
Young Won Lim
11/8/17

State Monad (3D)

Young Won Lim
11/8/17

 Copyright (c) 2016 - 2017 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

State Monad (3D) 3 Young Won Lim
11/8/17

Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

State Monad (3D) 4 Young Won Lim
11/8/17

 type String = [Char]

 phoneBook :: [(String,String)]

 type PhoneBook = [(String,String)]

 phoneBook :: PhoneBook

 type PhoneNumber = String

 type Name = String

 type PhoneBook = [(Name,PhoneNumber)]

 phoneBook :: PhoneBook

http://learnyouahaskell.com/making-our-own-types-and-typeclasses

Type Synonyms

 phoneBook =

 [("betty","555-2938")

 ,("bonnie","452-2928")

 ,("patsy","493-2928")

 ,("lucille","205-2928")

 ,("wendy","939-8282")

 ,("penny","853-2492")

]

State Monad (3D) 5 Young Won Lim
11/8/17

data Configuration = Configuration

 { username :: String

 , localHost :: String

 , currentDir :: String

 , homeDir :: String

 , timeConnected :: Integer

 }

username :: Configuration -> String -- accessor function (automatic)

localHost :: Configuration -> String

-- etc.

changeDir :: Configuration -> String -> Configuration -- update function

changeDir cfg newDir =

 if directoryExists newDir -- make sure the directory exists

 then cfg { currentDir = newDir }

 else error "Directory does not exist"

https://en.wikibooks.org/wiki/Haskell/More_on_datatypes

Record Syntax (named field)

State Monad (3D) 6 Young Won Lim
11/8/17

data newtype

Data can only be replaced with newtype

if the type has exactly one constructor with exactly one field inside it.

It ensures that the trivial wrapping and unwrapping

of the single field is eliminated by the compiler.

simple wrapper types such as State are usually defined with newtype.

type : used for type synonyms

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

newtype and data

newtype State s a = State { runState :: s -> (s, a) }

State Monad (3D) 7 Young Won Lim
11/8/17

newtype Fd = Fd CInt

-- data Fd = Fd CInt would also be valid

-- newtypes can have deriving clauses just like normal types

newtype Identity a = Identity a

 deriving (Eq, Ord, Read, Show)

-- record syntax is still allowed, but only for one field

newtype State s a = State { runState :: s -> (s, a) }

-- this is *not* allowed:

-- newtype Pair a b = Pair { pairFst :: a, pairSnd :: b }

-- but this is:

– data Pair a b = Pair { pairFst :: a, pairSnd :: b }

-- and so is this:

newtype NPair a b = NPair (a, b)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

newtype examples

State Monad (3D) 8 Young Won Lim
11/8/17

The Haskell type State describes functions

that take a state

and return both a result and an updated state,

which are given back in a tuple.

The state function is wrapped by a data type definition

which comes along with a runState accessor

no need for pattern matching

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

The state function

func

newtype State s a = State { runState :: s -> (a, s) }

accessor function

s (a, s)

one-field record

 state function

a

p :: State s a

State Monad (3D) 9 Young Won Lim
11/8/17

newtype State s a = State { runState :: s -> (a, s) }

s : the type of the state,

a : the type of the produced result

s -> (a, s) : function type

Calling the type State is arguably a bit of a misnomer

because the wrapped value is not the state itself

but a state processor (accessor function: runState)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Type State

State String,

State Int,

State SomeLargeDataStructure,

and so forth.

func
s (a, s)

 state function

a

p :: State s a

State Monad (3D) 10 Young Won Lim
11/8/17

Control.Monad.Trans.State, transformers package. (focused here)

Control.Monad.State, mtl package.

