
Young Won Lim
7/9/23

Lambda Function (1A)

Young Won Lim
7/9/23

 Copyright (c) 2023 - 2015 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Lambda Function 3 Young Won Lim
7/9/23

Lambda Function (1)

A lambda function is a small anonymous function.

A lambda function can take any number of arguments,
but can have only one expression.

Syntax
lambda arguments : expression

https://www.w3schools.com/python/python_lambda.asp

Lambda Function 4 Young Won Lim
7/9/23

Lambda Functions (2)

The expression is executed and the result is returned:

Add 10 to argument a, and return the result:

x = lambda a : a + 10
print(x(5))

Lambda functions can take any number of arguments:

Multiply argument a with argument b and return the result:

x = lambda a, b : a * b
print(x(5, 6))

Summarize argument a, b, and c and return the result:

x = lambda a, b, c : a + b + c
print(x(5, 6, 2))

https://programmingwithmosh.com/wp-content/uploads/2019/02/Python-Cheat-Sheet.pdf

Lambda Function 5 Young Won Lim
7/9/23

Lambda Functions (3)

Why Use Lambda Functions?

The power of lambda is better shown
when you use them as an anonymous function
inside another function.

Say you have a function definition that takes one argument,
and that argument will be multiplied with an unknown number:

def myfunc(n):
 return lambda a : a * n

Use that function definition to make a function
that always doubles the number you send in:

mydoubler = myfunc(2)

print(mydoubler(11))

https://programmingwithmosh.com/wp-content/uploads/2019/02/Python-Cheat-Sheet.pdf

Lambda Function 6 Young Won Lim
7/9/23

Lambda Functions (4-1)

Or, use the same function definition
to make a function that always triples the number you send in:

def myfunc(n):
 return lambda a : a * n

mytripler = myfunc(3)

print(mytripler(11))

https://programmingwithmosh.com/wp-content/uploads/2019/02/Python-Cheat-Sheet.pdf

Lambda Function 7 Young Won Lim
7/9/23

Lambda Functions (4-2)

Or, use the same function definition
to make both functions, in the same program:

def myfunc(n):
 return lambda a : a * n

mydoubler = myfunc(2)
mytripler = myfunc(3)

print(mydoubler(11))
print(mytripler(11))

Use lambda functions
when an anonymous function is required
for a short period of time.

https://programmingwithmosh.com/wp-content/uploads/2019/02/Python-Cheat-Sheet.pdf

Lambda Function 8 Young Won Lim
7/9/23

Lambda Functions (5)

Python and other languages
like Java, C#, and even C++
have had lambda functions added to their syntax,

whereas languages like LISP or
the ML (Meta Language) family of languages,
Haskell, OCaml, and F#,
use lambdas as a core concept.

Python lambdas are little, anonymous functions,
subject to a more restrictive
but more concise syntax than regular Python functions.

https://realpython.com/python-lambda/

Lambda Function 9 Young Won Lim
7/9/23

Meta Language (1)

ML (Meta Language) is
a general-purpose functional programming language.

It is known for its use of
the polymorphic Hindley–Milner type system,
which automatically assigns the types of most expressions
without requiring explicit type annotations,
and ensures type safety

– there is a formal proof that
a well-typed ML program does not cause runtime type errors.

https://realpython.com/python-lambda/

Lambda Function 10 Young Won Lim
7/9/23

Meta Language (2)

ML provides
● pattern matching for function arguments
● garbage collection
● imperative programming
● call-by-value
● currying

It is used heavily in programming language research and
is one of the few languages to be completely specified and
verified using formal semantics.

Its types and pattern matching make it well-suited and
commonly used to operate on other formal languages,
such as in compiler writing, automated theorem proving,
and formal verification.

https://realpython.com/python-lambda/

Lambda Function 11 Young Won Lim
7/9/23

Lambda Calculus (1)

Lambda expressions in Python and
other programming languages
have their roots in lambda calculus,
a model of computation
invented by Alonzo Church.

You’ll uncover when lambda calculus was introduced and
why it’s a fundamental concept
that ended up in the Python ecosystem.

https://realpython.com/python-lambda/

Lambda Function 12 Young Won Lim
7/9/23

First example (1)

Here are a few examples, functional style.

