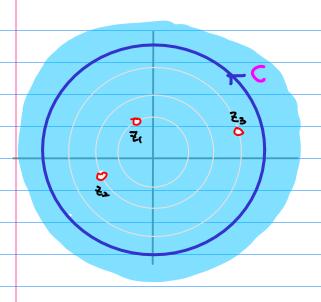
Laurent Series and Geometric Series

20170704

Copyright (c) 2016 - 2017 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Series Expansion at Z=0



$$f(z) = \sum_{n=n_1}^{\infty} a_n^{(m)} z^n$$

$$\alpha_n^{(m)} = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z^{nn}} dz$$
$$= \sum_{k} \operatorname{Res}\left(\frac{f(z)}{z^{nn}}, z_k\right)$$

Poles Zh

$$\mathcal{N} \geqslant 0$$
 $\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3, 0$ $\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3$

* General Series Expansion at Z=0

$$f(z) = \sum_{n=N_1}^{\infty} a_n z^n$$

$$\alpha_{n} = \frac{1}{2\pi i} \oint_{C} \frac{f(z)}{z^{nH}} dz$$

$$= \sum_{k} Res(\frac{f(z)}{z^{nH}}, z_{k})$$

* Z-transform

$$\chi(z) = \sum_{k=0}^{\infty} \chi_k z^{-k}$$

$$X_{n} = \frac{1}{2\pi i} \oint_{C} \chi(z) z^{n+1} dz$$

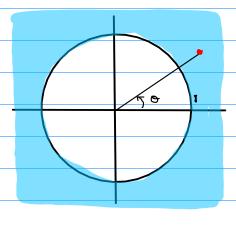
$$= \sum_{k} \text{Res}(\chi(z) z^{n+1}, z_{k})$$

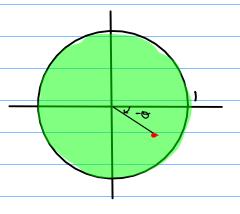
Laurent Series flz)

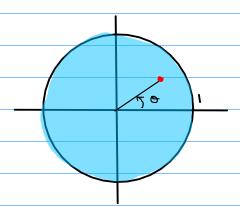
$$\chi(z) = f(z^1)$$
 $\chi_n = (\lambda_n)$

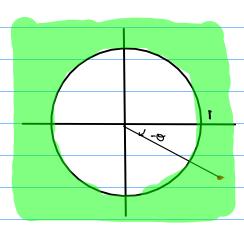
$$\chi(z) = f(z)$$
 $\chi_n = (\lambda_n)$

Mapping W= =







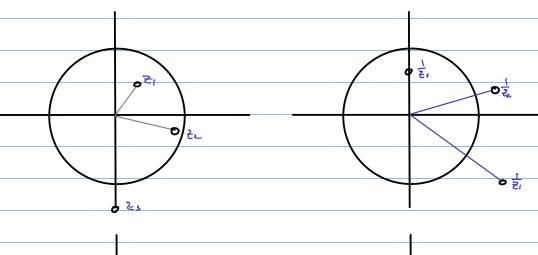


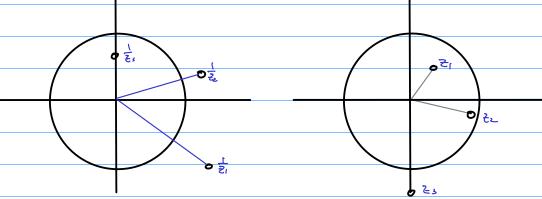
- inverse magnitude
- · negative phase

$$f(z) = \frac{(z-z_1)(z-z_2)}{(z-p_1)(z-p_2)(z-p_3)}$$

$$f(\frac{1}{2^{4}}) = \frac{(\frac{1}{2} - \frac{1}{2})(\frac{1}{2} - \frac{1}{2})}{(\frac{1}{2} - p_{1})(\frac{1}{2} - p_{2})(\frac{1}{2} - p_{2})}$$

$$= \frac{(1 - \frac{1}{2})(1 - \frac{1}{2})}{(1 - \frac{1}{2})(1 - \frac{1}{2})} \qquad \qquad \frac{1}{2^{2}}, \frac{1}{2^{2}}$$





9(2) with a simple pole b70 assumed

$$g(z) = \frac{1}{1-1z} = \frac{1}{5-1}$$

$$|z| < \frac{1}{5}$$

$$h(z) = \frac{1}{1 - \frac{p}{3}} = \frac{5}{5 - p} \qquad \left| \frac{p}{5} \right| < 1 \qquad |5| > p$$

$$g(z^{-1}) = \frac{b^{-1} - z^{-1}}{b^{-1} - z^{-1}} = \frac{z - b}{z - b} = h(z)$$

$$f(z^{-1}) = \frac{z^{-1}}{z^{-1} - b} = \frac{b^{-1}}{b^{-1} - z} = g(z)$$

$$g(z) = \frac{b^{-1}}{b^{-1}-z} = \frac{0}{0-z}$$

$$h(z) = \frac{z}{z-b} = \frac{z}{z-D}$$

$$g(z^{-1}) = \frac{b^{-1}}{b^{-1} - z^{-1}} = \frac{z}{z - b} = h(z)$$
 $\frac{O}{O - z^{-1}} = \frac{z}{z - D}$

$$\frac{\bigcirc}{\bigcirc - \overline{z}^{-1}} = \frac{\overline{z}}{\overline{z} - \square}$$

$$f(z^{-1}) = \frac{z^{-1}}{z^{-1} - b} = \frac{b^{-1} - \overline{z}}{b^{-1} - \overline{z}} = g(z)$$
 $\frac{\overline{z}^{-1}}{\overline{z}^{-1} - \Box} = \frac{\overline{\Box}}{\overline{\Box}}$

Infinite Sum of G.P.

$$\frac{\mathcal{O}}{\mathbf{Z} - \mathbf{D}} \Rightarrow \frac{\mathbf{Z}}{\mathbf{Z} - \mathbf{D}} \Rightarrow \frac{\mathbf{I}}{\mathbf{I} - \mathbf{D}} \quad \text{infinite sum of G.P}$$

$$\frac{20}{\Delta - 2} \Rightarrow \frac{0}{0 - 2} \Rightarrow \frac{1}{1 - \frac{2}{0}}$$
 infinite sum of G.P

Convergence Condition

$$\frac{b^{-1}}{b^{-1}-2}=\frac{0}{0-2}$$

$$|z|<\frac{1}{2}|z|<\frac{1}{2}$$

Two Sequences are involved (causal, anti-causal)

121 < t 121 < P

positive seg-

(n < 0) $(b^{1}\xi^{1})^{0} + (b^{1}\xi^{-1})^{1} + (b^{1}\xi^{-1})^{2} + \cdots = \sum_{n=0}^{-\infty} b^{n} \xi^{-n}$ $\xi \cdot T$.

