Equivalence Relations (4A)

Copyright (c) 2015-2018 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Equivalence Relation

a binary relation that is at the same time

- a reflexive relation,
- a symmetric relation and
- a transitive relation.

The relation "is equal to" is a primary example of an equivalence relation.
Thus for any numbers a, b, and c :

$$
\mathbf{a}=\mathbf{a} \text { (reflexive property), }
$$

if $\mathbf{a}=\mathbf{b}$ then $\mathbf{b}=\mathbf{a}$ (symmetric property), and
if $\mathbf{a}=\mathbf{b}$ and $\mathbf{b}=\mathbf{c}$ then $\mathbf{a}=\mathbf{c}$ (transitive property).
Any equivalence relation, as a consequence of
the reflexive, symmetric, and transitive properties,
provides a partition of a set into equivalence classes.

Equivalence Relation Definition

A given binary relation \sim on a set \mathbf{X}
is said to be an equivalence relation
if and only if it is reflexive, symmetric and transitive.
That is, for all a, b and c in \mathbf{X} :

> a ~ a. (Reflexivity)
$\mathbf{a} \sim \mathbf{b}$ if and only if $\mathbf{b} \sim \mathbf{a}$. (Symmetry)
if $\mathbf{a} \sim \mathbf{b}$ and $\mathbf{b} \sim \mathbf{c}$ then $\mathbf{a} \sim \mathbf{c}$. (Transitivity)
X together with the relation ~ is called a setoid.
The equivalence class of a under \sim, denoted [a],
is defined as $[\mathbf{a}]=\{\mathbf{b} \in \mathbf{X} \mid \mathbf{a} \sim \mathbf{b}\}$

Congruent Modulo n

for a positive integer \mathbf{n}, two numbers \mathbf{a} and \mathbf{b} are said to be congruent modulo \mathbf{n}, if their difference $\mathbf{a}-\mathbf{b}$ is an integer multiple of \mathbf{n} (that is, if there is an integer \mathbf{k} such that $\mathbf{a}-\mathbf{b}=\mathbf{k n}$).
This congruence relation is typically considered
when a and b are integers, and is denoted

$$
a \equiv b \quad(\bmod n)
$$

(some authors use = instead of \equiv)
$\mathrm{a}=\mathrm{b} \bmod \mathrm{n} \quad \| \mathrm{a}=\mathrm{b} \% \mathrm{n}$
(this generally means that "mod" denotes the modulo operation, that is, that $\mathbf{0} \leq \mathrm{a}<\mathrm{n}$).

The number n is called the modulus of the congruence.

Congruent Modulo n : Examples

For example,

$$
38 \equiv 14(\bmod 12)
$$

because $38-14=24$, which is a multiple of 12 , or, equivalently, because both 38 and 14 have the same remainder 2 when divided by 12 .

The same rule holds for negative values:

$$
\begin{aligned}
-8 & \equiv 7(\bmod 5) \\
2 & \equiv-3(\bmod 5) \\
-3 & \equiv-8(\bmod 5)
\end{aligned}
$$

Congruent Modulo n : Properties

The congruence relation satisfies all the conditions of an equivalence relation:
Reflexivity: $\mathbf{a} \equiv \mathrm{a}(\bmod \mathrm{n})$
Symmetry: $\mathbf{a} \equiv \mathbf{b}(\bmod \mathrm{n})$ if and only if $\mathbf{b} \equiv \mathbf{a}(\bmod \mathrm{n})$
Transitivity: If $\mathbf{a} \equiv \mathbf{b}(\bmod \mathbf{n})$ and $\mathbf{b} \equiv \mathbf{c}(\bmod \mathbf{n})$, then $\mathbf{a} \equiv \mathbf{c}(\bmod \mathbf{n})$

Congruence and Similarity in Geometry

Equivalence Relation

> Reflexive Relation \& Symmetric Relation \& Transitive Relation

$$
\begin{aligned}
& A=\{0,1,2,3,4,5,6,7,8\} \\
& R \subset A \times A \\
& R=\{(a, b) \mid a \equiv b(\bmod 3)\}
\end{aligned}
$$