Control.Monad.State.Lazy, mtl package.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

State Packages

State Monad (3D) 11 Young Won Lim
11/8/17

Control.Monad.Trans.State, transformers package. (focused here)

no State constructor

but a “state” function

state :: (s -> (a, s)) -> State s a

Control.Monad.State, mtl package

Implements the State in somewhat different way

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

The “state” function

state
(s -> (a, s)) State s a

State Monad (3D) 12 Young Won Lim
11/8/17

State is a record with only one element,

whose type is a function (:: s -> (a, s))

runState converts a value of type State s a

to a function of this type (:: s -> (a, s))

ghci> :t runState

runState :: State s a -> s -> (a, s)

Every time you apply runState to the value of type State s a,

the result is a function of type s -> (a, s).

https://stackoverflow.com/questions/3240947/understanding-haskell-accessor-functions

runState function

newtype State s a = State { runState :: s -> (a, s) }

state
(s -> (a, s)) State s a

runState
(s -> (a, s))State s a

State Monad (3D) 13 Young Won Lim
11/8/17

https://stackoverflow.com/questions/3240947/understanding-haskell-accessor-functions

state & runState function

newtype State s a = State { runState :: s -> (a, s) }

state
(s -> (a, s)) State s a

runState
(s -> (a, s))State s a

runState
(a, s)State s a s

runState :: State s a -> s -> (a, s)

runState :: State s a -> s -> (a, s)

State Monad (3D) 14 Young Won Lim
11/8/17

wrap a function type and give it a name.

State s can be made a Monad instance, for every type s

the Monad instance is State s, and not just State

(State can't be made an instance of Monad,

as it takes two type parameters, rather than one.)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Instantiating a State Monad

instance Monad (State s) where

newtype State s a = State { runState :: s -> (a, s) }

State String,

State Int,

State SomeLargeDataStructure,

and so forth.

return implementation

(>>=) implementation

s -> (a, s)

State s a

State s a

Monad

Monad

State Monad (3D) 15 Young Won Lim
11/8/17

instance Monad (State s) where

many different State monads,

one for each possible type of state -

State String,

State Int,

State SomeLargeDataStructure,

and so forth.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Common implementation of return and >>=

one implementation of

 return and

(>>=);

can handle these different (State s) monads

according to different choices of s.

State Monad (3D) 16 Young Won Lim
11/8/17

instance Monad (State s) where

return :: a -> State s a

return x = state (\s -> (x, s))

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

return method

State s a

state
(s -> (a, s)) State s a

runState
(s -> (a, s))State s a

return
a State s a

State Monad (3D) 17 Young Won Lim
11/8/17

instance Monad (State s) where

return :: a -> State s a

return x = state (\s -> (x, s))

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

return method

State s a

return
a State s a

state
State s a

func
s (a, s)

a

giving a value (x) to return results in a state processor function

which takes a state (s) and returns it unchanged (s),

together with value x we want to be returned.

Finally, the function is wrapped up by state.

State Monad (3D) 18 Young Won Lim
11/8/17

runState (return 'X') 1

 ('X',1)

return

set the result value but leave the state unchanged.

 return 'X' :: State Int Char

 runState (return 'X') :: Int -> (Char, Int)

 initial state = 1 :: Int

 final value = 'X' :: Char

 final state = 1 :: Int

 result = ('X', 1) :: (Char, Int)

https://wiki.haskell.org/State_Monad

State Monad Examples – return

State Monad (3D) 19 Young Won Lim
11/8/17

put :: s -> State s a

put s :: State s a

put newState = state $ _ -> ((), newState)

-- setting a state to newState

get :: State s s

get = state $ \s -> (s, s)

-- getting the current state s

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Setting and Getting the State

state
State s a

func
s ((), s)

((), newState)

state
State s a

func
s (s, s)

(s0, s0)s0

s0

newState
s

State Monad (3D) 20 Young Won Lim
11/8/17

put :: s -> State s a

put s :: State s a

put newSt = state $ _ -> ((), newSt)

get :: State s s

get = state $ \s -> (s, s)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

put and get

func

()

p :: State s a

((), newSt)st

func

st

p :: State s a

(st, st)st

put

get

State s a

State s a

 s

newSt

State Monad (3D) 21 Young Won Lim
11/8/17

put :: s -> State s a

put newSt = state $ _ -> ((), newSt)

runState (put newSt) S0

((), newSt)

get :: State s s

get = state $ \s -> (s, s)

runState (get) S0

(S0, S0)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

runState put and runState get

func

p :: State s a

((), newSt)st

func

p :: State s a

(st, st)st

S0

((), newSt)