121 > b 121 > P

positive seg-

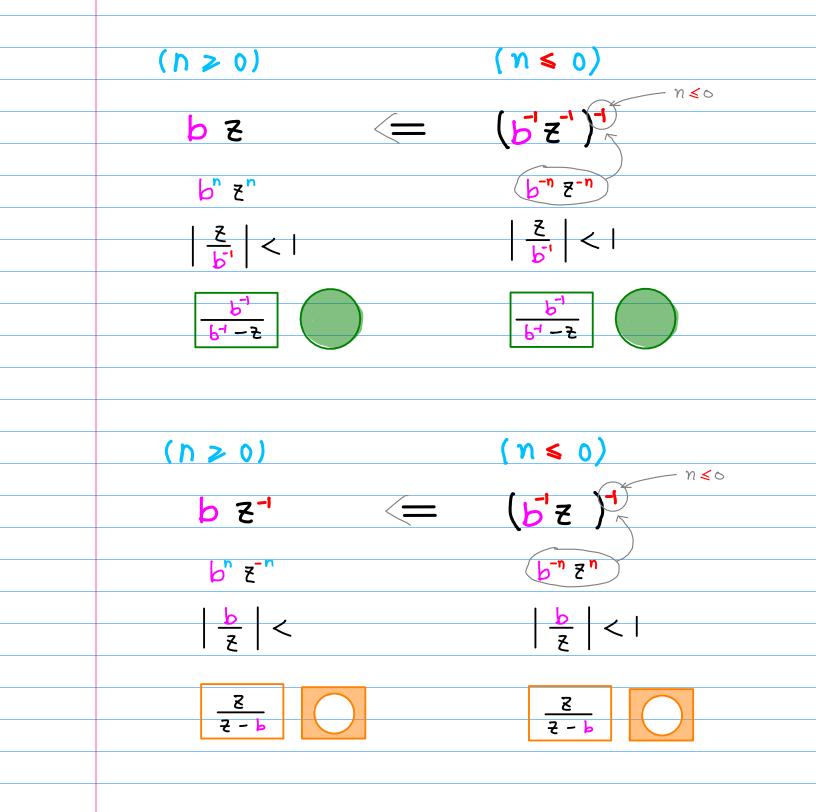
$$(n < 0) \qquad (b^{1} \overline{\epsilon})^{0} + (b^{1} \overline{\epsilon})^{1} + (b^{1} \overline{\epsilon})^{1} + \cdots = \sum_{n=0}^{-\infty} b^{-n} \overline{\epsilon}^{n} \qquad L.S.$$

1 ≥ 0 1 ≤ 0 L.S. ₹.T.

$$\sum \mathcal{D} = 1.5.$$

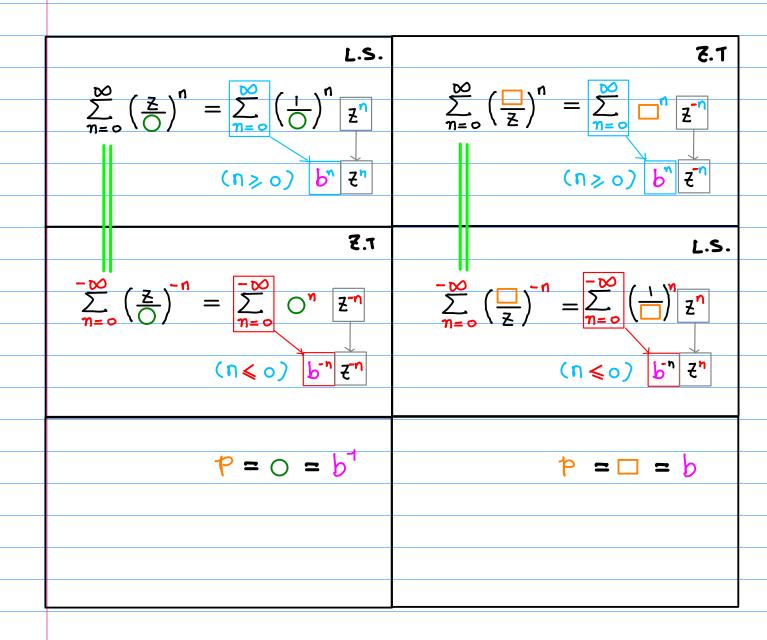
$$\sum \mathcal{O} \mathcal{E}^{\bullet} \longrightarrow \mathcal{E}.\mathsf{T}.$$

