Copyright (c) 2015-2018 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Row Vector, Column Vector, Square Matrix

Name	Size	Example	Description
Row vector	$1 \times n$	$\left[\begin{array}{lll}3 & 7 & 2\end{array}\right]$	A matrix with one row, sometimes used to represent a vector
Column vector	$n \times 1$	$\left[\begin{array}{l}4 \\ 1 \\ 8\end{array}\right]$	A matrix with one column, sometimes used to represent a vector
Square matrix	$n \times n$	$\left[\begin{array}{ccc}9 & 13 & 5 \\ 1 & 11 & 7 \\ 2 & 6 & 3\end{array}\right]$	A matrix with the same number of rows and columns, sometimes used to represent a linear transformation from a vector space to itself, such as reflection, rotation, or shearing.

https://en.wikipedia.org/wiki/Matrix_(mathematics)

Matrix Notation

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]=\left(\begin{array}{rrrr}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)=\left(a_{i j}\right) \in \mathbb{R}^{m \times n} . \\
& \mathbf{A}=\left[\begin{array}{cccc}
0 & -1 & -2 & -3 \\
1 & 0 & -1 & -2 \\
2 & 1 & 0 & -1
\end{array}\right] \quad \begin{array}{l}
a_{i, j}=f(i, j) . \\
a_{i j}=i-j .
\end{array}
\end{aligned}
$$

Matrix Addition

Addition	The sum $\mathbf{A}+\mathbf{B}$ of two m-by- n matrices \mathbf{A} and \mathbf{B} is calculated entrywise: $(\mathbf{A}+\mathbf{B})_{i, j}=\mathbf{A}_{i, j}+\mathbf{B}_{i, j,}$, where 1 $\leq i \leq m$ and $1 \leq j \leq n$.

$$
\left[\begin{array}{lll}
1 & 3 & 1 \\
1 & 0 & 0
\end{array}\right]+\left[\begin{array}{lll}
0 & 0 & 5 \\
7 & 5 & 0
\end{array}\right]=\left[\begin{array}{lll}
1+0 & 3+0 & 1+5 \\
1+7 & 0+5 & 0+0
\end{array}\right]=\left[\begin{array}{lll}
1 & 3 & 6 \\
8 & 5 & 0
\end{array}\right]
$$

Scalar Multiplication

	The product $c \mathbf{A}$ of a number c (also called a scalar in the parlance of abstract algebra) and a matrix \mathbf{A} is computed by multiplying every entry of \mathbf{A} by $c:$ $(c \mathbf{A})_{i, j}=c \cdot \mathbf{A}_{i, j}$.		
Scalar			
multiplication		\quad	This operation is called scalar multiplication, but its result
:---			
is not named "scalar product" to avoid confusion, since			
"scalar product" is sometimes used as a synonym for			
"inner product".			

$2 \cdot\left[\begin{array}{ccc}1 & 8 & -3 \\ 4 & -2 & 5\end{array}\right]=\left[\begin{array}{ccc}2 \cdot 1 & 2 \cdot 8 & 2 \cdot-3 \\ 2 \cdot 4 & 2 \cdot-2 & 2 \cdot 5\end{array}\right]=\left[\begin{array}{ccc}2 & 16 & -6 \\ 8 & -4 & 10\end{array}\right]$
https://en.wikipedia.org/wiki/Matrix_(mathematics)

Transposition

Transposition	The transpose of an m-by- n matrix \mathbf{A} is the n-by- m matrix \mathbf{A}^{\top} (also denoted $\mathbf{A}^{\text {tr }}$ or ${ }^{\mathrm{t}} \mathbf{A}$) formed by turning rows into columns and vice versa: $\left(\mathbf{A}^{\top}\right)_{i, j}=\mathbf{A}_{j, i}$.

