General Vector Space (3A)

Copyright (c) 2012-2015 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License"

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Vector Space

V : non-empty set of objects
defined operations:

addition	$\mathbf{u}+\mathbf{v}$
scalar multiplication	$k \mathbf{u}$

if the following axioms are satisfied for all object $\mathbf{u}, \mathbf{v}, \mathbf{w}$ and all scalar k, m

1. if \mathbf{u} and \mathbf{v} are objects in V, then $\mathbf{u}+\mathbf{v}$ is in V
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
3. $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
4. $\mathbf{0}+\mathbf{u}=\mathbf{u}+\mathbf{0}=\mathbf{u}$ (zero vector)
5. $\mathbf{u}+(-\mathbf{u})=(-\mathbf{u})+(\mathbf{u})=\mathbf{0}$
6. if k is any scalar and u is objects in V, then $k u$ is in V
7. $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$
8. $(k+m) \mathbf{u}=k \mathbf{u}+m \mathbf{u}$
9. $k(m \mathbf{u})=(k m) \mathbf{u}$
10. $1(\mathbf{u})=\mathbf{u}$

Test for a Vector Space

1. Identify the set \vee of objects
2. Identify the addition and scalar multiplication on \vee
3. Verify $\mathbf{u}+\mathbf{v}$ is in V and $k \mathbf{u}$ is in V
closure under addition and scalar multiplication
4. Confirm other axioms.
5. if \mathbf{u} and \mathbf{v} are objects in V, then $\mathbf{u}+\mathbf{v}$ is in V
6. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
7. $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
8. $\mathbf{0}+\mathbf{u}=\mathbf{u}+\mathbf{0}=\mathbf{u}$ (zero vector)
9. $\mathbf{u}+(-\mathbf{u})=(-\mathbf{u})+(\mathbf{u})=\mathbf{0}$
10. if k is any scalar and \mathbf{u} is objects in V, then $k u$ is in V
11. $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$
12. $(k+m) \mathbf{u}=k \mathbf{u}+m \mathbf{u}$
13. $k(m \mathbf{u})=(k m) \mathbf{u}$
14. $1(\mathbf{u})=\mathbf{u}$

Subspace

a subset W of a vector space V

If the subset W is itself a vector space
the subset W is a subspace of V

1. if \mathbf{u} and \mathbf{v} are objects in W, then $\mathbf{u}+\mathbf{v}$ is in W
2. $u+v=v+u$
3. $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
4. $\mathbf{0}+\mathbf{u}=\mathbf{u}+\mathbf{0}=\mathbf{u}$ (zero vector)
5. $\mathbf{u}+(-\mathbf{u})=(-\mathbf{u})+(\mathbf{u})=\mathbf{0}$
6. if k is any scalar and \mathbf{u} is objects in W, then $k \mathbf{u}$ is in W
7. $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$
8. $(k+m) \mathbf{u}=k \mathbf{u}+m \mathbf{u}$
9. $k(m \mathbf{u})=(k m) \mathbf{u}$
10. $1(\mathbf{u})=\mathbf{u}$

Subspace Test (1)

a subset W of a vector space V

If the subset W is itself a vector space
the subset W is a subspace of V
axioms not inherited by W

1. if \mathbf{u} and \mathbf{v} are objects in W, then $\mathbf{u}+\mathbf{v}$ is in W
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
3. $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
4. $\mathbf{0}+\mathbf{u}=\mathbf{u}+\mathbf{0}=\mathbf{u}$ (zero vector)
5. $\mathbf{u}+(-\mathbf{u})=(-\mathbf{u})+(\mathbf{u})=0$
6. if k is any scalar and \mathbf{u} is objects in W, then $k u$ is in W
7. $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$
8. $(k+m) \mathbf{u}=k \mathbf{u}+m \mathbf{u}$
9. $k(m \mathbf{u})=(k m) \mathbf{u}$
10. $1(\mathbf{u})=\mathbf{u}$

Subspace Test (2)

a subset W of a vector space V
if $\mathbf{u}, \mathbf{v} \in \mathrm{W}$, then $\mathbf{u}+\mathbf{v} \in W$
if k : a scalar, $\mathbf{u} \in \mathrm{W}$, then $k \mathbf{u} \in \mathrm{~W}$

