omega_{2}\right) e^{-j \omega_{1} x-j \omega_{2} y} d \omega_{1} d \omega_{2}
$$

Marginal Charateristic Functions

 two random variables
Definition

Marginal characteristic functions are

$$
\begin{aligned}
& \Phi_{X}\left(\omega_{1}\right)=\Phi_{X, Y}\left(\omega_{1}, 0\right)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) e^{j \omega_{1} x} d x \\
& \Phi_{Y}(\omega)=\Phi_{X, Y}\left(0, \omega_{2}\right)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) e^{j \omega_{2} y} d y
\end{aligned}
$$