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -6 & 7
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{cc}
1 & 0 \\
2 & -6 \\
3 & 7
\end{array}\right]
$$

Matrix Multiplication

Multiplication of two matrices is defined if and only if the number of columns of the left matrix is the same as the number of rows of the right matrix. If \mathbf{A} is an m-by- n matrix and \mathbf{B} is an n-by- p matrix, then their matrix product $\mathbf{A B}$ is the m-by- p matrix whose entries are given by dot product of the corresponding row of \mathbf{A} and the corresponding column of \mathbf{B} :

$$
[\mathbf{A B}]_{i, j}=A_{i, 1} B_{1, j}+A_{i, 2} B_{2, j}+\cdots+A_{i, n} B_{n, j}=\sum_{r=1}^{n} A_{i, r} B_{r, j},
$$

where $1 \leq i \leq m$ and $1 \leq j \leq p .{ }^{[13]}$ For example, the underlined entry 2340 in the product is calculated as $(2 \times 1000)+(3 \times 100)+(4 \times 10)=2340$:

$$
\left[\begin{array}{lll}
\underline{2} & \underline{3} & \underline{4} \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{cc}
0 & \underline{1000} \\
1 & \underline{100} \\
0 & \underline{10}
\end{array}\right]=\left[\begin{array}{ll}
3 & \underline{2340} \\
0 & 1000
\end{array}\right] .
$$

Schematic depiction of the $\quad \square$ matrix product $\mathbf{A B}$ of two matrices \mathbf{A} and \mathbf{B}.

Properties

Matrix multiplication satisfies the rules $(\mathbf{A B}) \mathbf{C}=\mathbf{A}(\mathbf{B C})$ (associativity), and $(\mathbf{A}+\mathbf{B}) \mathbf{C}=\mathbf{A C}+\mathbf{B C}$ as well as $\mathbf{C}(\mathbf{A}+\mathbf{B})=\mathbf{C A}+\mathbf{C B}$ (left and right distributivity), whenever the size of the matrices is such that the various products are defined. ${ }^{[14]}$ The product $\mathbf{A B}$ may be defined without $\mathbf{B A}$ being defined, namely if \mathbf{A} and \mathbf{B} are m-by- n and n-by- k matrices, respectively, and $m \neq k$. Even if both products are defined, they need not be equal, that is, generally

$$
\mathbf{A B} \neq \mathbf{B A},
$$

that is, matrix multiplication is not commutative, in marked contrast to (rational, real, or complex) numbers whose product is independent of the order of the factors. An example of two matrices not commuting with each other is:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 3
\end{array}\right]
$$

whereas

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{ll}
3 & 4 \\
0 & 0
\end{array}\right]
$$

Matrix Types

Name	Example with $\boldsymbol{n}=\mathbf{3}$
Diagonal matrix	$\left[\begin{array}{ccc}a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33}\end{array}\right]$
Lower triangular matrix	$\left[\begin{array}{ccc}a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33}\end{array}\right]$
Upper triangular matrix	$\left[\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33}\end{array}\right]$

https://en.wikipedia.org/wiki/Matrix_(mathematics)

Identity Matrix

Identity matrix [edit]

Main article: Identity matrix
The identity matrix \mathbf{I}_{n} of size n is the n-by- n matrix in which all the elements on the main diagonal are equal to 1 and all other elements are equal to 0 , for example,

$$
I_{1}=[1], I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \cdots, I_{n}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

It is a square matrix of order n, and also a special kind of diagonal matrix. It is called an identity matrix because multiplication with it leaves a matrix unchanged:

$$
\mathbf{A} \mathbf{I}_{n}=\mathbf{I}_{m} \mathbf{A}=\mathbf{A} \text { for any } m \text {-by- } n \text { matrix } \mathbf{A} .
$$

Inverse Matrix

In relation to its adjugate [edit]

The adjugate of a matrix A can be used to find the inverse of A as follows:
If A is an $n \times n$ invertible matrix, then

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)
$$

In relation to the identity matrix [edit]

It follows from the theory of matrices that if

$$
\mathbf{A B}=\mathbf{I}
$$

for finite square matrices \mathbf{A} and \mathbf{B}, then also

$$
\mathbf{B A}=\mathbf{I}^{[1]}
$$

Inverse Matrix Examples

Consider the following 2-by-2 matrix:

$$
\mathbf{A}=\left(\begin{array}{cc}
-1 & \frac{3}{2} \\
1 & -1
\end{array}\right)
$$

The matrix \mathbf{A} is invertible. To check this, one can compute that $\operatorname{det} \mathbf{A}=-1 / 2$, which is non-zero.