1. if \mathbf{u} and \mathbf{v} are objects in w, then $\mathbf{u}+\mathbf{v}$ is in $w)$
2. $u+v=v+u$
3. $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
4. $\mathbf{0}+\mathbf{u}=\mathbf{u}+\mathbf{0}=\mathbf{u}$ (zero vector)
5. $\mathbf{u}+(-\mathbf{u})=(-\mathbf{u})+(\mathbf{u})=\mathbf{0}$
6. if k is any scalar and \mathbf{u} is objects in W, then $k u$ is in W
7. $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$
8. $(k+m) \mathbf{u}=k \mathbf{u}+m \mathbf{u}$
9. $k(m \mathbf{u})=(k m) \mathbf{u}$
10. $1(\mathbf{u})=\mathbf{u}$

Linear Combination : Subspaces

$$
S=\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \cdots, \boldsymbol{w}_{r}\right\}
$$

$$
W=\left\{\boldsymbol{w} \mid \boldsymbol{w}=c_{1} \boldsymbol{w}_{\mathbf{1}}+c_{2} \boldsymbol{w}_{\mathbf{2}}+\cdots+c_{r} \boldsymbol{w}_{\boldsymbol{r}}\right\}
$$

a nonempty set of a vector space V
S may not be a vector space of V subspace
but all linear combination of the vectors in S is a subspace of V
the set W of all possible linear combination of the vectors in S

$$
\boldsymbol{w}=c_{1} \boldsymbol{w}_{1}+C_{2} \boldsymbol{w}_{2}+\cdots+c_{r} \boldsymbol{w}_{r}
$$

a subspace of \vee

Closure: Subspaces

$$
\begin{gathered}
\boldsymbol{u} \in W, \quad \boldsymbol{v} \in W \\
\left\{\begin{array}{l}
\boldsymbol{u}=c_{1} \boldsymbol{w}_{1}+c_{2} \boldsymbol{w}_{2}+\cdots+c_{r} \boldsymbol{w}_{r} \\
\boldsymbol{v}=k_{1} \boldsymbol{w}_{1}+k_{2} \boldsymbol{w}_{2}+\cdots+k_{r} \boldsymbol{w}_{r}
\end{array}\right.
\end{gathered}
$$

$$
\boldsymbol{u}+\boldsymbol{v} \in W, \quad k \boldsymbol{u} \in W
$$

$u+v: a$ linear combination
ku : a linear combination
closure under addition

$$
\boldsymbol{u}+\boldsymbol{v}=\left(c_{1}+k_{1}\right) \boldsymbol{w}_{\mathbf{1}}+\left(c_{2}+k_{2}\right) \boldsymbol{w}_{\mathbf{2}}+\cdots+\left(c_{r}+k_{r}\right) \boldsymbol{w}_{\boldsymbol{r}}
$$

closure under scalar multiplication

$$
k \boldsymbol{u}=\left(k c_{1}\right) \boldsymbol{w}_{\mathbf{1}}+\left(k c_{2}\right) \boldsymbol{w}_{\mathbf{2}}+\cdots+\left(k c_{r}\right) \boldsymbol{w}_{r}
$$

The Smallest Subspaces

the set W is the smallest subspace of V that contains all of the vectors in S any other subspace that contains all of the vectors in S, contains W

```
vector space { { llosure under addition 
```

the subspace W' contains all the vectors in S
$S=\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \cdots, \boldsymbol{w}_{r}\right\}$

$$
S \subset W^{\prime}
$$

\square
the subspace W' contains all possible linear combination of the vectors in S

$$
W \subset W^{\prime}
$$

Spanning Set

$$
S=\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \cdots, \boldsymbol{w}_{\mathbf{r}}\right\}
$$

$$
W=\left\{\boldsymbol{w} \mid \boldsymbol{w}=c_{1} \boldsymbol{w}_{\mathbf{1}}+c_{2} \boldsymbol{w}_{\mathbf{2}}+\cdots+c_{r} \boldsymbol{w}_{\boldsymbol{r}}\right\}
$$

$$
\operatorname{span}(S)=\operatorname{span}\left\{\boldsymbol{w}_{\mathbf{1}}, \boldsymbol{w}_{\mathbf{2}}, \cdots, \boldsymbol{w}_{\boldsymbol{k}}\right\}
$$

a nonempty set of a vector space V
all linear combination of the vectors in S is a subspace of V