Equivalence Class

$$
\begin{aligned}
& A=\{0,1,2,3,4,5,6,7,8\} \\
& R \subset A \times A \\
& R=\{(a, b) \mid a \equiv b(\bmod 3)\}
\end{aligned}
$$

$(0,0),(0,3),(0,6)$,	$(1,1),(1,4),(1,7)$,	$(2,2),(2,5),(2,8)$,
$(3,0),(3,3),(3,6)$,	$(4,1),(4,4),(4,7)$,	$(5,2),(5,5),(5,8)$,
$(6,0),(6,3),(6,6)$	$(7,1),(7,4),(7,7)$	$(8,2),(8,5),(8,8)$
$0 \sim 0,0 \sim 3,0 \sim 6$,	$1 \sim 1,1 \sim 4,1 \sim 7$,	$2 \sim 2,2 \sim 5,2 \sim 8$,
$3 \sim 0,3 \sim 3,3 \sim 6$,	$4 \sim 1,4 \sim 4,4 \sim 7$,	$5 \sim 2,5 \sim 5,5 \sim 8$,
$6 \sim 0,6 \sim 3,6 \sim 6$	$7 \sim 1,7 \sim 4,7 \sim 7$	$8 \sim 2,8 \sim 5,8 \sim 8$

$$
\begin{aligned}
& {[0]=\{0,3,6\}} \\
& {[0] \subset A}
\end{aligned}
$$

$$
[1]=\{1,4,7\}
$$

$$
[2]=\{2,5,8\}
$$

$$
[2] \subset A
$$

Partitions

$$
\begin{aligned}
& A=\{0,1,2,3,4,5,6,7,8\} \\
& R \subset A \times A \\
& R=\{(a, b) \mid a \equiv b(\bmod 3)\}
\end{aligned}
$$

$$
\begin{array}{lll}
{[0]=\{0,3,6\}} & {[1]=\{1,4,7\}} & {[2]=\{2,5,8\}} \\
{[0] \subset A} & {[1] \subset A} & {[2] \subset A} \\
{[0] \cap[1]=\varnothing} & {[1] \cap[2]=\varnothing} & {[2] \cap[0]=\varnothing}
\end{array}
$$

$$
[0] \cup[1] \cup[2]=\{0,3,6\} \cup\{1,4,7\} \cup\{2,5,8\}=\{0,1,2,3,4,5,6,7,8\}=A
$$

$$
[0]=[3]=[6]
$$

$$
[1]=[4]=[7]
$$

$$
[2]=[5]=[8]
$$

Equivalence Relation Examples

$$
\begin{aligned}
& A=\{0,1,2,3,4,5,6,7,8\} \\
& R \subset A \times A \\
& R=\{(a, b) \mid a \equiv b(\bmod 3)\}
\end{aligned}
$$

$$
R R=\begin{aligned}
& 0 \\
& 0 \\
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5 \\
& 5 \\
& 6 \\
& 7 \\
& 7 \\
& 0
\end{aligned}\left|\begin{array}{lllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right|
$$

Equivalence Classes

Class \#1

${ }_{0}{ }_{3}\left[\begin{array}{lll}0 & 3 & 6 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$
partition $P_{1}=\{0,3,6\}$

Class \#2

${ }_{1}\left[\begin{array}{lll}1 & 4 & 7 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$
partition $P_{2}=\{1,4,7\}$

Class \#3

partition $P_{3}=\{2,5,8\}$

Equivalence Class

$$
\begin{align*}
& A=\mathbf{Z}^{+}=\{0,1,2,3,4,5,6, \cdots\} \\
& R \subset A \times A \\
& R=\{(a, b) \mid a \equiv b(\bmod 3)\} \\
& \{0,3,6,9, \cdots\} \\
& \{1,4,7,10, \cdots\} \tag{331}\\
& \{2,5,8,11, \cdots\}
\end{align*}
$$

https://www.cse.iitb.ac.in/~nutan/courses/cs207-12/notes/lec7.pdf

References

[1] http://en.wikipedia.org/
[2]