As an example of a non-invertible, or singular, matrix, consider the matrix

$$
\mathbf{B}=\left(\begin{array}{cc}
-1 & \frac{3}{2} \\
\frac{2}{3} & -1
\end{array}\right)
$$

The determinant of \mathbf{B} is 0 , which is a necessary and sufficient condition for a matrix to be non-invertible.

Solving Linear Equations

A set of linear equations

If the inverse matrix exists

$$
\begin{aligned}
& \begin{array}{l}
a x+b y=e \\
c x+d y=f \\
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c \neq 0 \\
\left|\begin{array}{ll}
e & b \\
f & d
\end{array}\right|=d e-b f \\
\left|\begin{array}{ll}
a & e \\
c & f
\end{array}\right|=a f-c e
\end{array}
\end{aligned}
$$

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
e \\
f
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}\left[\begin{array}{l}
e \\
f
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]\left[\begin{array}{l}
e \\
f
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{1}{a d-b c}\left[\begin{array}{c}
d e-b f \\
-c e+a f
\end{array}\right]
$$

Cramer's Rule

$$
x=\frac{\left|\begin{array}{ll}
e & b \\
f & d
\end{array}\right|}{\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|} \quad y=\frac{\left|\begin{array}{ll}
a & e \\
c & f
\end{array}\right|}{\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|}
$$

Rule of Sarrus (1)

Determinant of order 3 only

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}
$$

Copy and concatenate

Rule of Sarrus

$$
\begin{aligned}
& +a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \quad-a_{13} a_{22} a_{31}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}
\end{aligned}
$$

Linear Equations

$\left(\right.$ Eq 1) $\Rightarrow a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1}$
$($ Eq 2$) \Rightarrow a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2}$
$\left(\right.$ Eq 3) $\Rightarrow a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}$

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right) \quad \boldsymbol{A x}=\boldsymbol{b}
$$

Cramer's Rule (1) - solutions

$$
\begin{aligned}
& \begin{array}{c}
\boldsymbol{A} \\
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
\boldsymbol{x} \\
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)= \\
=\left(\begin{array}{c}
\boldsymbol{b} \\
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)
\end{array} \\
& \begin{array}{c}
\boldsymbol{A}_{1} \\
\left(\begin{array}{cccc}
b_{1} & a_{12} & \cdots & a_{1 n} \\
b_{2} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
b_{n} & a_{n 2} & \cdots & a_{n n}
\end{array}\right) \quad\left[\begin{array}{cccc}
a_{11} & b_{1} & \cdots & a_{1 n} \\
a_{21} & b_{2} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & b_{n} & \cdots & a_{n n}
\end{array}\right) \quad \boldsymbol{A}_{n} \\
\left.\hline \begin{array}{cccc}
a_{11} & a_{12} & \cdots & b_{1} \\
a_{21} & a_{22} & \cdots & b_{2} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & b_{n}
\end{array}\right)
\end{array} \\
& x_{1}=\frac{\operatorname{det}\left(\boldsymbol{A}_{1}\right)}{\operatorname{det}(\boldsymbol{A})} \quad x_{2}=\frac{\operatorname{det}\left(\boldsymbol{A}_{2}\right)}{\operatorname{det}(\boldsymbol{A})} \quad x_{n}=\frac{\operatorname{det}\left(\boldsymbol{A}_{n}\right)}{\operatorname{det}(\boldsymbol{A})}
\end{aligned}
$$

Gauss-Jordan Elimination

$$
\begin{aligned}
& \left(\begin{array}{lll}
+2 & +1 & -1 \\
-3 & -1 & +2 \\
-2 & +1 & +2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
+8 \\
-11 \\
-3
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
* \\
* \\
*
\end{array}\right) \\
& -(\square) \longrightarrow(\square)
\end{aligned}
$$