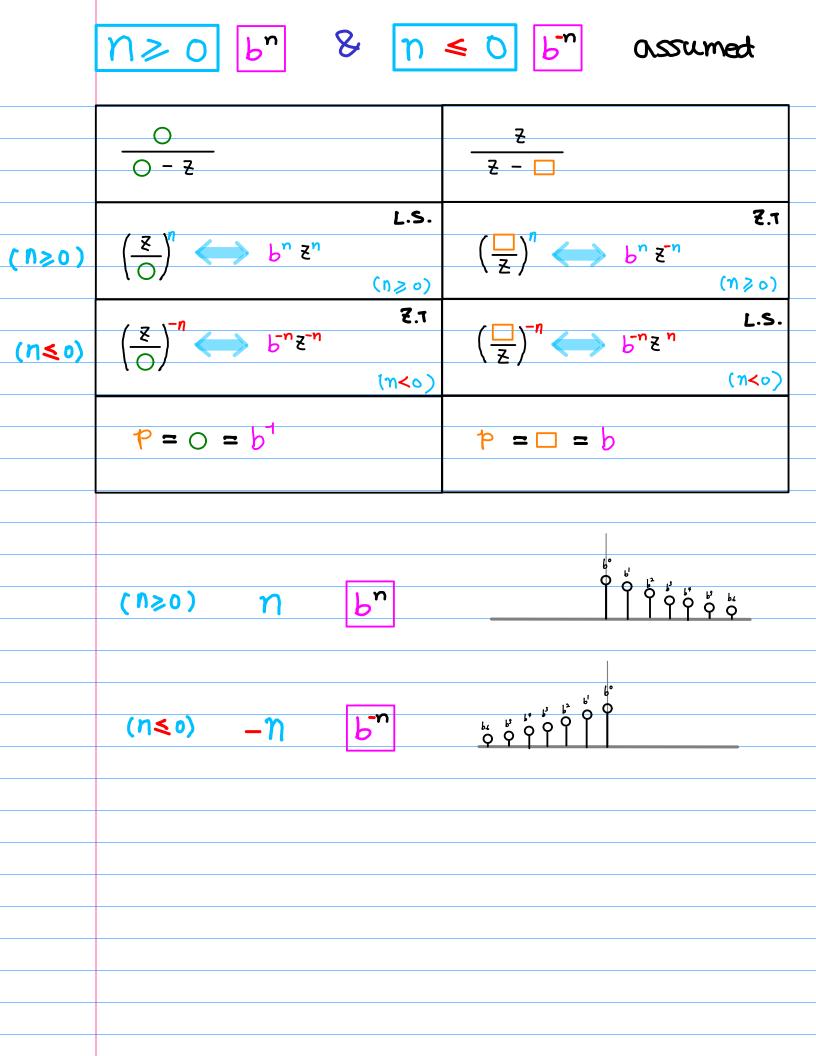
(n < 0) (D > 0)(b'z') **b** 8 (b'z) b 2⁻¹



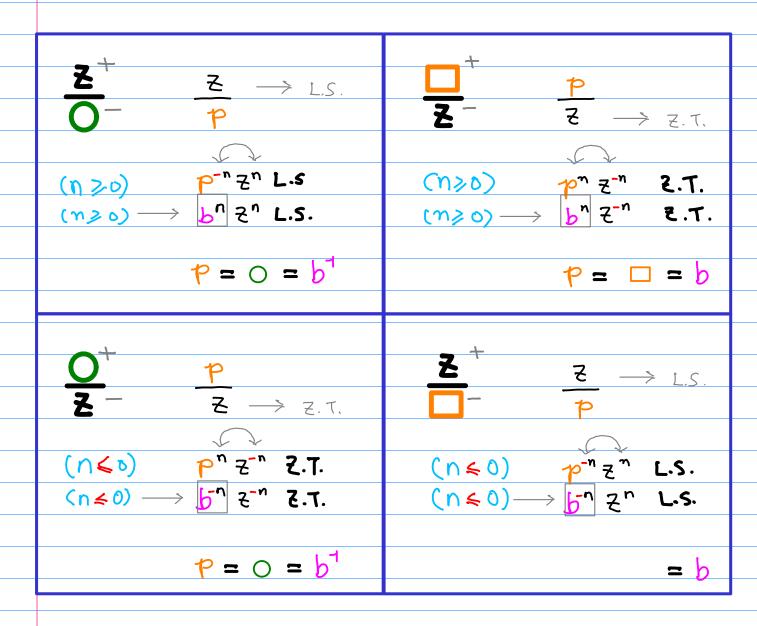
	<u>0 - 4</u>	Z - □
	pole p=0	pale p=
	c.r (Z O)	C. r (=)
	r.o.c 7 <0	r.o.c 2} > _
(n>0)	$\sum_{n=0}^{\infty} \left(\frac{z}{\bigcirc}\right)^n = \sum_{n=0}^{\infty} \left(\frac{1}{\bigcirc}\right)^n z^n$	$\sum_{n=0}^{\infty} \left(\frac{\square}{Z}\right)^n = \sum_{n=0}^{\infty} \square^n Z^{-n}$
(n≤0)	$\sum_{n=0}^{-\infty} \left(\frac{z}{\bigcirc}\right)^{-n} = \sum_{n=0}^{-\infty} \bigcirc^{n} z^{-n}$	$\sum_{n=0}^{-\infty} \left(\frac{\square}{Z}\right)^{-n} = \sum_{n=0}^{-\infty} \left(\frac{1}{\square}\right)^n Z^n$
	L-S: b" ₹" (M≥o)	7.1 :
	7.7: b ⁻ⁿ 2 ⁻ⁿ (n≤0)	L.S: b-1 Z ⁿ (η≤ 0)
	t = 0 = b1	†=□ = b

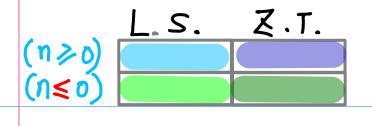
$$\sum_{n=0}^{\infty} ()^n = \sum_{n=0}^{-\infty} ()^n$$





$$\left(\frac{z}{z}\right)^n$$
, $\left(\frac{z}{z}\right)^{-n}$, $\left(\frac{z}{z}\right)^n$, $\left(\frac{z}{z}\right)^{-n}$