Spanning Set : not unique

$$
\begin{aligned}
& S_{1}=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2,}, \cdots, \boldsymbol{v}_{\boldsymbol{r}}\right\} \quad \text { a nonempty set of a vector space } \mathrm{V} \\
& S_{2}=\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \cdots, \boldsymbol{w}_{\boldsymbol{k}}\right\} \text { a nonempty set of a vector space } \mathrm{V}
\end{aligned}
$$

$$
\operatorname{span}\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{\boldsymbol{r}}\right\}=\operatorname{span}\left\{\boldsymbol{w}_{\mathbf{1}}, \boldsymbol{w}_{2}, \cdots, \boldsymbol{w}_{\boldsymbol{k}}\right\}
$$

each vector in S_{1} is a linear combination of the vectors in S_{2} each vector in S_{2} is a linear combination of the vectors in S_{1}

Containment : Subspaces

$$
\begin{aligned}
& S=\left\{\boldsymbol{w}_{\mathbf{1}}, \boldsymbol{w}_{2}, \cdots, \boldsymbol{w}_{\boldsymbol{r}}\right\} \\
& W=\left\{\boldsymbol{w} \mid \boldsymbol{w}=c_{1} \boldsymbol{w}_{1}+c_{2} \boldsymbol{w}_{\mathbf{2}}+\cdots+c_{r} \boldsymbol{w}_{\boldsymbol{r}}\right\} \Rightarrow \mathrm{S} \text { may not be a subspace of } \mathrm{V} \\
& W^{\prime}=\left\{\boldsymbol{w} \mid \boldsymbol{w}=c_{1} \boldsymbol{w}_{1}+c_{2} \boldsymbol{w}_{\mathbf{2}}+\cdots+c_{q} \boldsymbol{w}_{\boldsymbol{q}}\right\}
\end{aligned}
$$

If W ' is a subspace of V and contains all the vectors in S

```
    q>r
    q=r
    q<r the vectors in S are linearly dependent
```

\Rightarrow W' contains W

$$
\operatorname{span}\left(W^{\prime}\right) \geq \operatorname{span}(W)
$$

— W' contains W

$$
\operatorname{span}\left(W^{\prime}\right)=\operatorname{span}(W)
$$

— W' contains W

$$
\operatorname{span}\left(W^{\prime}\right)=\operatorname{span}(W)
$$

Building Subspaces

if $W_{1}, W_{2}, \ldots, W_{n}$ are subspaces of a vector space of V
the intersection of these subspaces are also a subspace of V
$S=\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \cdots, \boldsymbol{w}_{r}\right\} \quad$ a nonempty set of a vector space V
the set W of all possible linear combination of the vectors in S

$$
\boldsymbol{w}=c_{1} \boldsymbol{w}_{1}+c_{2} \boldsymbol{w}_{2}+\cdots+c_{r} \boldsymbol{w}_{r}
$$

a subspace of V
the set W is the smallest subspace of V that contains all of the vectors in S any other subspace that contains all of the vectors in S contains W

Subspace Example (1)

Subspace Example (2)

In vector space $\quad R^{2}$
any one vector

General (3A)
Vector Space

Subspace Example (3)

In vector space					
any one vector		(linearly indep.)	spans	R^{1}	line through 0
any two non-collinear vectors		(linearly indep.)	spans	R^{2}	plane through 0
any three vectors non-collinear, non-coplanar any four or more vectors		(linearly indep.) (linearly dep.)	spans spans	R^{3} R^{3}	3-dim space 3-dim space
Subspaces of	R^{3}				
0	R^{1}	R^{2}			
	line through 0	plane thro	h 0		space

Dimension

The dimension of a finite-dimensional vector space V
$\operatorname{dim}(\mathrm{V})$
the number of vectors in a basis

Dimension of a Basis (1)

In vector space
R^{2}

basis	any one vector	(linearly indep.)	spans	R^{2}	line through 0
	any two non-collinear vectors	(linearly indep.)	spans	R^{2}	plane
	any three or more vectors	(linearly indep.)	spans	R^{2}	plane
	In vector space R^{3}				
basis	any one vector	(linearly indep.)	spans	R^{3}	line through 0
	any two non-collinear vectors	(linearly indep.)	spans	R^{3}	plane through 0
	any three vectors non-collinear, non-coplanar	(linearly indep.)	spans	R^{3}	3-dim space
	any four or more vectors	(linearly indep.)	spans	R^{3}	3-dim space

Dimension of a Basis (2)