The identity function, a function that returns its argument,
is expressed with a standard Python function definition :

>>> def identity(x):
... return x

identity() takes an argument x
and returns it upon invocation.

In contrast, if you use a Python lambda construction

>>> lambda x: x

In the example above, the expression is composed of:

 The keyword: lambda
 A bound variable: x
 A body: x

https://realpython.com/python-lambda/

Lambda Function 13 Young Won Lim
7/9/23

First example (2)

a bound variable is an argument to a lambda function.

a free variable is not bound and
may be referenced in the body of the expression.

A free variable can be a constant or
a variable defined in the enclosing scope of the function.

a slightly more elaborated example,
a function that adds 1 to an argument, as follows:

>>> lambda x: x + 1

You can apply the function above to an argument
by surrounding the function and its argument with parentheses:

>>> (lambda x: x + 1)(2)
3

https://realpython.com/python-lambda/

Lambda Function 14 Young Won Lim
7/9/23

First example (3)

Reduction is a lambda calculus strategy
to compute the value of the expression.

In the example, it consists of replacing the bound variable x with the argument 2:

(lambda x: x + 1)(2) = lambda 2: 2 + 1
 = 2 + 1
 = 3

Because a lambda function is an expression,
it can be named.

>>> add_one = lambda x: x + 1
>>> add_one(2)
3

The above lambda function is equivalent to writing this:

def add_one(x):
 return x + 1

https://realpython.com/python-lambda/

Lambda Function 15 Young Won Lim
7/9/23

First example (4-1)

These functions all take a single argument.
in the definition of the lambdas,
the arguments don’t have parentheses around them.

Multi-argument functions are expressed in Python lambdas
by listing arguments and separating them with a comma (,)
but without surrounding them with parentheses:

https://realpython.com/python-lambda/

Lambda Function 16 Young Won Lim
7/9/23

First example (4-1)

>>> full_name = lambda first, last: f'Full name: {first.title()} {last.title()}'
>>> full_name ('guido', 'van rossum')
'Full name: Guido Van Rossum'

The lambda function assigned to full_name
takes two arguments and returns a string
interpolating the two parameters first and last.

As expected, the definition of the lambda
lists the arguments with no parentheses,
whereas calling the function is done
exactly like a normal Python function,
with parentheses surrounding the arguments.

https://realpython.com/python-lambda/

Lambda Function 17 Young Won Lim
7/9/23

Anonymous Functions (1)

The following terms may be used interchangeably
depending on the programming language type and culture:

 Anonymous functions
 Lambda functions
 Lambda expressions
 Lambda abstractions
 Lambda form
 Function literals

Taken literally, an anonymous function is
a function without a name.

In Python, an anonymous function is created
with the lambda keyword.

More loosely, it may or not be assigned a name.

Consider a two-argument anonymous function
defined with lambda but not bound to a variable.
The lambda is not given a name:

https://realpython.com/python-lambda/

Lambda Function 18 Young Won Lim
7/9/23

Anonymous Functions (2-1)

>>> lambda x, y: x + y

The function above defines a lambda expression
that takes two arguments and returns their sum.

Other than providing you with the feedback that Python is
perfectly fine with this form, it doesn’t lead to any practical use.

You could invoke the function in the Python interpreter:

>>> _(1, 2)
3

In the interactive interpreter, the single underscore _
is bound to the last expression evaluated.

In the example above,
the _ points to the lambda function.

https://realpython.com/python-lambda/

Lambda Function 19 Young Won Lim
7/9/23

Anonymous Functions (2-2)

>>> _(1, 2)
3

The example above is taking advantage of
the interactive interpreter-only feature
provided via the underscore (_).

You could not write similar code in a Python module.
Consider the _ in the interpreter as a side effect
that you took advantage of.

In a Python module, you would
assign a name to the lambda, or
pass the lambda to a function.

https://realpython.com/python-lambda/

Lambda Function 20 Young Won Lim
7/9/23

Anonymous Functions (3-1)

Another pattern used in other languages like JavaScript
is to immediately execute a Python lambda function.

This is known as
an Immediately Invoked Function Expression
(IIFE, pronounce “iffy”)

>>> (lambda x, y: x + y)(2, 3)
5

The lambda function above is defined
and then immediately called
with two arguments (2 and 3).