S0

(S0, S0)

State Monad (3D) 22 Young Won Lim
11/8/17

put :: s -> State s a

put newSt = state $ _ -> ((), newSt)

get :: State s s

get = state $ \s -> (s, s)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

put and get viewed as inside functions

func

p :: State s a

st

func

p :: State s a

(a, st1)st0

put
newSt

((), newSt)

get

put :: s -> (a,s)

get :: s

State Monad (3D) 23 Young Won Lim
11/8/17

Whenever sc is a stateful computation

sc can be directly assigned to x, inside the state monad,

x <- sc

the result of the stateful computation sc is assigned to x

(like evalState is called with an initial state).

In order to check the current state, you can do

s <- get

and s will have the value of the current state.

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Inside the state monad

State Monad (3D) 24 Young Won Lim
11/8/17

Most monads are equipped with some "run" functions

such as runState, execState, and so forth.

But, frequent calling such functions inside the monad

shows that the functionality of the monad does not fully exploited

s0 <- get -- Read state

let (a,s') = runState s s0 -- Pass state to 's', get new state

put s' -- Save new state

a <- s

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Inside Functions and runState Functions

runState
(a, s)State s a s

State Monad (3D) 25 Young Won Lim
11/8/17

s0 <- get -- Read state

let (a,s') = runState p s0 -- Pass state to p, get new state

put s' -- Save new state

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Redundant computation examples

runState
(a, s)State s a s

p s0 (s0, s0+1)

(a, s')

func

p :: State s a

(a, st0+1)st0

get s0

func

p :: State s a

st

put
newSt

((), newSt)a <- s

State Monad (3D) 26 Young Won Lim
11/8/17

collectUntil :: (s -> Bool) -> State s a -> State s [a]

collectUntil f s = step

 where

 step = do a <- s

 liftM (a:) continue

 continue = do s' <- get

 if f s' then return [] else step

simpleState = state (\x -> (x,x+1))

*Main> evalState (collectUntil (>10) simpleState) 0

[0,1,2,3,4,5,6,7,8,9,10]

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Inside function examples

State Monad (3D) 27 Young Won Lim
11/8/17

liftM :: (Monad m) => (a -> b) -> m a -> m b

mapM :: (Monad m) => (a -> m b) -> [a] -> m [b]

liftM lifts a function of type a -> b to a monadic counterpart.

mapM applies a function which yields a monadic value to a list of values,

yielding list of results embedded in the monad.

> liftM (map toUpper) getLine

Hallo

"HALLO"

> :t mapM return "monad"

mapM return "monad" :: (Monad m) => m [Char]

https://stackoverflow.com/questions/5856709/what-is-the-difference-between-liftm-and-mapm-in-haskell

liftM

State Monad (3D) 28 Young Won Lim
11/8/17

> :t mapM return "monad"

mapM return "monad" :: (Monad m) => m [Char]

> map (x -> [x+1]) [1,2,3]

[[2],[3],[4]]

> mapM (x -> [x+1]) [1,2,3]

[[2,3,4]]

https://stackoverflow.com/questions/5856709/what-is-the-difference-between-liftm-and-mapm-in-haskell

mapM

State Monad (3D) 29 Young Won Lim
11/8/17

put :: s -> State s a

put newSt = state $ _ -> ((), newSt)

Given a wanted state newState,

put generates a state processor

which ignores whatever the state it receives,

and gives back the state we originally provided to put.

the same state

Since we don't care about the result (a) of this processor

(all we want to do is to change the state),

the first element of the tuple will be (),

the universal placeholder value.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Setting the State

state
State s a

func
s ((), s)

((), newSt)st

S0

((), newSt)

State Monad (3D) 30 Young Won Lim
11/8/17

get :: State s s

get = state $ \s -> (s, s)

The resulting state processor gives back the state st

it is given in both as a result and as a state.

