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The definition of Applicative 

class (Functor f) => Applicative f where  

    pure :: a -> f a  

    (<*>) :: f (a -> b) -> f a -> f b 

The class has a two methods :

pure brings  arbitrary values into the functor

(<*>) takes a function wrapped in a functor f

and a value wrapped in a functor f 

and returns the result of the application  

which is also wrapped in a functor f 

https://en.wikibooks.org/wiki/Haskell/Applicative_functors
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The Maybe instance of Applicative 

instance Applicative Maybe where  

    pure                  = Just

    (Just f) <*> (Just x) = Just (f x)

    _           <*> _        = Nothing

pure wraps the value with Just; 

(<*>) applies 

   the function wrapped in Just 

to the value wrapped in Just if both exist, 

and results in Nothing otherwise.

https://en.wikibooks.org/wiki/Haskell/Applicative_functors
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The Applicative Typeclass

class (Functor f) => Applicative f where  

    pure :: a -> f a  

    (<*>) :: f (a -> b) -> f a -> f b  

f : Functor, Applicative

instance Applicative Maybe where  

    pure = Just  

    Nothing <*> _ = Nothing  

    (Just f) <*> something = fmap f something  

f : function in a context

http://learnyouahaskell.com/functors-applicative-functors-and-monoids
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fmap g x  =  (pure g) <*> x 

http://learnyouahaskell.com/functors-applicative-functors-and-monoids
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Left Associative <*>

ghci> pure (+) <*> Just 3 <*> Just 5  

Just 8  

ghci> pure (+) <*> Just 3 <*> Nothing  

Nothing  

ghci> pure (+) <*> Nothing <*> Just 5  

Nothing

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

 pure (+)   <*>   Just 3   <*>   Just 5  

 pure (+3)    <*>   Just 5  

 Just 8  
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Infix Operator <$>

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

  pure  f   <*>   x   <*>   y   <*>   z  

  fmap   f     x   <*>   y   <*>   z  

  f   <$>   x   <*>   y   <*>   z  

fmap g x 

fmapx y

g

g <$> x 

<$>x y

g
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Infix Operator <$> : not a class method 

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

(<$>) :: (Functor f) => (a -> b) -> f a -> f b  

f <$> x = fmap f x 

class (Functor f) => Applicative f where  

    pure :: a -> f a  

    (<*>) :: f (a -> b) -> f a -> f b  

instance Applicative Maybe where  

    pure = Just  

    Nothing <*> _ = Nothing  

    (Just f) <*> something = fmap f something  

not a class method

fmap g x 

fmapx y

g

g <$> x 

<$>x y

g
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The Applicative Typeclass

Applicative is a superclass of Monad.

every Monad is also a Functor and an Applicative 

fmap, pure, (<*>) can all be used with monads. 

a Monad instance also requires 

Functor and Applicative instances. 

the types and roles of return and (>>) 

https://en.wikibooks.org/wiki/Haskell/Applicative_functors
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(*> v.s. >>) and (pure v.s. return) 

(*>) :: Applicative f => f a -> f b -> f b

(>>) :: Monad m => m a -> m b -> m b

pure :: Applicative f => a -> f a

return :: Monad m => a -> m a

the constraint changes from Applicative to Monad. 

(*>) in Applicative (>>) in Monad

pure in Applicative return in Monad

https://en.wikibooks.org/wiki/Haskell/Applicative_functors
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The Applicative Laws

The identity law:    pure id <*> v = v

Homomorphism:    pure f <*> pure x = pure (f x)

Interchange:    u <*> pure y = pure ($ y) <*> u

Composition:    u <*> (v <*> w) = pure (.) <*> u <*> v <*> w
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The Identity Law 

The identity law pure id <*> v = v     

pure to inject values into the functor 

in a default, featureless way, 

so that the result is as close as possible to the plain value. 

applying the pure id morphism does nothing, 

exactly like with the plain id function.

https://en.wikibooks.org/wiki/Haskell/Applicative_functors
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The Homomorphism Law

The homomorphism law pure f <*> pure x = pure (f x)

applying a "pure" function to a "pure" value is the same as 

applying the function to the value in the normal way 

and then using pure on the result. 

means pure preserves function application.

applying a non-effectful function f

to a non-effectful argument x in an effectful context pure 

is the same as just applying the function f to the argument x 

and then injecting the result (f x) into the context with pure.

https://en.wikibooks.org/wiki/Haskell/Applicative_functors
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The Interchange Law 

The interchange law u <*> pure y = pure ($ y) <*> u  

applying a morphism u to a "pure" value pure y 

is the same as applying pure ($ y) to the morphism u 

($ y) is the function that supplies y as argument to another function  

– the higher order functions

when evaluating the application of 

an effectful function u to a pure argument pure y,

the order in which we evaluate 

the function u and its argument  pure y doesn't matter. 

https://en.wikibooks.org/wiki/Haskell/Applicative_functors
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The Composition Law

The composition law pure (.) <*> u <*> v <*> w = u <*> (v <*> w)

pure (.) composes morphisms similarly 

to how (.) composes functions: 

pure (.) <*> pure f <*> pure g <*> pure x 

= pure f <*> (pure g <*> pure x)

applying the composed morphism pure (.) <*> u <*> v to w 

gives the same result as applying u u  

to the result of applying v to w (v <*> w)

it is expressing a sort of associativity property of (<*>). 

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

(f . g)  x  = f (g x)

u = pure f
v = pure g
w = pure x
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