In vector space R^{n}

any $\mathrm{n}-1$ vectors							(linearly indep.)?	spans	R^{n}	line through $\mathbf{0}$
basis	n vectors of a basis	(linearly indep.)	spans	R^{n}	plane					
any $\mathrm{n}+1$ vectors	(linearly indep.)	spans? R^{n}	plane							

$$
\begin{aligned}
& \text { a finite-dimensional vector space } V \\
& \text { a basis } \quad\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{\boldsymbol{n}}\right\}
\end{aligned}
$$

$S=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{\boldsymbol{n}}\right\} \quad$ non-empty finite set of vectors in V
S is a basis
S linearly independent
S spans V

Basis Test

$$
\begin{aligned}
& S=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{\boldsymbol{n}}\right\} \quad \begin{array}{l}
\text { non-empty finite set of vectors in } V \\
S \text { is a basis }
\end{array} \Rightarrow\left\{\begin{array}{l}
S \text { linearly independent } \\
S \text { spans } V
\end{array}\right.
\end{aligned}
$$

$V \quad$ an n -dimensional vector space
$S=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{\boldsymbol{n}}\right\}$ a set of \boldsymbol{n} vectors in V
S linearly independent $\square S$ is a basis
S spans $V \quad \square \quad S$ is a basis

Plus / Minus Theorem

S a nonempty set of vectors in a vector space V
$\left\{\begin{array}{l}S \text { : linear independent } \\ \boldsymbol{v} \text { a vector in } V \text { but outside of span(S) }\end{array}\right.$
$\left\{\begin{array}{l}\boldsymbol{v}, \boldsymbol{u}_{i} \in S \quad \text { linear combination } \\ \boldsymbol{v}=k_{1} \boldsymbol{u}_{1}+k_{2} \boldsymbol{u}_{2}+\cdots+k_{n} \boldsymbol{u}_{n}\end{array} \Rightarrow \operatorname{span}(S)=\operatorname{span}(S-\{\boldsymbol{v}\})\right.$: linear independent

Finding a Basis

S a nonempty set of vectors in a vector space V
S : linear independent
$\Rightarrow S \cup\{\boldsymbol{v}\}$: linear independent
\boldsymbol{v} a vector in V but outside of span(S)
if S is a linearly independent set that is not already a basis for V, then S can be enlarged to a basis for V by inserting appropriate vectors into S
$\boldsymbol{v}, \boldsymbol{u}_{\boldsymbol{i}} \in S \quad$ linear combination

$$
\Rightarrow \operatorname{span}(S)=\operatorname{span}(S-\{\boldsymbol{v}\})
$$

$\boldsymbol{v}=k_{1} \boldsymbol{u}_{1}+k_{2} \boldsymbol{u}_{2}+\cdots+k_{n} \boldsymbol{u}_{\boldsymbol{n}}$
if S spans V but is not a basis for V, then S can be reduced to a basis for V by removing appropriate vectors from S

Vectors in a Vector Space

S a nonempty set of vectors in a vector space V
if S is a linearly independent set that is not already a basis for V, then S can be enlarged to a basis for V
by inserting appropriate vectors into S
Every linearly independent set in a subspace is either a basis for that subspace or can be extended to a basis for it
if S spans V but is not a basis for V, then S can be reduced to a basis for V
by removing appropriate vectors from S

Every spanning set for a subspace is either a basis for that subspace or has a basis as a subset

Dimension of a Subspace

W a subspace of a finite-dimensional vector space V
W is finite-dimensional
$\operatorname{dim}(\mathrm{W}) \leq \operatorname{dim}(\mathrm{V})$
$\mathrm{W}=\mathrm{V} \quad \Rightarrow \quad \operatorname{dim}(\mathrm{W})=\operatorname{dim}(\mathrm{V})$

Vector Space Examples

\{ $\mathbf{0}\}$
R^{n}
$M_{m n}$
P_{∞}
$F(-\infty,+\infty) \quad$ real-valued functions in the interval $(-\infty,+\infty)$
$C(-\infty,+\infty) \quad$ real-valued continuous functions in the interval $(-\infty,+\infty)$
$C^{1}(-\infty,+\infty) \quad$ real-valued continuously differentiable functions in $(-\infty,+\infty)$
mxn matrix
$a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\cdots$
the solution space $\boldsymbol{A x}=\mathbf{0}$ in n unknowns R^{n}

Real-Valued Functions (1)

V the set of real-valued functions
defined at every x in $(-\infty,+\infty)$

$$
\begin{array}{ll}
\boldsymbol{u}=u(x) & \mathbf{u}+\boldsymbol{v}=u(x)+v(x) \\
\boldsymbol{v}=v(x) & k \boldsymbol{u}=k u(x)
\end{array}
$$