It returns the value 5,
which is the sum of the arguments.

https://realpython.com/python-lambda/

Lambda Function 21 Young Won Lim
7/9/23

Anonymous Functions (3-2)

use this format to highlight
the anonymous aspect of a lambda function and
avoid focusing on lambda in Python
as a shorter way of defining a function.

Python does not encourage
using immediately invoked lambda expressions.

It simply results from a lambda expression being callable,
unlike the body of a normal function.

https://realpython.com/python-lambda/

Lambda Function 22 Young Won Lim
7/9/23

Anonymous Functions (4-1)

Lambda functions are frequently used
with higher-order functions,
which take one or more functions as arguments
or return one or more functions.

A lambda function can be a higher-order function
by taking a function (normal or lambda) as an argument

>>> high_ord_func = lambda x, func: x + func(x)
>>> high_ord_func(2, lambda x: x * x)
6
>>> high_ord_func(2, lambda x: x + 3)
7

https://realpython.com/python-lambda/

Lambda Function 23 Young Won Lim
7/9/23

Anonymous Functions (4-1)

Python exposes higher-order functions
as built-in functions or in the standard library.

Examples include map(), filter(), functools.reduce(),
as well as key functions like sort(), sorted(), min(), and max().

https://realpython.com/python-lambda/

Lambda Function 24 Young Won Lim
7/9/23

Python Lambda and Regular Functions (1-1)

about the overall expectation regarding
the usage of lambda functions in Python:

 Unlike lambda forms in other languages,
where they add functionality,
Python lambdas are only a shorthand notation
if you’re too lazy to define a function. (Source)

Nevertheless, don’t let this statement deter you from using Python’s lambda.
At first glance, you may accept
that a lambda function is a function
with some syntactic sugar shortening the code
to define or invoke a function.

https://realpython.com/python-lambda/

Lambda Function 25 Young Won Lim
7/9/23

Python Lambda and Regular Functions (1-2)

differences between normal Python functions and Python lambda functions.

Functions

what fundamentally distinguishes a lambda function bound to a variable
from a regular function with a single return line:

under the surface, almost nothing.

how Python sees a function built with a single return statement
versus a function constructed as an expression (lambda).

https://realpython.com/python-lambda/

Lambda Function 26 Young Won Lim
7/9/23

Python Lambda and Regular Functions (2)

The dis module exposes functions
to analyze Python bytecode
generated by the Python compiler:

>>> import dis
>>> add = lambda x, y: x + y
>>> type(add)
<class 'function'>
>>> dis.dis(add)
 1 0 LOAD_FAST 0 (x)
 2 LOAD_FAST 1 (y)
 4 BINARY_ADD
 6 RETURN_VALUE
>>> add
<function <lambda> at 0x7f30c6ce9ea0>

You can see that dis() expose a readable version
of the Python bytecode
allowing the inspection of the low-level instructions
that the Python interpreter will use
while executing the program.

https://realpython.com/python-lambda/

Lambda Function 27 Young Won Lim
7/9/23

Python Lambda and Regular Functions (2)

Now see it with a regular function object:

>>> import dis
>>> def add(x, y): return x + y
>>> type(add)
<class 'function'>
>>> dis.dis(add)
 1 0 LOAD_FAST 0 (x)
 2 LOAD_FAST 1 (y)
 4 BINARY_ADD
 6 RETURN_VALUE
>>> add
<function add at 0x7f30c6ce9f28>

The bytecode interpreted by Python is
the same for both functions.

But you may notice that the naming is different:
the function name is add for a function defined with def,
whereas the Python lambda function is seen as lambda.

https://realpython.com/python-lambda/

>>> import dis
>>> add = lambda x, y: x + y
>>> type(add)
<class 'function'>
>>> dis.dis(add)
 1 0 LOAD_FAST 0 (x)
 2 LOAD_FAST 1 (y)
 4 BINARY_ADD
 6 RETURN_VALUE
>>> add
<function <lambda> at 0x7f30c6ce9ea0>

Lambda Function 28 Young Won Lim
7/9/23

Python Lambda and Regular Functions (4-1)

Traceback

You saw in the previous section that,
in the context of the lambda function,
Python did not provide the name of the function,
but only <lambda>.
This can be a limitation to consider
when an exception occurs,
and a traceback shows only <lambda>:

>>> div_zero = lambda x: x / 0
>>> div_zero(2)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 1, in <lambda>
ZeroDivisionError: division by zero

https://realpython.com/python-lambda/

Lambda Function 29 Young Won Lim
7/9/23

Python Lambda and Regular Functions (4-1)

The traceback of an exception raised
while a lambda function is executed
only identifies the function causing the exception as <lambda>.