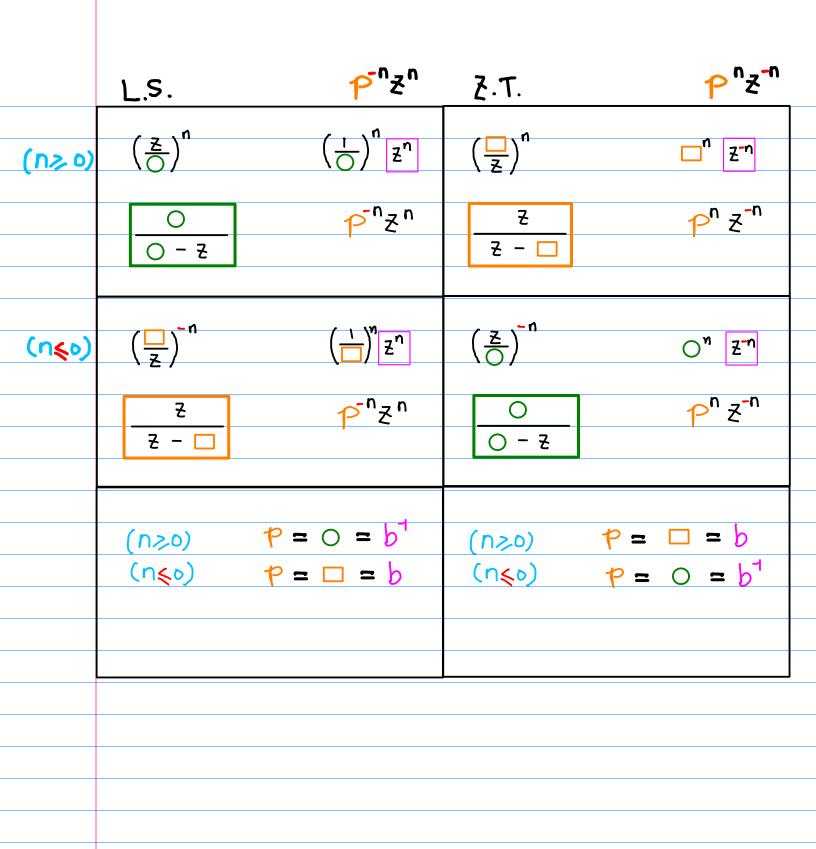


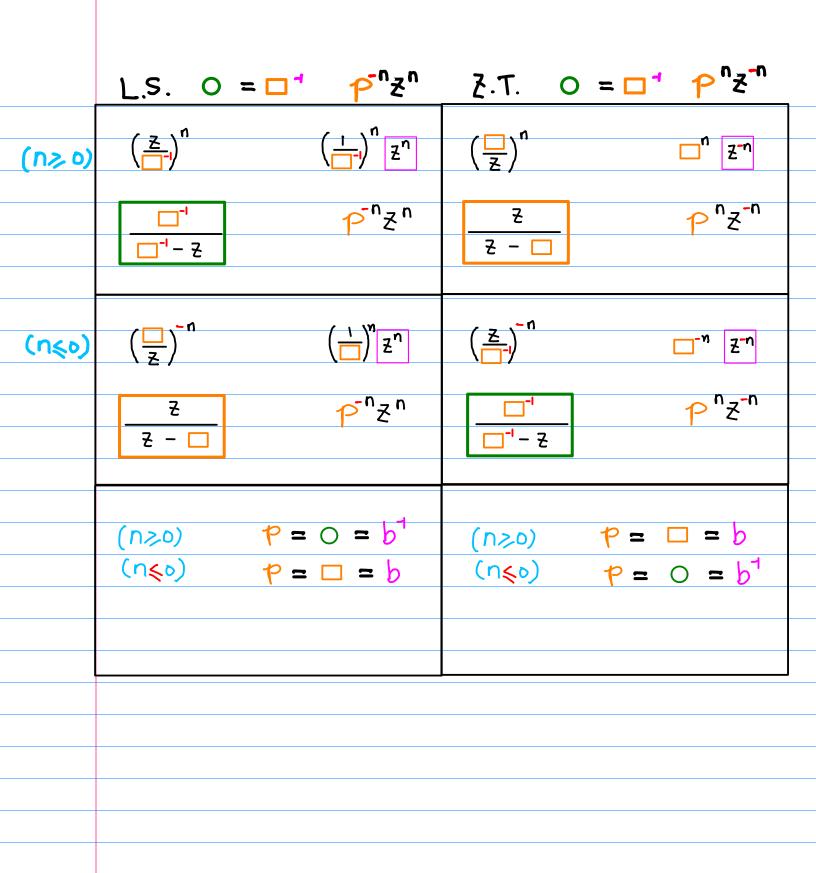


	L.S.		Z.T.	
	Z ⁺	_ 돈	+	<u>p</u>
	<u>O</u> -	P	<u>Z</u> -	そ
(n≥0)	(n ≥0)	p-" Z" L.s	(n≥0)	p ⁿ を ⁻ⁿ そ.T.
() 9	(n/o)	b ⁿ そ ⁿ L.S.	(n≥ 0)	b ⁿ そ ⁻ⁿ そ.て.
		P=0=b1		p= □ = b
	z +		O +	P= = b
	2 +	ヤ= 0 = b ¹	<u>O</u> ⁺	ヤ= □=b <u>ヤ</u> そ
		Z	<u>Z</u> –	<u>**</u> = **
(n≤o)		_ 돈_	O+ 2 - (n ≤ 0)	<u>p</u>