That means the state will remain unchanged,

and that a copy of it will be made available

for us to manipulate.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Getting the State

state
State s a

func
s (s, s)

(st, st)st

S0

(S0, S0)

State Monad (3D) 31 Young Won Lim
11/8/17

runState

unwrap the State s a value

to get the actual state processing function

which is then applied to some initial state.

Given a State s a and an initial state s,

evalState only the result value

execState just the new state.

evalState :: State s a -> s -> a

evalState p s = fst (runState p s)

execState :: State s a -> s -> s

execState p s = snd (runState p s)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

evalState and execState

runState
(s -> (a, s))State s a

runState
(a, s)State s a s

evalState
aState s a s

execState
sState s a s

State Monad (3D) 32 Young Won Lim
11/8/17

runState get 1

 (1,1)

get

set the result value to the state and leave the state unchanged.

Comments:

 get :: State Int Int

 runState get :: Int -> (Int, Int)

 initial state = 1 :: Int

 final value = 1 :: Int

 final state = 1 :: Int

https://wiki.haskell.org/State_Monad

State Monad Examples – get

get :: State s s

get = state $ \s -> (s, s)

State Monad (3D) 33 Young Won Lim
11/8/17

runState (put 5) 1

 ((),5)

put

set the result value to () and set the state value.

Comments:

 put 5 :: State Int ()

 runState (put 5) :: Int -> ((),Int)

 initial state = 1 :: Int

 final value = () :: ()

 final state = 5 :: Int

https://wiki.haskell.org/State_Monad

State Monad Examples – put

put :: s -> State s a

put newState = state $ _ -> ((), newState)

State Monad (3D) 34 Young Won Lim
11/8/17

Return leaves the state unchanged and sets the result:

-- ie: (return 5) 1 -> (5,1)

return :: a -> State s a

return x s = (x,s)

Get leaves state unchanged and sets the result to the state:

-- ie: get 1 -> (1,1)

get :: State s s

get s = (s,s)

Put sets the result to () and sets the state:

-- ie: (put 5) 1 -> ((),5)

put :: s -> State s ()

put x s = ((),x)

https://wiki.haskell.org/State_Monad

Put and get in mtl packages

State Monad (3D) 35 Young Won Lim
11/8/17

Return leaves the state unchanged and sets the result:

-- ie: (return 5) 1 -> (5,1)

return :: a -> State s a

return x s = (x,s)

Get leaves state unchanged and sets the result to the state:

-- ie: get 1 -> (1,1)

get :: State s s

get s = (s,s)

Put sets the result to () and sets the state:

-- ie: (put 5) 1 -> ((),5)

put :: s -> State s ()

put x s = ((),x)

https://wiki.haskell.org/State_Monad

Unwrapped Implementation Examples (1)

State Monad (3D) 36 Young Won Lim
11/8/17

evalState :: State s a -> s -> a

evalState act = fst . runState act

execState :: State s a -> s -> s

execState act = snd . runState act

https://wiki.haskell.org/State_Monad

Unwrapped Implementation Examples (1)

runState
(a, s)State s a s

fst
a

runState
(a, s)State s a s

snd
s

State Monad (3D) 37 Young Won Lim
11/8/17

modify :: (s -> s) -> State s ()

modify f = do { x <- get; put (f x) }

gets :: (s -> a) -> State s a

gets f = do { x <- get; return (f x) }

runState (modify (+1)) 1

 ((),2)

runState (gets (+1)) 1

 (2,1)

evalState (gets (+1)) 1

 2

execState (gets (+1)) 1

 1

https://wiki.haskell.org/State_Monad

Unwrapped Implementation Examples (2)

get & put :

functions inside the State monad

get :: s

put :: s -> (a, s)