Here’s the same exception raised by a normal function:

>>> def div_zero(x): return x / 0
>>> div_zero(2)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 1, in div_zero
ZeroDivisionError: division by zero

The normal function causes a similar error
but results in a more precise traceback
because it gives the function name, div_zero.

https://realpython.com/python-lambda/

Lambda Function 30 Young Won Lim
7/9/23

Syntax

Syntax

a lambda function has the following characteristics:

 It can only contain expressions and
 It cannot include statements in its body.
 It is written as a single line of execution.
 It does not support type annotations.
 It can be immediately invoked

Immediately Invoked Function Expression (IIFE).

https://realpython.com/python-lambda/

Lambda Function 31 Young Won Lim
7/9/23

No statements

No Statements

A lambda function can’t contain any statements.
In a lambda function, statements like
return, pass, assert, or raise
will raise a SyntaxError exception.

Here’s an example of adding assert
to the body of a lambda:

>>> (lambda x: assert x == 2)(2)
 File "<input>", line 1
 (lambda x: assert x == 2)(2)
 ^
SyntaxError: invalid syntax

This contrived example intended to assert
that parameter x had a value of 2.

But, the interpreter identifies a SyntaxError
while parsing the code that involves
the statement assert in the body of the lambda.

https://realpython.com/python-lambda/

Lambda Function 32 Young Won Lim
7/9/23

Single expression

Single Expression

a Python lambda function is a single expression.

Although, in the body of a lambda,
you can spread the expression over several lines
using parentheses or a multiline string,
it remains a single expression:

>>> (lambda x:
... (x % 2 and 'odd' or 'even'))(3)
'odd'

The example above returns the string 'odd'
when the lambda argument is odd,
and 'even' when the argument is even.

It spreads across two lines because it is contained
in a set of parentheses, but it remains a single expression.

https://realpython.com/python-lambda/

True and ‘odd’ or ‘even’

True then evaluate ‘odd’
which is true (non-zero value)
and returns ‘odd’

False and ‘odd’ or ‘even’

False therefore ‘odd’ is not evaluated
And ‘even’ is evaluated
This gives ‘even’

x % 2 is equal to 1 (True)
x % 2 is equal to 0 (False)

Lambda Function 33 Young Won Lim
7/9/23

Type annotations (1)

Type Annotations

If you’ve started adopting type hinting,
which is now available in Python,
then you have another good reason
to prefer normal functions
over Python lambda functions.

Check out Python Type Checking (Guide)
to get learn more about Python type hints and type checking.

In a lambda function,
there is no equivalent for the following:

def full_name(first: str, last: str) -> str:
 return f'{first.title()} {last.title()}'

https://realpython.com/python-lambda/

Lambda Function 34 Young Won Lim
7/9/23

Type annotations (2)

def full_name(first: str, last: str) -> str:
 return f'{first.title()} {last.title()}'

Any type error with full_name() can be caught
by tools like mypy or pyre, whereas a SyntaxError
with the equivalent lambda function is raised at runtime:

>>> lambda first: str, last: str: first.title() + " " + last.title() -> str
 File "<stdin>", line 1
 lambda first: str, last: str: first.title() + " " + last.title() -> str

SyntaxError: invalid syntax

Like trying to include a statement in a lambda,
adding type annotation immediately
results in a SyntaxError at runtime.

https://realpython.com/python-lambda/

Lambda Function 35 Young Won Lim
7/9/23

IIFE

IIFE

You’ve already seen several examples of
immediately invoked function execution:

>>> (lambda x: x * x)(3)
9

Outside of the Python interpreter, this feature is probably not used in practice. It’s a direct consequence
of a lambda function being callable as it is defined. For example, this allows you to pass the definition of
a Python lambda expression to a higher-order function like map(), filter(), or functools.reduce(), or to a
key function.

