Carry Skip Adder (5A)

Copyright (c) 2024-2013 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".
https://en.wikipedia.org/wiki/AND_gate
https://en.wikipedia.org/wiki/OR_gate
https://en.wikipedia.org/wiki/XO \bar{R} _gate
https://en.wikipedia.org/wiki/NAND_gate

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Carry Kill, Propagate, Generate conditions (1)

X	Y		
0	0	K	Kill $(=\overline{P G})$
0	1	P	Propagate
1	0	P	Propagate
1	1	G	Generate

[^0]
Carry Kill, Propagate, Generate conditions (2)

K, P, and G conditions in a 2-bit adder (1)

X	Y		
0	0	K	Kill $(=\overline{\mathrm{PG}})$
0	1	P	Propagate
1	0	P	Propagate
1	1	G	Generate

Unless the two FA's are in propagate mode, the transition of Cin does not affect the transition of Cout

Critical path - all FA's in propagate mode
Broken paths for any FA in other mode - kill mode, generate mode
https::/electronics.stackexchange.com/questions/21251/critical-path-for-carry-skip-adder
\mathbf{K}, \mathbf{P}, and \mathbf{G} conditions in a 2-bit adder (2)

X	Y		
0	0	K	Kill $(=\overline{\mathrm{PG}})$
0	1	P	Propagate
1	0	P	Propagate
1	1	G	Generate

1. Cases when FA1 is in the \mathbf{K} mode

Carry Skip Adder

2. Cases when FA1 is in the \mathbf{P} mode

Carry Skip Adder

3. Cases when FA1 is in the G mode

Cases for $\mathbf{C o u t ~}_{\text {out }} \mathbf{1}$

Cases for $\mathbf{C o u t ~}_{\text {out }} \mathbf{0}$

FA with P \& G

Full adder with additional generate and propagate signals.

Ripple Carry Adder

$$
\begin{aligned}
& p_{i}=a_{i} \oplus b_{i} \\
& g_{i}=a_{i} \wedge b_{i}
\end{aligned}
$$

$$
\begin{aligned}
& c_{1}=g_{0}+p_{0} \wedge c_{0} \\
& c_{2}=g_{1}+p_{1} \wedge c_{1} \\
& c_{3}=g_{2}+p_{2} \wedge c_{2} \\
& c_{4}=g_{3}+p_{3} \wedge c_{3}
\end{aligned}
$$

generated carry

4-bit Full Adder with P and G

https://upload.wikimedia.org/wikiversity/en/1/18/
RCA.Note.H.1.20151215.pdf

C_{0} propagation condition

c_{0} can be propagated to $c_{\text {out }}$ only when $s=1$

$$
\begin{aligned}
s \quad & =p_{3} \wedge p_{2} \wedge p_{1} \wedge p_{0}=p_{[3: 0]} \\
& =\left(a_{3} \oplus b_{3}\right) \\
& \wedge\left(a_{2} \oplus b_{2}\right) \\
& \wedge\left(a_{1} \oplus b_{1}\right) \\
& \wedge\left(a_{0} \oplus b_{0}\right)
\end{aligned}
$$

Carry Skip Adder

The n-bit Carry Skip Adder consists of
a n-bit carry-ripple-chain, a n-input AND-gate and one multiplexer.
a multiplexer switches
either the last carry-bit c_{n} or the carry-in c_{0} to the carry-out signal $\mathrm{c}_{\text {out }}$
$s=p_{3} \wedge p_{2} \wedge p_{1} \wedge p_{0}=p_{[3: 0]}$
when $\mathrm{s}=1, \mathrm{c}_{\text {out }} \leftarrow \mathrm{c}_{0}$
otherwise, internally generated carries can be propagated to $\mathrm{C}_{\text {out }} \leftarrow \mathrm{C}_{4}$

Carry Skip Adder

https://en.wikipedia.org/wiki/Carry-skip_adder

Carry Skip Adder

The critical path of a Carry Skip Adder begins at the first full adder, passes through all adders and ends at the sum bit $\mathrm{S}_{\mathrm{n}-1}$

Since a single n-bit Carry Skip Adder has no real speed benefit compared to a n-bit Ripple Carry Adder

$$
T_{C S A}(n)=T_{R C A}(n)
$$

Carry Skip Adders are chained to reduce the overall critical path, (Block Carry Skip Adders)

The skip logic consists of a m-input AND gate and one MUX

$$
\mathrm{T}_{\mathrm{SK}}=\mathrm{T}_{\mathrm{AND}}(\mathrm{~m})+\mathrm{T}_{\mathrm{MUX}}
$$

Carry Skip Adder

As the propagate signals

$$
p_{i}=a_{i} \oplus b_{i}
$$

are computed in parallel and are early available,
the critical path for the skip logic in a Carry Skip Adder consists of the delay imposed by the multiplexer (conditional skip)

$$
\mathrm{T}_{\mathrm{CSK}}=\mathrm{T}_{\mathrm{MUX}}=2 \mathrm{D}
$$

Carry Skip Adder

Carry Skip Adder

Fixed size block carry skip adders split the n bits of the input bits Into blocks of m bits each, resulting in $\mathrm{k}=\mathrm{n} / \mathrm{m}$ blocks.