State Monad (3D) 38 Young Won Lim
11/8/17

(>>=) :: State s a -> (a -> State s b) -> State s b

(act1 >>= fact2) s = runState act2 is

 where (iv, is) = runState act1 s

 act2 = fact2 iv

https://wiki.haskell.org/State_Monad

Unwrapped Implementation Examples (3)

runState
(a, s)State s a s

act1 s (iv, is)

fact2
iv

State s aa

runState
(a, s)State s a s

 is (ov, os)

act2

act2

State Monad (3D) 39 Young Won Lim
11/8/17

instance Monad (State s) where

(>>=) :: State s a -> (a -> State s b) -> State s b

p >>= k = q where

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Function type of >>=

p :: State s a

k :: (a -> State s b)

p >>= k

State s a -> (a -> State s b) -> State s b

p k

>>=p

 k

q >>=
State s a

(a -> State s b)

 State s b

State Monad (3D) 40 Young Won Lim
11/8/17

instance Monad (State s) where

(>>=) :: State s a -> (a -> State s b) -> State s b

p >>= k = q where

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

1st and 2nd arguments of >>= :

func

aState s

a bState s

p :: State s a

k :: (a -> State s b)

>>=p

 k

q

State Monad (3D) 41 Young Won Lim
11/8/17

instance Monad (State s) where

(>>=) :: State s a -> (a -> State s b) -> State s b

p >>= k = q where

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Binding operator >>=

func

>>=aState s

a

b

b

State s

State s

>>=1st arg

2nd arg

Return
value

1st arg

p

k

p :: State s a State Monad value

k :: (a -> State s b) State Monad returning function

p >>= k = q

State Monad (3D) 42 Young Won Lim
11/8/17

instance Monad (State s) where

(>>=) :: State s a -> (a -> State s b) -> State s b

p >>= k = q where

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Conceptual computation flow of >>=

func

>>=aState s

a

b

b

State s

State s

p

k

extracts

state transition : running the state processor

returns

State Monad (3D) 43 Young Won Lim
11/8/17

Thinking of extraction : a slightly misleading intuition.

Nothing is being "extracted" from a monad.

The more fundamental definition of a monad

can be stated by three orthogonal functions:

fmap :: (a -> b) -> (m a -> m b)

return :: a -> m a

join :: m (m a) -> m a

m is a monad.

https://stackoverflow.com/questions/15016339/haskell-computation-in-a-monad-meaning

Three Orthogonal Functions

State Monad (3D) 44 Young Won Lim
11/8/17

fmap :: (a -> b) -> (m a -> m b)

return :: a -> m a

join :: m (m a) -> m a

how to implement (>>=) with these:

starting with arguments of type m a and a -> m b,

your only option is using fmap to get something of type m (m b),

(a -> m b) -> (m a -> m (m b))

after which you can use join to flatten the nested "layers" to get just m b.

(a -> m b) -> (m a ->m b)

https://stackoverflow.com/questions/15016339/haskell-computation-in-a-monad-meaning

Three Orthogonal Functions and >>=

 (a -> m b) -> (m a -> m (m b))

 (a -> m b) -> (m a -> m b)

(a -> b) -> (m a -> m b)

State Monad (3D) 45 Young Won Lim
11/8/17

join :: m (m a) -> m a

nothing is being taken "out" of the monad

as the computation going deeper into the monad,

with successive steps being collapsed into a single layer of the monad.

when join (m (m a) -> m a) is applied, it doesn't matter

as long as the nesting order is preserved (a form of associativity) and

that the monadic layer introduced by return does nothing (an identity value for join).

Left identity return a >>= f f a

Right identity m >>= return m

Associativity (m >>= f) >>= g m >>= (\x -> f x >> g)

https://stackoverflow.com/questions/15016339/haskell-computation-in-a-monad-meaning

Monad Law

 (a -> m b) -> (m a -> m (m b))

 (a -> m b) -> (m a -> m b)

(a -> b) -> (m a -> m b)