https://realpython.com/python-lambda/

Lambda Function 36 Young Won Lim
7/9/23

Arguments

Arguments

Like a normal function object defined with def, Python lambda expressions support all the different
ways of passing arguments. This includes:

 Positional arguments
 Named arguments (sometimes called keyword arguments)
 Variable list of arguments (often referred to as varargs)
 Variable list of keyword arguments
 Keyword-only arguments

The following examples illustrate options open to you in order to pass arguments to lambda
expressions:

>>> (lambda x, y, z: x + y + z)(1, 2, 3)
6
>>> (lambda x, y, z=3: x + y + z)(1, 2)
6
>>> (lambda x, y, z=3: x + y + z)(1, y=2)
6
>>> (lambda *args: sum(args))(1,2,3)
6
>>> (lambda **kwargs: sum(kwargs.values()))(one=1, two=2, three=3)
6
>>> (lambda x, *, y=0, z=0: x + y + z)(1, y=2, z=3)
6

https://realpython.com/python-lambda/

Lambda Function 37 Young Won Lim
7/9/23

Decorators (1)

Decorators

In Python, a decorator is the implementation of a pattern that allows adding a behavior to a function or
a class. It is usually expressed with the @decorator syntax prefixing a function. Here’s a contrived
example:

def some_decorator(f):
 def wraps(*args):
 print(f"Calling function '{f.__name__}'")
 return f(args)
 return wraps

@some_decorator
def decorated_function(x):
 print(f"With argument '{x}'")

In the example above, some_decorator() is a function that adds a behavior to decorated_function(), so
that invoking decorated_function("Python") results in the following output:

Calling function 'decorated_function'
With argument 'Python'

decorated_function() only prints With argument 'Python', but the decorator adds an extra behavior that
also prints Calling function 'decorated_function'.

https://realpython.com/python-lambda/

Lambda Function 38 Young Won Lim
7/9/23

Decorators (2)

A decorator can be applied to a lambda. Although it’s not possible to decorate a lambda with the
@decorator syntax, a decorator is just a function, so it can call the lambda function:

Defining a decorator

def trace(f):

 def wrap(*args, **kwargs):

 print(f"[TRACE] func: {f.__name__}, args: {args}, kwargs: {kwargs}")

 return f(*args, **kwargs)

 return wrap

Applying decorator to a function

@trace

def add_two(x):

 return x + 2

Calling the decorated function

add_two(3)

Applying decorator to a lambda

print((trace(lambda x: x ** 2))(3))

add_two(), decorated with @trace on line 11, is invoked with argument 3 on line 15. By contrast,
on line 18, a lambda function is immediately involved and embedded in a call to trace(), the
decorator. When you execute the code above you obtain the following:

https://realpython.com/python-lambda/

Lambda Function 39 Young Won Lim
7/9/23

Decorators (3)

[TRACE] func: add_two, args: (3,), kwargs: {}
[TRACE] func: <lambda>, args: (3,), kwargs: {}
9

See how, as you’ve already seen, the name of the lambda function appears as <lambda>, whereas
add_two is clearly identified for the normal function.

Decorating the lambda function this way could be useful for debugging purposes, possibly to debug the
behavior of a lambda function used in the context of a higher-order function or a key function. Let’s see
an example with map():

list(map(trace(lambda x: x*2), range(3)))

The first argument of map() is a lambda that multiplies its argument by 2. This lambda is decorated with
trace(). When executed, the example above outputs the following:

[TRACE] Calling <lambda> with args (0,) and kwargs {}
[TRACE] Calling <lambda> with args (1,) and kwargs {}
[TRACE] Calling <lambda> with args (2,) and kwargs {}
[0, 2, 4]

https://realpython.com/python-lambda/

Lambda Function 40 Young Won Lim
7/9/23

Decorators (4)

The result [0, 2, 4] is a list obtained from multiplying each element of range(3). For now, consider
range(3) equivalent to the list [0, 1, 2].

You will be exposed to map() in more details in Map.

A lambda can also be a decorator, but it’s not recommended. If you find yourself needing to do this,
consult PEP 8, Programming Recommendations.

For more on Python decorators, check out Primer on Python Decorators.

https://realpython.com/python-lambda/

Lambda Function 41 Young Won Lim
7/9/23

Closure (1)

Closure

A closure is a function where every free variable, everything except parameters, used in that function is
bound to a specific value defined in the enclosing scope of that function. In effect, closures define the
environment in which they run, and so can be called from anywhere.

