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Sample Average

The sample average

m̂X (t) =
1
N

N

∑
i=1

Xi (t)

N independent sample realizations of the process
Xi (t) for i = 1, ...,N
each realization is a time function
it is difficult to get many sample realizations
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Time Average

The time average

AT [•] =
1
2T

T∫
−T

[•]dt

average over time of a single realization

Young W Lim Ergodic Random Processes



Averages and Ergodicity
Mean Ergodic Processes

Correlation Ergodic Processes

Time-Autocorrelation Function

The time average

xT = AT [x(t)] =
1
2T

T∫
−T

x(t)dt

The time autocorrelation function

RT (τ) = AT [x(t)x(t + τ)] =
1
2T

T∫
−T

x(t)x(t + τ)dt
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Stationary Processes

first order stationary processes

mX (t) = E [X (t)] = X = constant

second order stationary processes

RXX (t, t + τ) = E [X (t)X (t + τ)] = RXX (τ)
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Stationary Processe Example

As a example of a stationary process
for which any single realisation has
an apparently noise-free structure,
let Y have a uniform distribution on (0,2π]
and define the time series X (t) by

X (t) = cos(t +Y )

.
Then X (t) is strictly stationary.
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Expectation of Time-Autocorrelation Function
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Convergence in square

the conditions under which random sequences of
time average A[•] converge as T → ∞

convergence in square
A random sequence X n is said to converge
to a random variable X in mean squre if

lim
n→∞

E
[
(X n−X )2

]
= 0

A[•] = lim
n→∞

AT [•]
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Example B.1: X (t) = Y

Let Y be any scalar random variable,
and define a time-series {X (t)}, by

X (t) = Y for all t.

Then {X (t)} is a stationary time series
realisations consist of a series of constant values,
a different constant value for each realisation.

https://en.wikipedia.org/wiki/Stationary_process
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Example B.1: X (t) = Y

A law of large numbers does not apply on this case,
as the limiting value of an average from a single realisation
takes the random value determined by Y ,
rather than taking the expected value of Y .
The time average of X (t) does not converge
since the process is not ergodic.

https://en.wikipedia.org/wiki/Stationary_process
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Central Limit Theorem

Let {X1, . . . ,Xn} be a random sample of size n— that is, a
sequence of independent and identically distributed (i.i.d.) random
variables drawn from a distribution of expected value given by µ

and finite variance given by σ2. Suppose we are interested in the
sample average

X̄n ≡
X1 + · · ·+Xn

n
of these random variables. By the law of large numbers, the sample
averages converge almost surely (and therefore also converge in
probability) to the expected value µ as n→ ∞.
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Central Limit Theorem

In probability theory, the central limit theorem (CLT) establishes
that, in many situations, when independent random variables are
summed up, their properly normalized sum tends toward a normal
distribution (informally a bell curve) even if the original variables
themselves are not normally distributed. The theorem is a key
concept in probability theory because it implies that probabilistic
and statistical methods that work for normal distributions can be
applicable to many problems involving other types of distributions.
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Conditions

1 X (t) has a finite constant mean X for all t
2 X (t) is bounded x(t) < ∞ for all t and all x(t)

3 Bounded time average of E[|X(t)|]

lim
T→∞

1
2T

T∫
−T

E [|X (t)|]dt < ∞

4 X (t) is a regular process

E
[
|X (t)|2

]
= RXX (t, t) < ∞
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Regular process

X (t) is a regular process

E
[
|X (t)|2

]
= RXX (t, t) < ∞

for a real WSS process X (t)

E
[
|X (t)|2

]
= RXX (0) < ∞

since X is finit by assumption

CXX (0) = RXX (0)−X
2
< ∞
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Mean Erogodic

A wide snese stationary (WSS) process X (t)
with a constant mean value X
is called mean-ergodic
if the time average xT = AT [x(t)] converges to X as T → ∞

lim
T→∞

E
[
(xT −X )2

]
= 0

lim
T→∞

σ
2
xT

= 0
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Covariance Functions

CXX (t, t + τ) = E [{X (t)−mX (t)}{X (t + τ)−mX (t + τ)}]
= RXX (t, t + τ)−mX (t)mX (t + τ)

for a WSS process X (t)

CXX (τ) = E
[{
X (t)−X

}{
X (t + τ)−X

}]
= RXX (τ)−X

2
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Variance of xT (1)
N Gaussian random variables