Gauss-Jordan Elimination - Step 1

$$
\begin{aligned}
& \begin{array}{rlr}
+2 x_{1}+x_{2}-x_{3} & =8 & \left(L_{1}\right) \\
-3 x_{1}-x_{2}+2 x_{3} & =-11 & \left(L_{2}\right) \\
-2 x_{1}+x_{2}+2 x_{3} & =-3 & \left(L_{3}\right)
\end{array} \\
& +1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}=4 \quad\left(\frac{1}{2} \times L_{1}\right) \\
& +2 / 2+1 / 2-1 / 2+8 / 2 \\
& \begin{array}{ll}
+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}=4 & \left(\frac{1}{2} \times L_{1}\right) \\
-3 x_{1}-x_{2}+2 x_{3}=-11 \\
-2 x_{1}+x_{2}+2 x_{3}=-3 & \left(L_{2}\right) \\
\left(L_{3}\right)
\end{array} \quad\left(\begin{array}{rcc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
-3 & -1 & +2 & -11 \\
-2 & +1 & +2 & -3
\end{array}\right)
\end{aligned}
$$

Gauss-Jordan Elimination - Step 2

$$
\begin{array}{rlr}
+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3} & =+4 & \left(L_{1}\right) \tag{1}\\
-3 x_{1}-x_{2}+2 x_{3} & =-11 & \left(L_{2}\right) \\
-2 x_{1}+x_{2}+2 x_{3} & =-3 & \left(L_{3}\right)
\end{array}
$$

$$
\left[\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
-3 & -1 & +2 & -11 \\
-2 & +1 & +2 & -3
\end{array}\right]
$$

$$
\begin{aligned}
+3 x_{1}+\frac{3}{2} x_{2}-\frac{3}{2} x_{3} & =+12 & & 3 \times L_{1} \\
-3 x_{1}-x_{2}+2 x_{3} & =-11 & & \left(L_{2}\right)
\end{aligned}
$$

$$
+2 x_{1}+\frac{2}{2} x_{2}-\frac{2}{2} x_{3}=+8
$$

$2 \times L_{1}$
$-2 x_{1}+x_{2}+2 x_{3}=-3$
$\left(L_{3}\right)$

$$
\begin{array}{cccc}
+3 & +3 / 2 & -3 / 2 & +12 \\
-3 & -1 & +2 & -11
\end{array}
$$

$$
\begin{array}{cccc}
+2 & +2 / 2 & -2 / 2 & +8 \\
-2 & +1 & +2 & -3
\end{array}
$$

$+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}=+4$
$\left(L_{1}\right)$
$0 x_{1}+\frac{1}{2} x_{2}+\frac{1}{2} x_{3}=+1$
$3 \times L_{1}+L_{2}$
$0 x_{1}+2 x_{2}+1 x_{3}=+5$
$\left.2 \times L_{1}+L_{3}\right)$
$\left(\begin{array}{ccc|c}+1 & +1 / 2 & -1 / 2 & +4 \\ \hline 0 & +1 / 2 & +1 / 2 & +1 \\ \hline 0 & +2 & +1 & +5\end{array}\right]$

Gauss-Jordan Elimination - Step 3

| $+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}=+4$ | | |
| :--- | :--- | :--- | :--- |
| $0 x_{1}+\frac{1}{2} x_{2}+\frac{1}{2} x_{3}=+1$ | | |
| $0 x_{1}+2 x_{2}+1 x_{3}$ | $=+5$ | $\left(L_{1}\right)$ |
| $0 x_{1}+1 x_{2}+1 x_{3}$ | $=+2$ | $\left(L_{3}\right)$ |\(\quad\left[\begin{array}{ccc|c}+1 \& +1 / 2 \& -1 / 2 \& +4

0 \& +1 / 2 \& +1 / 2 \& +1

0 \& +2 \& +1 \& +5\end{array}\right]\)
https://en.wikiversity.org/wiki/Linear_Algebra_in_plain_view

Gauss-Jordan Elimination - Step 4

$+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}$	$=+4$
$0 x_{1}+1 x_{2}+1 x_{3}$	$=+2$
$0 x_{1}+2 x_{2}+1 x_{3}$	$=+5$

$$
\left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & +2 & +1 & +5
\end{array}\right)
$$

$$
\begin{array}{ll}
0 x_{1}-2 x_{2}-2 x_{3}=-4 & --2 \times L_{2} \\
0 x_{1}+2 x_{2}+1 x_{3}=+5 & \left(L_{3}\right)
\end{array}
$$

$$
\begin{array}{llll}
0 & -2 & -2 & -4 \\
0 & +2 & +1 & +5
\end{array}
$$

$$
\begin{aligned}
+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3} & =+4 & & \left(L_{1}\right) \\
0 x_{1}+1 x_{2}+1 x_{3} & =+2 & & \left(L_{2}\right) \\
0 x_{1}+0 x_{2}-1 x_{3} & =+1 & & \left.-2 \times L_{2}+L_{3}\right)
\end{aligned}
$$

$$
\left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & 0 & -1 & +1
\end{array}\right)
$$