P= = b

P=0=b





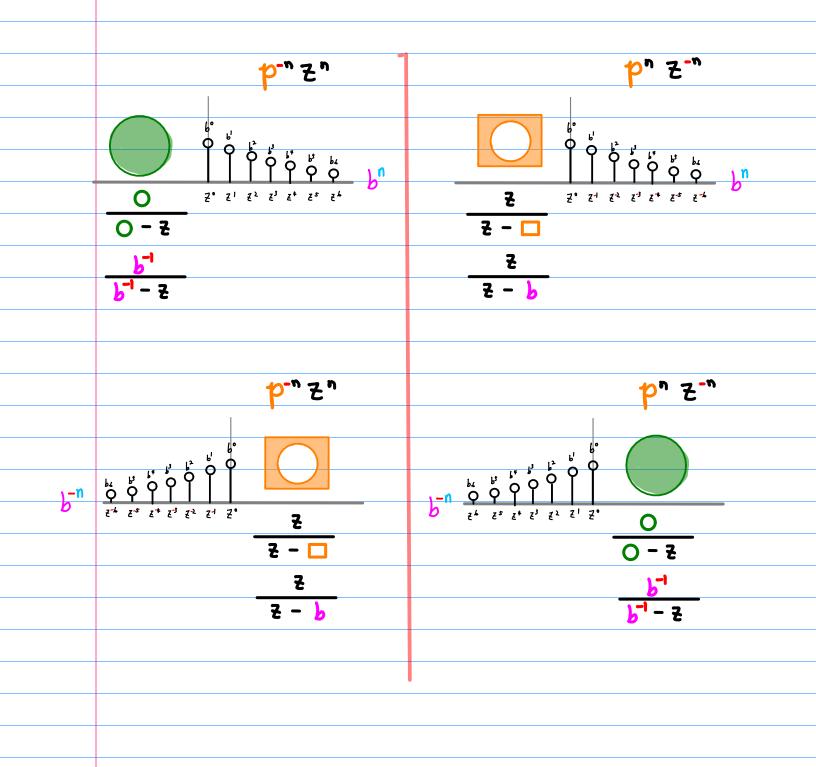
b & P with ∑ notations

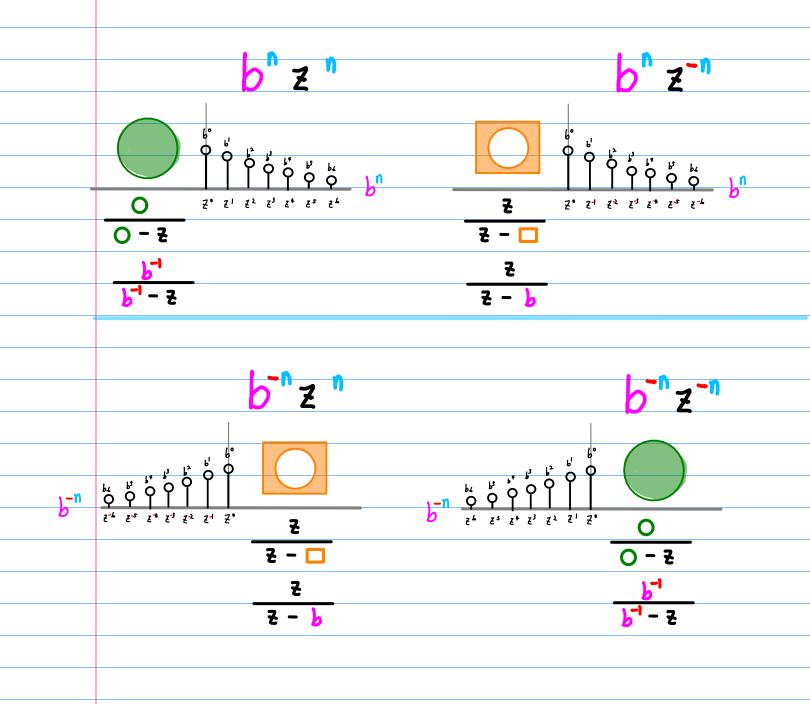
L.S. Z.T.

		·
<u>(N≯0)</u>	$= \sum_{n=0}^{\infty} \left(\frac{z}{O}\right)^n = \sum_{n=0}^{\infty} b^n z^n$	$\frac{\sum_{n=0}^{\infty} \left(\frac{\square}{Z}\right)^n}{=\sum_{n=0}^{\infty} \frac{1}{p^n Z^{-n}}}$ $= \frac{\sum_{n=0}^{\infty} \frac{1}{p^n Z^{-n}}}{\sum_{n=0}^{\infty} \frac{1}{p^n Z^{-n}}}$
(n<0)	$\sum_{n=0}^{-\infty} \left(\frac{\square}{Z}\right)^{-n} = \sum_{n=0}^{-\infty} p^{-n} Z^{n}$ $= \sum_{n=0}^{-\infty} b^{-n} Z^{n}$	$\sum_{n=0}^{-\infty} \left(\frac{z}{\bigcirc}\right)^{-n} = \sum_{n=0}^{-\infty} p^{n} z^{-n}$ $= \sum_{n=0}^{-\infty} b^{-n} z^{-n}$
	$(n>0)$ $P = 0 = b^{-1}$ $(n<0)$ $P = \square = b$	$(n>0)$ $p=0=b$ $(n<0)$ $p=0=b^{-1}$

	_	,		
L.S.	₹.T.		(n≥o)	(n≥ o)
L.S.	₹.T.		(n€0)	(n≤0)
P ⁻ⁿ	P n		b ⁿ	b ⁿ
p-n	מ מ		6 -n	b ⁻n
	\ 		D	U
*= 0	₽= □		0 = b1	□ = b
₽= □	P= 0		□ = b	0 = b ¹
_ n	n n		n	n
□ ⁿ	<u>_</u>		n	n
	2			2
0 - 5	₹ - □			₹ - □
				동 - □
2 - 🗆	0 - 3		₹ - □	₹
E - 🗀	U E		€ - ⊔	Z

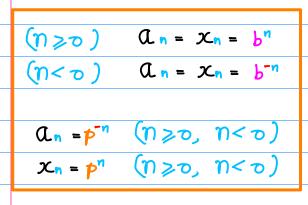
L. S.: On 2ⁿ Z. T.: Xn 2⁻ⁿ

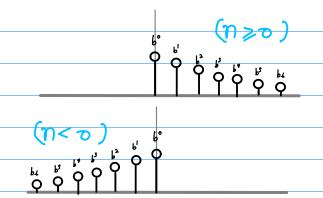




b" & b-"

0<b<1 assumed





an Laurent Series (oefficient

xn input to Z-Transform

the simple pole of f(2) or X(2)

 $Z.T.: X_n Z^n$ L.S.: $Q_n Z^n$

Z. T	Z-n (n>0)	b ⁿ	+ -
	≦_u (√<9)	P _{-u} ≦ _{-u} (√<9)	1
L.S	Z ⁿ (n>∘)	b ⁿ ₹ ⁿ (11>0)	+ +
	ξ ⁿ (η<ο)	b ⁻ⁿ ₹ ⁿ (m <o)< td=""><td>- +</td></o)<>	- +

(n>0)	Z. T. Z ⁻ⁿ	Z. T. b ⁿ Z ⁻ⁿ	+-
	L.S. Zn	L.S. bn Zn	4 +
(n<0)	₹. T.	₹.τ. <mark>b⁻ⁿ ₹⁻ⁿ</mark>	- 9
	L.S. Zn	L. S. b ⁻ⁿ Z n	~ t

Laurent Series an

$$a_n = b^n \quad (n \ge 0)$$

$$b z = \frac{z}{\rho}$$
 $p = b^{-1}$

$$x_n = b^n \quad (n \ge 0)$$

$$b z^{-1} = \frac{P}{z}$$
 $b = b$

$$\left|\frac{P}{\xi}\right| < 1$$
 $|\xi| > p$

$$X_n = p^n$$

$$a_n = b^{-n} \quad (n < 0)$$

$$b^{-1}z = \frac{z}{\rho}$$
 $b = b$

$$\left|\frac{\varepsilon}{P}\right| < |$$
 $|\varepsilon| > p$

$$\alpha_n = p^{-n}$$

$$x_n = b^{-n}$$
 $(n < 0)$

$$b'z' = \frac{\rho}{z}$$
 $p = b'$

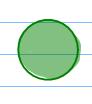
$$\left|\frac{P}{z}\right|^{-1} < 1$$
 $|z| < P$