The concepts of lambdas and closures are not necessarily related, although lambda functions can be
closures in the same way that normal functions can also be closures. Some languages have special
constructs for closure or lambda (for example, Groovy with an anonymous block of code as Closure
object), or a lambda expression (for example, Java Lambda expression with a limited option for
closure).

Here’s a closure constructed with a normal Python function:

def outer_func(x):

 y = 4

 def inner_func(z):

 print(f"x = {x}, y = {y}, z = {z}")

 return x + y + z

 return inner_func

for i in range(3):

 closure = outer_func(i)

 print(f"closure({i+5}) = {closure(i+5)}")

https://realpython.com/python-lambda/

Lambda Function 42 Young Won Lim
7/9/23

Closure (2)

outer_func() returns inner_func(), a nested function that computes the sum of three arguments:

 x is passed as an argument to outer_func().
 y is a variable local to outer_func().
 z is an argument passed to inner_func().

To test the behavior of outer_func() and inner_func(), outer_func() is invoked three times in a for loop
that prints the following:

x = 0, y = 4, z = 5
closure(5) = 9
x = 1, y = 4, z = 6
closure(6) = 11
x = 2, y = 4, z = 7
closure(7) = 13

On line 9 of the code, inner_func() returned by the invocation of outer_func() is bound to the name
closure. On line 5, inner_func() captures x and y because it has access to its embedding environment,
such that upon invocation of the closure, it is able to operate on the two free variables x and y.

https://realpython.com/python-lambda/

Lambda Function 43 Young Won Lim
7/9/23

Closure (3)

Similarly, a lambda can also be a closure. Here’s the same example with a Python lambda function:

def outer_func(x):

 y = 4

 return lambda z: x + y + z

for i in range(3):

 closure = outer_func(i)

 print(f"closure({i+5}) = {closure(i+5)}")

When you execute the code above, you obtain the following output:

closure(5) = 9
closure(6) = 11
closure(7) = 13

On line 6, outer_func() returns a lambda and assigns it to to the variable closure. On line 3, the body of
the lambda function references x and y. The variable y is available at definition time, whereas x is
defined at runtime when outer_func() is invoked.

In this situation, both the normal function and the lambda behave similarly. In the next section, you’ll
see a situation where the behavior of a lambda can be deceptive due to its evaluation time (definition
time vs runtime).

https://realpython.com/python-lambda/

Lambda Function 44 Young Won Lim
7/9/23

Evaluation time (1)

Evaluation Time

In some situations involving loops, the behavior of a Python lambda function as a closure may be
counterintuitive. It requires understanding when free variables are bound in the context of a lambda.
The following examples demonstrate the difference when using a regular function vs using a Python
lambda.

Test the scenario first using a regular function:

>>> def wrap(n):

... def f():

... print(n)

... return f

...

>>> numbers = 'one', 'two', 'three'

>>> funcs = []

>>> for n in numbers:

... funcs.append(wrap(n))

...

>>> for f in funcs:

... f()

...

one

two

three

In a normal function, n is evaluated at definition time, on line 9, when the function is added to
the list: funcs.append(wrap(n)).

https://realpython.com/python-lambda/

Lambda Function 45 Young Won Lim
7/9/23

Evaluation time (2)

Now, with the implementation of the same logic with a lambda function, observe the unexpected
behavior:

>>> numbers = 'one', 'two', 'three'

>>> funcs = []

>>> for n in numbers:

... funcs.append(lambda: print(n))

...

>>> for f in funcs:

... f()

...

three

three

three

The unexpected result occurs because the free variable n, as implemented, is bound at the execution
time of the lambda expression. The Python lambda function on line 4 is a closure that captures n, a free
variable bound at runtime. At runtime, while invoking the function f on line 7, the value of n is three.

https://realpython.com/python-lambda/

Lambda Function 46 Young Won Lim
7/9/23

Evaluation time (3)

To overcome this issue, you can assign the free variable at definition time as follows:

>>> numbers = 'one', 'two', 'three'

>>> funcs = []

>>> for n in numbers:

... funcs.append(lambda n=n: print(n))

...