Gauss-Jordan Elimination - Step 5

$$
\begin{aligned}
& \begin{array}{rlr}
+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3} & =+4 & \left(L_{1}\right) \\
0 x_{1}+1 x_{2}+1 x_{3} & =+2 & \left(L_{2}\right) \\
0 x_{1}+0 x_{2}-1 x_{3} & =+1 & \left(L_{3}\right)
\end{array} \\
& \left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & 0 & -1 & +1
\end{array}\right] \\
& 0 x_{1}-0 x_{2}+1 x_{3}=-1 \quad\left(-1 \times L_{3}\right) \\
& 0 \quad 0 \quad+1 \quad-1 \\
& \begin{aligned}
+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3} & =+4 \\
0 x_{1}+1 x_{2}+1 x_{3} & =+2 \\
0 x_{1}+0 x_{2}+1 x_{3} & =-1
\end{aligned} \quad\left(L_{2}\right) \\
& \left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & 0 & +1 & -1
\end{array}\right]
\end{aligned}
$$

Forward Phase

$$
\left.\begin{array}{l}
\left(\begin{array}{ccc|c}
+2 & +1 & -1 & +8 \\
-3 & -1 & +2 & -11 \\
-2 & +1 & +2 & -3
\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
-3 & -1 & +2 & -11 \\
-2 & +1 & +2 & -3
\end{array}\right) \Rightarrow\left(\begin{array}{cc|c}
+1 & +1 / 2 & -1 / 2 \\
0 & +4 \\
0 & +1 / 2 & +1 / 2
\end{array}\right. \\
\hline 0 \\
\hline
\end{array}\right)
$$

Forward Phase - Gaussian Elimination

Gauss-Jordan Elimination - Step 6

$$
\begin{align*}
& +1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}=+4 \\
& 0 x_{1}+1 x_{2}+1 x_{3}=+2 \\
& 0 x_{1}+0 x_{2}+1 x_{3}=-1 \\
& \left(L_{2}\right) \\
& \left(L_{3}\right) \\
& 0 x_{1}+0 x_{2}+\frac{1}{2} x_{3}=-\frac{1}{2} \\
& +\frac{1}{2} \times L_{3} \\
& +1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}=+4 \\
& \left(L_{1}\right) \\
& \left(\begin{array}{ccc|c}
+1 & +1 / 2 & \boxed{-1 / 2} & +4 \\
0 & +1 & \boxed{+1} & +2 \\
0 & 0 & +1 & -1
\end{array}\right) \tag{1}\\
& 0 \quad 0 \quad+1 / 2 \quad-1 / 2 \\
& +1+1 / 2-1 / 2+4 \\
& 0 x_{1}+0 x_{2}-1 x_{3}=+1 \\
& -1 \times L_{3} \\
& 0 x_{1}+1 x_{2}+1 x_{3}=+2 \\
& \left(L_{2}\right) \\
& \begin{array}{cccc}
0 & 0 & -1 & +1 \\
0 & +1 & +1 & +2
\end{array} \\
& +1 x_{1}+\frac{1}{2} x_{2}+0 x_{3}=+\frac{7}{2} \quad\left(+\frac{1}{2} \times L_{3}+L_{1}\right) \\
& 0 x_{1}+1 x_{2}+0 x_{3}=+3 \\
& \left(-1 \times L_{3}+L_{2}\right) \\
& 0 x_{1}+0 x_{2}+1 x_{3}=-1 \\
& \left(\begin{array}{ccc|c}
+1 & +1 / 2 & 0 & +7 / 2 \\
0 & +1 & \boxed{0} & +3 \\
0 & 0 & +1 & -1
\end{array}\right) \tag{3}
\end{align*}
$$