The critical path consists of the ripple path and the skip element of the first block, The skip apths that are enclosed between the first and the last block, And finally the ripple path of the last block
$\mathrm{T}_{\text {FCSA }}(\mathrm{n})=\mathrm{T}_{\text {CRA } 0: \text { cout }}(\mathrm{m})+\mathrm{T}_{\mathrm{CSK}}+(\mathrm{k}-2) \mathrm{T}_{\mathrm{CSK}}+\mathrm{T}_{\mathrm{CRA}}(\mathrm{m})$
$=3 \mathrm{D}+\mathrm{m} 2 \mathrm{D}+(\mathrm{k}-1) 2 \mathrm{D}+(\mathrm{m}+2) 2 \mathrm{D}=(2 \mathrm{~m}+\mathrm{k}) 2 \mathrm{D}+5 \mathrm{~d}$

The optimal block size for a given adder width n is derived by equating to 0
$d T_{\text {FCSA }}(\mathrm{n}) / \mathrm{dm}=0$
$2 \mathrm{D}\left(2-\mathrm{n}\left(1 / \mathrm{m}^{2}\right)\right)=0$
$\mathrm{M} 1,2=+-\operatorname{sqrt}(\mathrm{n} / 2) \quad \mathrm{m}=\operatorname{sqrt}(\mathrm{m} / 2)$
https://en.wikipedia.org/wiki/Carry-skip_adder

Carry Skip Adder

Block carry skip adders are composed of a number of carry skip adders

There are two types of block carry skip adders

The two operands $A=\left(a_{n-1}, a_{n-2}, \ldots a_{1}, a_{0}\right)$ and $B=\left(b_{n-1}, b_{n-2}, \ldots b_{1}, b_{0}\right)$
Are split in k blocks of $\left(m_{k}, m_{k-1}, \ldots m_{2}, m_{1}\right)$ bits
Why are block carry skip adders used
Should the block size be constant or variable?
Fixed block width vs. variable block width

Block Carry Skip Adder

Carry Skip Adder

Since the Cin-to-Cout represents the longest path in the ripple-carry-adder, an obvious attempt is to accelerate carry propagation through the adder.

This is accomplished by using Carry-Propagate p_{i} signals within a group of bits.

If all the p_{i} signals within the group are $p_{i}=1$, the condition exist for the carry to bypass the entire group:

$P=p_{i} \cdot p_{i+1} \cdot p_{i+2} \bullet \ldots \ldots \cdot p_{i+k-1}$

Carry Skip Adder

Carry Skip Adder

The Carry Skip Adder (CSKA) divides the words to be added into groups of equal size of \mathbf{k}-bits.

The basic structure of an N-bit Carry Skip Adder
Within the group, carry propagates in a ripple-carry fashion.
In addition, an AND gate is used
to form the group propagate signal P.
$P=p_{i} \cdot p_{i+1} \cdot p_{i+2} \bullet \ldots \ldots \cdot p_{i+k-1}$

If $P=1$ the condition exists for carry to bypass (skip) over the group

Carry Skip Adder

$$
\mathrm{N}=\mathrm{R} \cdot \mathrm{k}
$$

Carry Skip Adder

> R -2 groups

Ripple carry

Any kill or generate condition results in divided (broken) critical paths
All FA's in R-2 groups must have the propagate condition

Carry Skip Adder

Ripple through k-1 bits

$$
(k-1) \Delta_{\mathrm{rca}}
$$

Skip carry

Carry Skip Adder

The maximal delay Δ of a Carry Skip Adder is encountered when carry is generated in the least-significant bit position,

- rippling through $k-1$ bit positions,
- skipping over $R-2=N / k-2$ groups in the middle,
- rippling to the $k-1$ bits of most significant group and
- being assimilated in the N-th bit position to produce the sum S_{N} :

$$
\begin{aligned}
\Delta_{\mathrm{CSA}} & =(\mathrm{k}-1) \Delta_{\mathrm{rca}}+(\mathrm{R}-2) \Delta_{\mathrm{SKIP}}+(\mathrm{k}-1) \Delta_{\mathrm{rca}} \\
& =2(\mathrm{k}-1) \Delta_{\mathrm{rca}}+(\mathrm{R}-2) \Delta_{\mathrm{SKIP}} \\
& =2(\mathrm{k}-1) \Delta_{\mathrm{rca}}+(\mathrm{N} / \mathrm{k}-2) \Delta_{\mathrm{SKIP}}
\end{aligned}
$$

Carry Skip Adder

$$
\begin{aligned}
\Delta_{\mathrm{CSA}} & =(\mathrm{k}-1) \Delta_{\mathrm{rca}}+(\mathrm{R}-2) \Delta_{\mathrm{SKIP}}+(\mathrm{k}-1) \Delta_{\mathrm{rca}} \\
& =2(\mathrm{k}-1) \Delta_{\mathrm{rca}}+(\mathrm{R}-2) \Delta_{\mathrm{SKIP}} \\
& =2(\mathrm{k}-1) \Delta_{\mathrm{rca}}+(\mathrm{N} / \mathrm{k}-2) \Delta_{\mathrm{SKIP}}
\end{aligned}
$$

Carry Skip Adder is faster than RCA at the expense of a few relatively simple modifications.

$$
\mathrm{N}=\mathrm{R} \cdot \mathrm{k}
$$

The delay is still linearly dependent on the size of the adder N , however this linear dependence is reduced by a factor of $1 / k$

Oklobdzija: High-Speed VLSI arithmetic units : adders and multipliers

Design C (9) - When Cout1 = 1

Carry Skip Adder

If an arbitrary block generated a carry by itself, The carry will always propagate to the next block However, if the second block generates a carry itself, Or kill the carry, then that is the end of the critical path

If the second block propagates the carry, then we see The advantage of the CSA architecture
https::/electronics.stackexchange.com/questions/21251/critical-path-for-carry-skip-adder

References

[1] en.wikipedia.org
[2] Parhami, "Computer Arithmetic Algorithms and Hardware Designs"

[^0]: https::/electronics.stackexchange.com/questions/21251/critical-path-for-carry-skip-adder