State Monad (3D) 46 Young Won Lim
11/8/17

instance Monad (State s) where

(>>=) :: State s a -> (a -> State s b) -> State s b

p >>= k = q where

 p' = runState p -- p' :: s -> (a, s)

 k' = runState . k -- k' :: a -> s -> (b, s)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Applying the state function to p and r

func

>>=aState s

a

b

b

State s

State s

p

k

newtype State s a = State { runState :: s -> (a, s) }

r

aState s p

bState s r

p' = runState p :: s -> (a, s)

r' = runState r :: s -> (b, s)
state :: (s -> (a, s)) -> State s a

p'

r'

State Monad (3D) 47 Young Won Lim
11/8/17

instance Monad (State s) where

(>>=) :: State s a -> (a -> State s b) -> State s b

p >>= k = q where

 p' = runState p -- p' :: s -> (a, s)

 k' = runState . k -- k' :: a -> s -> (b, s)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Applying k and the state function

func

>>=aState s

a

b

b

State s

State s

p

k newtype State s a = State { runState :: s -> (a, s) }

r

runState p
 :: s -> (a, s)

runState r
 :: s -> (b, s) :: a -> s

runState . k
 :: a -> s -> (b, s)

state :: (s -> (a, s)) -> State s a

State Monad (3D) 48 Young Won Lim
11/8/17

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Running the state processor

s (a, s)
runState p

s (b, s)
runState . k

s0 (x, s1)

s1 (y, s2)

instance Monad (State s) where

(>>=) :: State s a -> (a -> State s b) -> State s b

p >>= k = q where

 p' = runState p -- p' :: s -> (a, s)

 k' = runState . k -- k' :: a -> s -> (b, s)

runState
(a, s)State s a s

runState
(a, s)State s a s

p s0

p s1

(x, s1)

(y, s2)

s (s, a)

runState p

s (s, a)

runState . k

s0
(x, s1)

s1 (y, s2)

State Monad (3D) 49 Young Won Lim
11/8/17

instance Monad (State s) where

(>>=) :: State s a -> (a -> State s b) -> State s b

p >>= k = q where

 p' = runState p -- p' :: s -> (a, s)

 k' = runState . k -- k' :: a -> s -> (b, s)

 q' s0 = (y, s2) where -- q' :: s -> (b, s)

 (x, s1) = p' s0 -- (x, s1) :: (a, s)

 (y, s2) = k' x s1 -- (y, s2) :: (b, s)

 q = state q'

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

State Transition

s0 (x, s1)

(y, s2)s1

kx

p'

(x, S1) (y, s2)((), s0)

p's0 (x, s1)

k’ (y, s2)
s1

x

State Monad (3D) 50 Young Won Lim
11/8/17

instance Monad (State s) where

(>>=) :: State s a -> (a -> State s b) -> State s b

p >>= k = q where

 p' = runState p -- p' :: s -> (a, s)

 k' = runState . k -- k' :: a -> s -> (b, s)

 q' s0 = (y, s2) where -- q' :: s -> (b, s)

 (x, s1) = p' s0 -- (x, s1) :: (a, s)

 (y, s2) = k' x s1 -- (y, s2) :: (b, s)

 q = state q'

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

State Transition from s0 to s2

s0 (x, s1) (y, s2)s1

kxp'

s0

q'

(y, s2)

state :: (s -> (a, s)) -> State s a

newtype State s a = State { runState :: s -> (s, a) }

State Monad (3D) 51 Young Won Lim
11/8/17

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

State Transition from s0 to s2

s0 (x, s1) (y, s2)s1

kxp'

s0

q'

(y, s2)

runState
(a, s)State s a s

act1 s (iv, is)

fact2
iv

State s aa

runState
(a, s)State s a s

 is (ov, os)

act2

act2

 (iv, is) (ov, os) (*, s)

State Monad (3D) 52 Young Won Lim
11/8/17

instance Monad (State s) where

(>>=) :: State s a -> (a -> State s b) -> State s b

p >>= k = state $ \ s0 ->

 let (x, s1) = runState p s0

 in runState (k x) s1

state (\ s0 -> (y, s2))

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Another implementation of >>=

s0 (x, s1)

(y, s2)s1

runState p

runState (k x)

-- running the first processor on s0.

-- running the second processor on s1.

Young Won Lim
11/8/17

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