>>> for f in funcs:

... f()

...

one

two

three

A Python lambda function behaves like a normal function in regard to arguments. Therefore, a lambda
parameter can be initialized with a default value: the parameter n takes the outer n as a default value.
The Python lambda function could have been written as lambda x=n: print(x) and have the same result.

The Python lambda function is invoked without any argument on line 7, and it uses the default value n
set at definition time.

https://realpython.com/python-lambda/

Lambda Function 47 Young Won Lim
7/9/23

Testing lambdas (1)

Testing Lambdas

Python lambdas can be tested similarly to regular functions. It’s possible to use both unittest and
doctest.

unittest

The unittest module handles Python lambda functions similarly to regular functions:

import unittest

addtwo = lambda x: x + 2

class LambdaTest(unittest.TestCase):
 def test_add_two(self):
 self.assertEqual(addtwo(2), 4)

 def test_add_two_point_two(self):
 self.assertEqual(addtwo(2.2), 4.2)

 def test_add_three(self):
 # Should fail
 self.assertEqual(addtwo(3), 6)

if __name__ == '__main__':
 unittest.main(verbosity=2)

https://realpython.com/python-lambda/

Lambda Function 48 Young Won Lim
7/9/23

Doctest (1)

doctest

The doctest module extracts interactive Python code from docstring to execute tests. Although the
syntax of Python lambda functions does not support a typical docstring, it is possible to assign a string
to the __doc__ element of a named lambda:

addtwo = lambda x: x + 2
addtwo.__doc__ = """Add 2 to a number.
 >>> addtwo(2)
 4
 >>> addtwo(2.2)
 4.2
 >>> addtwo(3) # Should fail
 6
 """

if __name__ == '__main__':
 import doctest
 doctest.testmod(verbose=True)

The doctest in the doc comment of lambda addtwo() describes the same test cases as in the previous
section.

https://realpython.com/python-lambda/

Lambda Function 49 Young Won Lim
7/9/23

Doctest (2)

When you execute the tests via doctest.testmod(), you get the following:

$ python lambda_doctest.py
Trying:
 addtwo(2)
Expecting:
 4
ok
Trying:
 addtwo(2.2)
Expecting:
 4.2
ok
Trying:
 addtwo(3) # Should fail
Expecting:
 6
**
File "lambda_doctest.py", line 16, in __main__.addtwo
Failed example:
 addtwo(3) # Should fail
Expected:
 6
Got:
 5
1 items had no tests:
 __main__
**
1 items had failures:
 1 of 3 in __main__.addtwo
3 tests in 2 items.
2 passed and 1 failed.
Test Failed 1 failures.

https://realpython.com/python-lambda/

Lambda Function 50 Young Won Lim
7/9/23

Doctest (3)

The failed test results from the same failure explained in the execution of the unit tests in the previous
section.

You can add a docstring to a Python lambda via an assignment to __doc__ to document a lambda
function. Although possible, the Python syntax better accommodates docstring for normal functions
than lambda functions.

For a comprehensive overview of unit testing in Python, you may want to refer to Getting Started With
Testing in Python.

https://realpython.com/python-lambda/

Lambda Function 51 Young Won Lim
7/9/23

Lambda Expression Abuses (1)

Several examples in this article, if written in the context of professional Python code, would qualify as
abuses.

If you find yourself trying to overcome something that a lambda expression does not support, this is
probably a sign that a normal function would be better suited. The docstring for a lambda expression in
the previous section is a good example. Attempting to overcome the fact that a Python lambda function
does not support statements is another red flag.

The next sections illustrate a few examples of lambda usages that should be avoided. Those examples
might be situations where, in the context of Python lambda, the code exhibits the following pattern:

 It doesn’t follow the Python style guide (PEP 8)
 It’s cumbersome and difficult to read.
 It’s unnecessarily clever at the cost of difficult readability.

https://realpython.com/python-lambda/

Lambda Function 52 Young Won Lim
7/9/23

Lambda Expression Abuses (2)

Raising an Exception

Trying to raise an exception in a Python lambda should make you think twice. There are some clever
ways to do so, but even something like the following is better to avoid:

>>> def throw(ex): raise ex
>>> (lambda: throw(Exception('Something bad happened')))()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 1, in <lambda>
 File "<stdin>", line 1, in throw
Exception: Something bad happened

Because a statement is not syntactically correct in a Python lambda body, the workaround in the
example above consists of abstracting the statement call with a dedicated function throw(). Using this
type of workaround should be avoided. If you encounter this type of code, you should consider
refactoring the code to use a regular function.

https://realpython.com/python-lambda/

Lambda Function 53 Young Won Lim
7/9/23

Lambda Expression Abuses (3)

Cryptic Style

As in any programming languages, you will find Python code that can be difficult to read because of the
style used. Lambda functions, due to their conciseness, can be conducive to writing code that is difficult
to read.