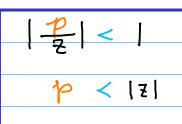
$$X_n = p^n$$

$$(n < 0) \rightarrow (k > 0)$$

$$(n < 0) \rightarrow (k > 0)$$

Converging Geometric Series





2- Transform

anticausal (m<0)

causal (カ>0)

Laurent Series

(n >0)

(m<0)

Simple pole p & common ratio b

$$\frac{P}{2} = bz^1$$
 $b=b$

$$\Delta_n = b^n \quad (n \geqslant 0)$$

$$\mathfrak{I}_{n} = \mathbf{b}^{n} \quad (n \geqslant 0)$$

$$\Delta_n = b^{-n} \quad (n < 0)$$

$$X_n = b^{-n} \quad (n < 0)$$

Z.T.

$$a_n = p^{-n} = b^n$$

$$x_n = p^n = b^n$$

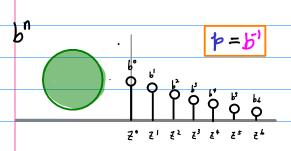
$$a_n = p^{-n} = b^{-n}$$

$$x_n = p^n = b^{-n}$$

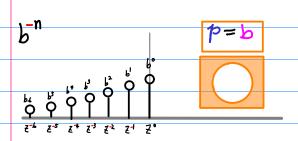
$$\mathcal{A}_n = \mathcal{K}_n = \mathbf{b}^n$$

$$a_n = x_n = b^{-n}$$

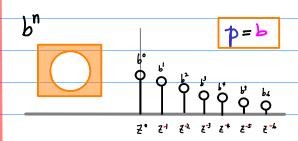
$$x_n = p^n$$
 $(n \ge 0, n < 0)$



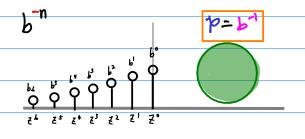
$$a_n = p^{-n} \quad (n > 0)$$



$$a_n = p^n \quad (n \leq 0)$$



$$x_n = p^n \quad (n > 0)$$



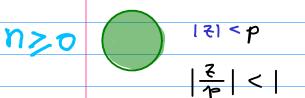
$$x_n = p^n \quad (n \leq 0)$$

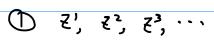
$$\begin{array}{ccc} (n \geqslant \tau) & & & & & & & & \\ (n < \tau) & & & & & & \\ (n < \tau) & & & & & & \\ \end{array}$$

Laurent Series
$$X_n = p^n$$
 $(n \ge 0, n < 0)$
 \overline{z} - Transform $A_n = p^{-n}$ $(n \ge 0, n < 0)$

Laurent Series

Z - Transform



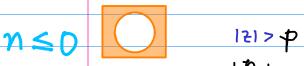


3
$$Q_n = p^{-n} = b^n (p = b^{-1})$$

151>4

$$\frac{1 - \frac{\frac{1}{2}}{2}}{1} = \frac{5 - b}{5}$$

(3)
$$x_n = p^n = b^n$$
 (p=b)



⊕ ₹⁻¹, ₹⁻², ₹⁻³, ···

171 < p

D = 2', = 2', = 3, ···

$$\frac{1-\frac{2}{4}}{1}=\frac{5-6}{5}$$

3
$$x_n = p^n = b^n (p = b^{-1})$$

$$A_{n} = \left(\frac{1}{2}\right)^{n} \left(n \ge 0\right)$$

$$= p^{-n} \left(n \ge 0\right) p = 2$$

$$\int (\xi) = \frac{2}{2 - \xi}$$

$$\chi_{n} = \left(\frac{1}{2}\right)^{n} \left(\frac{n}{2}\right)$$

$$= p^{n} \left(\frac{n}{2}\right)$$

$$\chi_{n} = \frac{\xi}{\xi - 0.5}$$

$$A_{n} = \left(\frac{1}{2}\right)^{-n} \quad (m \le 0)$$

$$= p^{-n} \quad (m \le 0) \quad p = \frac{1}{2}$$

$$f(z) = \frac{z}{2 - 0.5}$$

$$\chi_{n} = \left(\frac{1}{2}\right)^{-n} \quad (n \leq 0)$$

$$= p^{n} \quad (n \leq 0) \quad p = 2$$

$$\chi(\xi) = \frac{2}{2 - \xi}$$

$$A_{n} = b^{n} \quad (n \geqslant 0)$$

$$= p^{-n} \quad (n \geqslant 0) \quad p = b^{-1}$$

$$f(z) = \frac{b^{-1}}{b^{n} - z}$$

$$X_{n} = b^{-1}(n \ge 0)$$

$$= p^{n}(n \ge 0) \quad P = b$$

$$X(2) = \frac{2}{2 - b}$$

$$A_{n} = b^{-n} \quad (m \le 0)$$

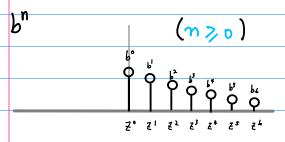
$$= p^{-n} \quad (m \le 0) \quad P = b$$

$$f(t) = \frac{\epsilon}{\epsilon - b}$$

$$x_{n} = b^{-1} (n \le 0)$$

$$= p^{n} (n \le 0) P = b^{-1}$$

$$X(2) = \frac{b^{1} - 2}{b^{1} - 2}$$



$$\chi(\xi^4) = \frac{\xi^4}{\xi^4 - 0.5}$$
 |\frac{1}{2} < 2

$$f(z) = \frac{2}{2-z} = \sum_{n=0}^{\infty} (\frac{1}{2})^n z^n$$

$$\chi(z) = \frac{z}{z - 0.5} = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n z^{-n}$$

$$A_{n} = \left(\frac{1}{2}\right)^{n}$$

$$= p^{-n} \qquad p=2$$

$$\chi_{n} = \left(\frac{1}{2}\right)^{n}$$

$$= p^{n} \qquad p = \frac{1}{2}$$

$$\chi(z^i) = \frac{2}{2-z^i} \qquad |z| > \frac{1}{2}$$

$$f(z) = \frac{z}{z - 0.5} = \sum_{n=-\infty}^{\infty} \left(\frac{1}{2}\right)^{-n} z^{n}$$
$$= \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^{n} z^{-n}$$