https://en.wikiversity.org/wiki/Linear_Algebra_in_plain_view

Gauss-Jordan Elimination - Step 7

$$
\begin{aligned}
+1 x_{1}+\frac{1}{2} x_{2}+0 x_{3} & =+\frac{7}{2} \\
0 x_{1}+1 x_{2}+0 x_{3} & =+3 \\
0 x_{1}+0 x_{2}+1 x_{3} & =-1
\end{aligned}
$$

$$
\begin{aligned}
0 x_{1}-\frac{1}{2} x_{2}+0 x_{3} & =-\frac{3}{2} & \boxed{-\frac{1}{2}} \\
+1 x_{1}+0 x_{2}-0 x_{3} & =+2 & \left(L_{1}\right)
\end{aligned}
$$

$$
\left(\begin{array}{ccc|c}
+1 & +1 / 2 & 0 & +7 / 2 \\
0 & +1 & 0 & +3 \\
0 & 0 & +1 & -1
\end{array}\right)
$$

$$
\begin{array}{cccc}
0 & -1 / 2 & 0 & -3 / 2 \\
+1 & +1 / 2 & 0 & +7 / 2
\end{array}
$$

$$
\begin{aligned}
+1 x_{1}+0 x_{2}-0 x_{3} & =+2 \\
0 x_{1}+1 x_{2}+0 x_{3} & =+3 \\
0 x_{1}+0 x_{2}+1 x_{3} & =-1
\end{aligned} \quad\left(-\frac{1}{2} \times L_{2}+L_{1}\right) \quad\left(L_{3}\right) \quad\left[\begin{array}{ccc|c}
+1 & \boxed{0} & 0 & +2 \\
0 & +1 & 0 & +3 \\
0 & 0 & +1 & -1
\end{array}\right)
$$

https://en.wikiversity.org/wiki/Linear_Algebra_in_plain_view

Backward Phase

$$
\left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +1 \\
0 & 0 & +1 & -1
\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}
+1 & +1 / 2 & 0 & +7 / 2 \\
0 & +1 & 0 & +3 \\
0 & 0 & +1 & -1
\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}
+1 & 0 & 0 & +2 \\
0 & +1 & 0 & +3 \\
0 & 0 & +1 & -1
\end{array}\right)
$$

Gauss-Jordan Elimination

Forward Phase - Gaussian Elimination
$\left(\begin{array}{ccc|c}\oplus 2 & +1 & -1 & +8 \\ -3 & -1 & +2 & - \\ -2 & +1 & +2 & 11\end{array}\right] \Rightarrow\left[\begin{array}{ccc|c}\oplus 1 & +1 / 2 & -1 / 2 & +4 \\ -3 & -1 & +2 & - \\ -2 & +1 & +2 & -3\end{array}\right] \Rightarrow\left[\begin{array}{ccc|c}+1 & +1 / 2 & -1 / 2 & +4 \\ 0 & +1 / 2 & +1 / 2 & +1 \\ 0 & +2 & +1 & +5\end{array}\right]$
$\left(\begin{array}{ccc|c}+1 & +1 / 2 & -1 / 2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & +2 & +1 & +5\end{array}\right] \Rightarrow\left[\begin{array}{ccc|c}+1 & +1 / 2 & -1 / 2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}+1 & +1 / 2 & -1 / 2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & +1 & -1\end{array}\right]$
Backward Phase - Guass-Jordan Elimination
$\left(\begin{array}{ccc|c}+1 & +1 / 2 & -1 / 2 & +4 \\ 0 & +1 & \boxed{+1} & +2 \\ 0 & 0 & +1 & -1\end{array}\right] \Rightarrow\left[\begin{array}{ccc|c}+1 & +1 / 2 & 0 & +7 / 2 \\ 0 & +1 & 0 & +3 \\ 0 & 0 & +1 & -1\end{array}\right) \Rightarrow\left[\begin{array}{ccc|c}+1 & 0 & 0 & +2 \\ 0 & +1 & 0 & +3 \\ 0 & 0 & +1 & -1\end{array}\right)$

References

[1] http://en.wikipedia.org/
[2]

