
Young Won Lim
3/6/18

Applicatives Laws (2B)

Young Won Lim
3/6/18

 Copyright (c) 2016 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Applicatives
Laws (2B) 3 Young Won Lim

3/6/18

The definition of Applicative

class (Functor f) => Applicative f where

 pure :: a -> f a

 (<*>) :: f (a -> b) -> f a -> f b

The class has a two methods :

pure brings arbitrary values into the functor

(<*>) takes a function wrapped in a functor f

and a value wrapped in a functor f

and returns the result of the application

which is also wrapped in a functor f

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicatives
Laws (2B) 4 Young Won Lim

3/6/18

The Maybe instance of Applicative

instance Applicative Maybe where

 pure = Just

 (Just f) <*> (Just x) = Just (f x)

 _ <*> _ = Nothing

pure wraps the value with Just;

(<*>) applies

 the function wrapped in Just

to the value wrapped in Just if both exist,

and results in Nothing otherwise.

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicatives
Laws (2B) 5 Young Won Lim

3/6/18

The Applicative Typeclass

class (Functor f) => Applicative f where

 pure :: a -> f a

 (<*>) :: f (a -> b) -> f a -> f b

f : Functor, Applicative

instance Applicative Maybe where

 pure = Just

 Nothing <*> _ = Nothing

 (Just f) <*> something = fmap f something

f : function in a context

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

f a

f a f b

a

ba

f aa

f g

pure

pure

(<*>)

g

pure

pure pure

(Functor f) => Applicative f

(Functor f) => Applicative f

Applicatives
Laws (2B) 6 Young Won Lim

3/6/18

fmap g x = (pure g) <*> x

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

ga b

fmapf a f b

(pure g) <*> x fmap g x

x (<*>)fmapx y

g pure g

y

f b

b

f g

pure

(<*>)

g

pure pure

f a

a

pure = f

Applicatives
Laws (2B) 7 Young Won Lim

3/6/18

Left Associative <*>

ghci> pure (+) <*> Just 3 <*> Just 5

Just 8

ghci> pure (+) <*> Just 3 <*> Nothing

Nothing

ghci> pure (+) <*> Nothing <*> Just 5

Nothing

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

 pure (+) <*> Just 3 <*> Just 5

 pure (+3) <*> Just 5

 Just 8

Applicatives
Laws (2B) 8 Young Won Lim

3/6/18

Infix Operator <$>

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

 pure f <*> x <*> y <*> z

 fmap f x <*> y <*> z

 f <$> x <*> y <*> z

fmap g x

fmapx y

g

g <$> x

<$>x y

g

Applicatives
Laws (2B) 9 Young Won Lim

3/6/18

Infix Operator <$> : not a class method

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

(<$>) :: (Functor f) => (a -> b) -> f a -> f b

f <$> x = fmap f x

class (Functor f) => Applicative f where

 pure :: a -> f a

 (<*>) :: f (a -> b) -> f a -> f b

instance Applicative Maybe where

 pure = Just

 Nothing <*> _ = Nothing

 (Just f) <*> something = fmap f something

not a class method

fmap g x

fmapx y

g

g <$> x

<$>x y

g

Applicatives
Laws (2B) 10 Young Won Lim

3/6/18

The Applicative Typeclass

Applicative is a superclass of Monad.

every Monad is also a Functor and an Applicative

fmap, pure, (<*>) can all be used with monads.

a Monad instance also requires

Functor and Applicative instances.

the types and roles of return and (>>)

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicatives
Laws (2B) 11 Young Won Lim

3/6/18

(*> v.s. >>) and (pure v.s. return)

(*>) :: Applicative f => f a -> f b -> f b

(>>) :: Monad m => m a -> m b -> m b

pure :: Applicative f => a -> f a

return :: Monad m => a -> m a

the constraint changes from Applicative to Monad.

(*>) in Applicative (>>) in Monad

pure in Applicative return in Monad

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicatives
Laws (2B) 12 Young Won Lim

3/6/18

The Applicative Laws

The identity law: pure id <*> v = v

Homomorphism: pure f <*> pure x = pure (f x)

Interchange: u <*> pure y = pure ($ y) <*> u

Composition: u <*> (v <*> w) = pure (.) <*> u <*> v <*> w

Applicatives
Laws (2B) 13 Young Won Lim

3/6/18

The Identity Law

The identity law pure id <*> v = v

pure to inject values into the functor

in a default, featureless way,

so that the result is as close as possible to the plain value.

applying the pure id morphism does nothing,

exactly like with the plain id function.

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicatives
Laws (2B) 14 Young Won Lim

3/6/18

The Homomorphism Law

The homomorphism law pure f <*> pure x = pure (f x)

applying a "pure" function to a "pure" value is the same as

applying the function to the value in the normal way

and then using pure on the result.

means pure preserves function application.

applying a non-effectful function f

to a non-effectful argument x in an effectful context pure

is the same as just applying the function f to the argument x

and then injecting the result (f x) into the context with pure.

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicatives
Laws (2B) 15 Young Won Lim

3/6/18

The Interchange Law

The interchange law u <*> pure y = pure ($ y) <*> u

applying a morphism u to a "pure" value pure y

is the same as applying pure ($ y) to the morphism u

($ y) is the function that supplies y as argument to another function

– the higher order functions

when evaluating the application of

an effectful function u to a pure argument pure y,

the order in which we evaluate

the function u and its argument pure y doesn't matter.

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicatives
Laws (2B) 16 Young Won Lim

3/6/18

The Composition Law

The composition law pure (.) <*> u <*> v <*> w = u <*> (v <*> w)

pure (.) composes morphisms similarly

to how (.) composes functions:

pure (.) <*> pure f <*> pure g <*> pure x

= pure f <*> (pure g <*> pure x)

applying the composed morphism pure (.) <*> u <*> v to w

gives the same result as applying u u

to the result of applying v to w (v <*> w)

it is expressing a sort of associativity property of (<*>).

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

(f . g) x = f (g x)

u = pure f
v = pure g
w = pure x

Young Won Lim
3/6/18

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