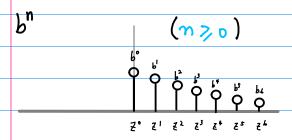
$$\begin{cases} (\xi) = \frac{2}{2 - 0.5} = \sum_{n=-\infty}^{0} \left(\frac{1}{2}\right)^{-n} \xi^{n} & \chi(\xi) = \frac{2}{2 - 2} = \sum_{n=-\infty}^{0} \left(\frac{1}{2}\right)^{-n} \xi^{-n} \\ = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^{n} \xi^{-n} & = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^{n} \xi^{n} \end{cases}$$

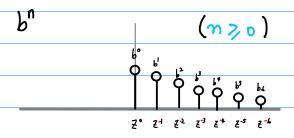
$$A_n = \left(\frac{1}{2}\right)^{-n}$$

$$= p^{-n} \qquad p = \frac{1}{2}$$

$$\mathcal{K}_{n} = \left(\frac{1}{2}\right)^{-n}$$

$$= \rho^{n} \qquad \qquad p = 2$$





$$\chi(\xi_1) = \frac{\xi_1 - p}{\xi_1} \qquad |\xi| < p_1$$

$$f(z) = \frac{b' - z}{b' - z} = \sum_{n=0}^{\infty} b^n z^n$$

$$\chi(s) = \frac{5 - p}{5} = \sum_{n=0}^{\infty} p_n s^{-n}$$

$$\begin{array}{rcl}
\mathcal{A}_{n} &= & \mathbf{b}^{n} \\
 &= & \mathbf{p}^{-n} & \mathbf{p} = \mathbf{b}^{1}
\end{array}$$

$$x_n = b^n$$

$$= p^n$$

$$b^{-n} \qquad \qquad (n \leq 0)$$

$$\chi(s_i) = \frac{p_i - s_i}{p_i} \qquad |s| > p$$

$$\begin{cases} (\xi) = \frac{z}{z - b} = \sum_{n=-\infty}^{\infty} b^{-n} z^{n} & \chi(z) = \frac{b^{-1} - z}{b^{-1} - z} = \sum_{n=-\infty}^{\infty} b^{-n} z^{-n} \\ = \sum_{n=0}^{\infty} b^{n} z^{-n} & = \sum_{n=0}^{\infty} b^{n} z^{n} \end{cases}$$

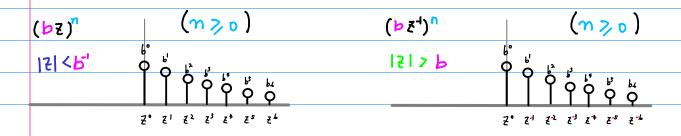
$$\frac{1}{\sqrt{(z)}} = \frac{1}{\sqrt{z^{2}}} = \frac{1}{\sqrt$$

$$a_n = b^{-n}$$

$$= p^{-n} \qquad p = b$$

$$x_n = b^{-n}$$

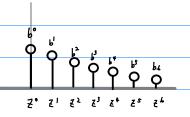
$$= p^n \qquad p = b^{-1}$$

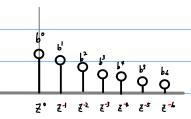


$$f(\xi) = \frac{1 - p \xi}{1 - p \xi} = \frac{p_1 - \xi}{p_2}$$

$$\chi(z) = \frac{1}{1 - b/z} = \frac{z}{z - b}$$

$$\begin{cases} (z) = \frac{1 - (p \pm 1)}{1} = \frac{5 - p}{5} & (p \pm 1) = \frac{p - p}{5} \\ (p \pm 1) = \frac{1 - (p \pm 1)}{1} = \frac{5 - p}{5} & (p \pm 1) = \frac{p - p}{5} \\ (p \pm 1) = \frac{1 - (p \pm 1)}{1} = \frac{p - p}{5} \\ (p \pm 1) = \frac{p - p}{5} \end{cases}$$





$$f(\xi) = \sum_{n=0}^{\infty} (|b\xi|^n) |b\xi| < |$$

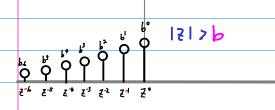
$$\chi(z) = \sum_{n=0}^{\infty} (bz^{-1})^{n} |bz^{-1}| < |$$

$$a_n = b^n$$

$$= p^{-n} \qquad p = b^1$$

$$x_n = b^n$$

$$= p^n \qquad p = b$$



$$f(\xi) = \sum_{n=-\infty}^{\infty} (\lfloor b \xi^{-1} \rfloor^{-n} |\lfloor b \xi^{-1} \rfloor^{-n})$$