σ
2
xT

= E


 1

2T

T∫
−T

(
X (t)−X

)
dt


2


= E

( 1
2T

)2


T∫
−T

(
X (t)−X

)
dt




T∫
−T

(
X (t1)−X

)
dt1




= E

( 1
2T

)2 T∫
−T

(
X (t)−X

)(
X (t1)−X

)
dtdt1
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Variance of xT (2)

σ
2
xT

= E
[
(xT −X )2

]
=

(
1

2T

)2 T∫
−T

E
[(
X (t)−X

)(
X (t1)−X

)]
dtdt1

=

(
1

2T

)2 T∫
−T

CXX (t,t1)dtdt1

for the WSS X (t), let CXX (t,t1) = CXX (τ), τ = t1− t, and dτ = dt1

=

(
1

2T

)2 T∫
t=−T

T−t∫
τ=−T−t

CXX (τ)dτdt
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Variance of xT (3)

σ
2
xT

=

(
1

2T

)2 T∫
t=−T

T−t∫
τ=−T−t

CXX (τ)dτdt

the Riemann strips in τ− t plane
1 using horizontal Rieman strips
2 using vertical Rieman strips

using the symmetry CXX (−τ) = CXX (−τ)

σ
2
xT

=
1

2T

2T∫
−2T

(
1− |τ|

2T

)
CXX (τ)dτ
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Variance of xT (4)

the necessary and sufficient condition
for a WSS process X(t) to be mean ergodic

lim
T→∞

 1
2T

2T∫
−2T

(
1− |τ|

2T

)
CXX (τ)dτ

= 0

1
2T

2T∫
−2T

(
1− |τ|

2T

)
CXX (τ)dτ <

1
2T

2T∫
−2T

|CXX (τ)|dτ

1 CXX (0)< ∞ and CXX (τ)→ 0 as |τ| → ∞

2
∫

∞

−∞
|CXX (τ)|dτ < ∞

Young W Lim Ergodic Random Processes



Averages and Ergodicity
Mean Ergodic Processes

Correlation Ergodic Processes

Mean Ergodic Condition

a necessary and sufficient condition
for a WSS process X (t) to be mean ergodic

lim
T→∞

 1
2T

2T∫
−2T

(
1− |τ|

2T

)
CXX (τ)dτ

= 0
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Mean Ergodic Process - continuous time

X (t) is a mean ergodic if

1 CXX (0) < ∞ and CXX (τ)→ 0 as |τ| → ∞

2
∫

∞

−∞
|CXX (τ)|dτ < ∞
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Mean Ergodic Process - discrete time

X [n] is a mean ergodic if

lim
N→∞

{
1

2N +1

+N

∑
n=−N

X [n]

}
= X

lim
T→∞

{
1

2N +1

+2N

∑
n=−2N

(
1− |n|

2N +1

)
CXX [n]

}
= 0
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Auto-correlation Ergodic Process - Continuous Time

A stationary continuous process X (t)
with autocorrelation function RXX (τ)
is called autocorrelation ergodic
if for all τ , RT (τ) = AT [x(t)x(t + τ)]
converges to RXX (τ) as T → ∞
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Auto-correlation Ergodic Process - Discrete Time

A stationary sequence X [n]
with autocorrelation function RN [k]
is called autocorrelation ergodic
if for all k , RN [k] = 1

2N+1 ∑
+N
n=−N x [n]x [n+k]

converges to RXX [k] as N → ∞
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A necessary and sufficient condition

W (t) = X (t)X (t + τ)

E [W (t)] = E [X (t)X (t + τ)] = RXX (τ)

RWW (λ ) = E [W (t)W (t + λ )]

= E [X (t)X (t + τ)X (t + λ )X (t + τ + λ )]

CWW (λ ) = RWW (λ )−{E [W (t)]}2

= RWW (λ )−R2
XX (τ)
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Auto-correlation Ergodic Condition

a necessary and sufficient condition
for a WSS process X (t) to be auto-correlation ergodic

lim
T→∞

 1
2T

2T∫
−2T

(
1− |τ|

2T

)
CWW (τ)dτ

= 0
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Auto-correlation Ergodic

auto-correlation ergodicity requires that the 4-th order
moments of X(t)
RWW (λ ) = E [X (t)X (t + τ)X (t + λ )X (t + τ + λ )]

for Gaussian processes, 4-th order moments are known
via 2nd and 1st order moments
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