1. if \mathbf{u} and \mathbf{v} are objects in V, then $\mathbf{u}+\mathbf{v}$ is in V
2. $u+v=v+u$
3. $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
4. $\mathbf{0}+\mathbf{u}=\mathbf{u}+\mathbf{0}=\mathbf{u}$ (zero vector)
5. $\mathbf{u}+(-\mathbf{u})=(-\mathbf{u})+(\mathbf{u})=\mathbf{0}$
6. if k is any scalar and u is objects in V, then $k u$ is in V
7. $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$
8. $(k+m) \mathbf{u}=k \mathbf{u}+m \mathbf{u}$
9. $k(m \mathbf{u})=(k m) \mathbf{u}$
10. $1(\mathbf{u})=\mathbf{u}$

Real-Valued Functions (2)

V the set of real-valued functions

$$
\{\sin (x), \sin (2 x), \sin (3 x), \cdots\}
$$

defined at every x in $[0,2 \pi]$

$$
\begin{aligned}
& \boldsymbol{u}_{\mathbf{1}}=\sin (x) \\
& \boldsymbol{u}_{\mathbf{2}}=\sin (2 \mathrm{x}) \\
& \boldsymbol{u}_{\mathbf{3}}=\sin (3 \mathrm{x})
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{u}_{\boldsymbol{m}}+\boldsymbol{v}_{\boldsymbol{n}}=\sin (m x)+\sin (n x) \\
& k \boldsymbol{u}_{\boldsymbol{m}}=k \sin (m x)
\end{aligned}
$$

1. if \mathbf{u} and \mathbf{v} are objects in V, then $\mathbf{u}+\mathbf{v}$ is in V
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
3. $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
V basis R^{∞}
linear independent
4. $\mathbf{0}+\mathbf{u}=\mathbf{u}+\mathbf{0}=\mathbf{u}$ (zero vector)
5. $\mathbf{u}+(-\mathbf{u})=(-\mathbf{u})+(\mathbf{u})=\mathbf{0}$
6. if k is any scalar and u is objects in V, then $k u$ is in V
7. $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$
8. $(k+m) \mathbf{u}=k \mathbf{u}+m \mathbf{u}$
9. $k(m \mathbf{u})=(k m) \mathbf{u}$
10. $1(\mathbf{u})=\mathbf{u}$

Real-Valued Functions (3)

$$
\begin{aligned}
\boldsymbol{u}_{\mathbf{1}} & =\left[\begin{array}{lll}
\sin (0), \sin (\pi / 2), \sin (\pi), \sin (3 \pi / 2)
\end{array}\right] \\
& =\left[\begin{array}{lll}
0.00000 & 0.70711 & 1.00000 \\
0.70711
\end{array}\right] \\
\boldsymbol{u}_{2} & =\left[\begin{array}{lll}
\sin (2 \cdot 0), \sin (2 \cdot \pi / 2), \sin (2 \cdot \pi), \sin (2 \cdot 3 \pi / 2)
\end{array}\right] \\
& =\left[\begin{array}{lll}
0.00000 & 1.00000 & 0.00000-1.00000
\end{array}\right] \\
\boldsymbol{u}_{3} & =\left[\begin{array}{lll}
\sin (3 \cdot 0), \sin (3 \cdot \pi / 2), \sin (3 \cdot \pi), \sin (3 \cdot 3 \pi / 2)
\end{array}\right] \\
& =\left[\begin{array}{lll}
0.00000 & 1.00000 & 0.00000-1.00000
\end{array}\right]
\end{aligned}
$$

4-tuple vectors

8-tuple vectors 12-tuple vectors 1024-tuple vectors infinity-tuple vectors

R^{∞}

Real-Valued Functions (4)

$\{\sin (x), \sin (2 \mathrm{x}), \sin (3 \mathrm{x}), \cdots\}$ a basis

| 8-tuple vectors |
| :--- | :--- |
| 12-tuple vectors |
| 1024-tuple vectors |
| infinity-tuple vectors |
| R^{∞} |

$\sin (m x) \neq \sin (n x)$
$\operatorname{linearly}$ independent

References

[1] http://en.wikipedia.org/
[2] Anton, et al., Elementary Linear Algebra, 10 ${ }^{\text {th }}$ ed, Wiley, 2011
[3] Anton, et al., Contemporary Linear Algebra,