$$= \sum_{n=-\infty}^{\infty} (\lfloor b \xi^{-1} \rfloor^{n})$$

$$\chi(z) = \sum_{n=-\infty}^{\infty} (bz)^{-n} |bz| < 1$$

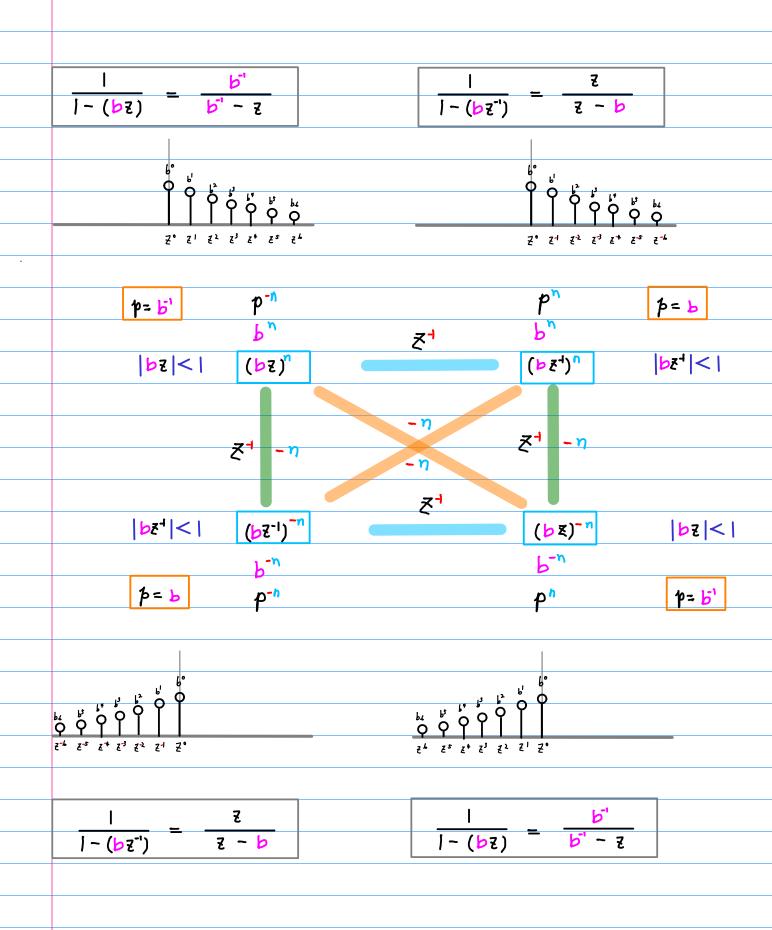
$$= \sum_{n=0}^{\infty} (bz)^{n}$$

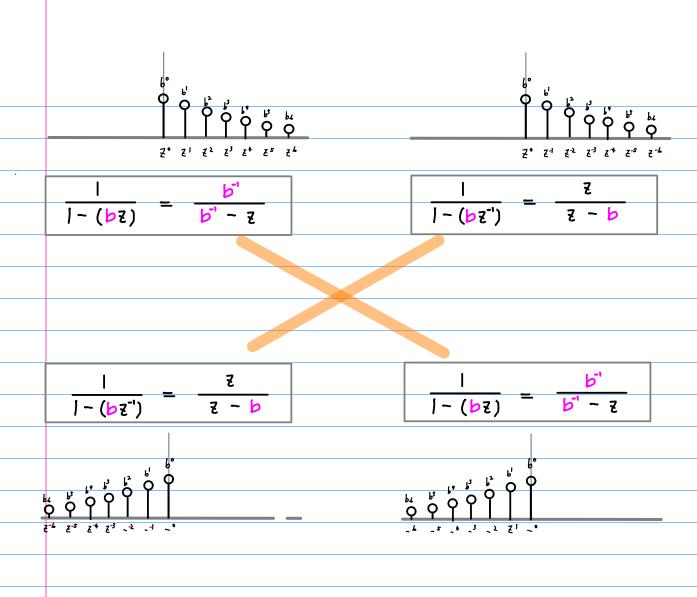
$$a_n = b^{-n}$$

$$= p^{-n} \qquad b = b$$

$$x_n = b^{-n}$$

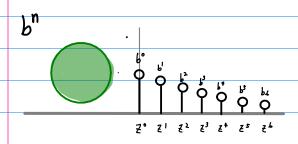
$$= p^n \qquad p = b^{-1}$$

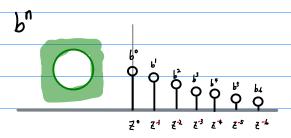




$$x_n = \alpha_n$$

$$\chi_{n} = \alpha_{-n} \qquad \chi(z) = f(z)$$





$$f(\xi) = \frac{|-(P\xi)|}{|-(P\xi)|} \qquad |\xi| < P_2$$

$$\chi(s) = \frac{1 - (p/s)}{1 - (p/s)}$$

$$a_n = b^n \quad (n > 0)$$

$$= p^{-n} \quad (p = b^1)$$

$$x_n = b^n \quad (n > 0)$$

$$= p^n \quad (p = b)$$

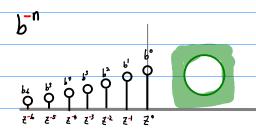
$$\chi(s) = \frac{|-(Ps)|}{|s| < P_1}$$

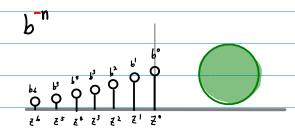
$$a_n = b^{-n} \quad (n \le 0)$$

$$= p^{-n} \quad (p = b)$$

$$x_n = b^{-n} \quad (n \leq 0)$$

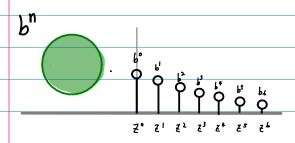
$$= p^n \quad (p = b^{-1})$$





$$\chi_{n} = \alpha_{n}$$

$$\chi_{n} = \alpha_{n} \qquad \chi(z) = f(z^{-1})$$



$$\{(\xi) = \frac{|-(p \cdot \xi)|}{|-(p \cdot \xi)|} \quad |\xi| < p_1$$

$$a_n = b^n \quad (n \ge 0)$$

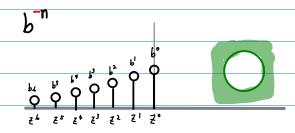
$$\chi_n = b^n \quad (n > 0)$$

$$\begin{cases} (\xi) = \frac{1 - (P/S)}{1} & |S| > P \end{cases}$$

$$\chi(s) = \frac{1 - (PS)}{1} |S| < P_1$$

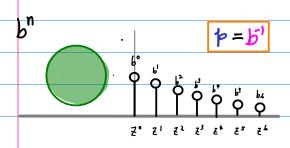
$$a_n = b^n \quad (n \leq 0)$$

$$\chi_n = b^{-n} (n \leq 0)$$



$$\alpha_n = p^n$$

$$x_n = p^{-n}$$



$$f(\xi) = \frac{1}{1 - (b \, \xi)} \qquad |\xi| < \frac{b^{-1}}{1}$$

$$\frac{1}{\sqrt{(z')}} = \frac{1}{1 - (\frac{b}{2})} = \frac{1}{|z|} > \frac{b}{|z|}$$

$$a_n = p^{-n} \quad (n > 0)$$

$$x_n = p^n \quad (n \geqslant 0)$$

$$f(z) = \frac{1 - (b/z)}{1 + (b/z)}$$

$$\chi(s) = \frac{|-(Ps)|}{|-(Ps)|} |s| < P_4$$

$$a_n = p^{-n} \quad (n \leq 0)$$

$$x_n = p^n \quad (n \leq 0)$$