The following lambda example contains several bad style choices:

>>> (lambda _: list(map(lambda _: _ // 2, _)))([1,2,3,4,5,6,7,8,9,10])
[0, 1, 1, 2, 2, 3, 3, 4, 4, 5]

The underscore (_) refers to a variable that you don’t need to refer to explicitly. But in this example,
three _ refer to different variables. An initial upgrade to this lambda code could be to name the
variables:

>>> (lambda some_list: list(map(lambda n: n // 2,
 some_list)))([1,2,3,4,5,6,7,8,9,10])
[0, 1, 1, 2, 2, 3, 3, 4, 4, 5]

https://realpython.com/python-lambda/

Lambda Function 54 Young Won Lim
7/9/23

Lambda Expression Abuses (4)

Admittedly, it’s still difficult to read. By still taking advantage of a lambda, a regular function would go a
long way to render this code more readable, spreading the logic over a few lines and function calls:

>>> def div_items(some_list):
 div_by_two = lambda n: n // 2
 return map(div_by_two, some_list)
>>> list(div_items([1,2,3,4,5,6,7,8,9,10])))
[0, 1, 1, 2, 2, 3, 3, 4, 4, 5]

This is still not optimal but shows you a possible path to make code, and Python lambda functions in
particular, more readable. In Alternatives to Lambdas, you’ll learn to replace map() and lambda with list
comprehensions or generator expressions. This will drastically improve the readability of the code.

https://realpython.com/python-lambda/

Lambda Function 55 Young Won Lim
7/9/23

Lambda Expression Abuses (5)

Python Classes

You can but should not write class methods as Python lambda functions. The following example is
perfectly legal Python code but exhibits unconventional Python code relying on lambda. For example,
instead of implementing __str__ as a regular function, it uses a lambda. Similarly, brand and year are
properties also implemented with lambda functions, instead of regular functions or decorators:

class Car:
 """Car with methods as lambda functions."""
 def __init__(self, brand, year):
 self.brand = brand
 self.year = year

 brand = property(lambda self: getattr(self, '_brand'),
 lambda self, value: setattr(self, '_brand', value))

 year = property(lambda self: getattr(self, '_year'),
 lambda self, value: setattr(self, '_year', value))

 __str__ = lambda self: f'{self.brand} {self.year}' # 1: error E731

 honk = lambda self: print('Honk!') # 2: error E731

https://realpython.com/python-lambda/

Lambda Function 56 Young Won Lim
7/9/23

Lambda Expression Abuses (6)

Running a tool like flake8, a style guide enforcement tool, will display the following errors for __str__
and honk:

E731 do not assign a lambda expression, use a def

Although flake8 doesn’t point out an issue for the usage of the Python lambda functions in the
properties, they are difficult to read and prone to error because of the usage of multiple strings like
'_brand' and '_year'.

Proper implementation of __str__ would be expected to be as follows:

def __str__(self):
 return f'{self.brand} {self.year}'

brand would be written as follows:

@property
def brand(self):
 return self._brand

@brand.setter
def brand(self, value):
 self._brand = value

https://realpython.com/python-lambda/

Lambda Function 57 Young Won Lim
7/9/23

Lambda Expression Abuses (7)

As a general rule, in the context of code written in Python, prefer regular functions over lambda
expressions. Nonetheless, there are cases that benefit from lambda syntax, as you will see in the next
section.

https://realpython.com/python-lambda/

Young Won Lim
7/9/23

References

[1] Essential C, Nick Parlante
[2] Efficient C Programming, Mark A. Weiss
[3] C A Reference Manual, Samuel P. Harbison & Guy L. Steele Jr.
[4] C Language Express, I. K. Chun

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

