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Vector Space

V: non-empty set of objects 

defined operations: addition

scalar multiplication

u + v

k u

if the following axioms are satisfied

for all object u, v, w and all scalar k, m
V: vector space

objects in V: vectors 

1. if u and v are objects in V, then u + v is in V
2. u + v = v + u
3. u + (v + w) = (u + v) + w
4. 0 + u = u + 0 = u (zero vector)
5. u + (–u) = (–u) + (u) = 0 
6. if k is any scalar and u is objects in V, then ku is in V
7. k(u + v) = ku + kv
8. (k + m)u = ku + mu
9. k(mu) = (km)u
10. 1(u) = u 
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Test for a Vector Space

1. Identify the set V of objects
2. Identify the addition and scalar multiplication on V
3. Verify u + v is in V and  ku is in V

closure under addition and scalar multiplication
4. Confirm other axioms.

1. if u and v are objects in V, then u + v is in V
2. u + v = v + u
3. u + (v + w) = (u + v) + w
4. 0 + u = u + 0 = u (zero vector)
5. u + (–u) = (–u) + (u) = 0 
6. if k is any scalar and u is objects in V, then ku is in V
7. k(u + v) = ku + kv
8. (k + m)u = ku + mu
9. k(mu) = (km)u
10. 1(u) = u 
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Subspace

a subset W of a vector space V

If the  subset W is itself a vector space the subset W is a subspace of V

1. if u and v are objects in W, then u + v is in W
2. u + v = v + u
3. u + (v + w) = (u + v) + w
4. 0 + u = u + 0 = u (zero vector)
5. u + (–u) = (–u) + (u) = 0 
6. if k is any scalar and u is objects in W, then ku is in W
7. k(u + v) = ku + kv
8. (k + m)u = ku + mu
9. k(mu) = (km)u
10. 1(u) = u 
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Subspace Test (1)

a subset W of a vector space V

If the  subset W is itself a vector space the subset W is a subspace of V

1. if u and v are objects in W, then u + v is in W
2. u + v = v + u
3. u + (v + w) = (u + v) + w
4. 0 + u = u + 0 = u (zero vector)
5. u + (–u) = (–u) + (u) = 0 
6. if k is any scalar and u is objects in W, then ku is in W
7. k(u + v) = ku + kv
8. (k + m)u = ku + mu
9. k(mu) = (km)u
10. 1(u) = u 

axioms not inherited by W
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Subspace Test (2)

a subset W of a vector space V

the subset W is a subspace of V

1. if u and v are objects in W, then u + v is in W
2. u + v = v + u
3. u + (v + w) = (u + v) + w
4. 0 + u = u + 0 = u (zero vector)
5. u + (–u) = (–u) + (u) = 0 
6. if k is any scalar and u is objects in W, then ku is in W
7. k(u + v) = ku + kv
8. (k + m)u = ku + mu
9. k(mu) = (km)u
10. 1(u) = u 

if u,  v W, then u + v  W
if k: a scalar,  u W, then ku W
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Linear Combination : Subspaces

S = {w1,w2, ⋯ ,w r} a nonempty set of a vector space V

S may not be a  vector space  of V
     subspace 

the set W
 
of all possible linear 

combination of the vectors in S

w = c1 w1 + c2 w2 + ⋯ + cr w r

 a subspace of V

but all linear combination of the 
vectors in S is a subspace  of V

W = {w ∣w = c1 w1+c2 w2+ ⋯ +cr w r}
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Closure : Subspaces

u = c1 w1 + c2 w2 + ⋯ + cr w r

v = k 1w1 + k2 w2 + ⋯ + kr w r

u + v = (c1+k1)w1 + (c2+k2)w2 + ⋯ + (cr+kr)w r

k u = (k c1)w1 + (k c2)w2 + ⋯ + (k cr)w r

closure under addition

closure under scalar multiplication

u + v : a linear combination

k u : a linear combination

u ∈ W , v ∈ W u + v ∈ W , k u ∈ W
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The Smallest Subspaces

the set W is the smallest subspace of V that contains all of the vectors in S
any other subspace that contains all of the vectors in S, contains W

closure under addition

closure under scalar multiplication

W ⊂ W '

S = {w1,w2, ⋯ ,w r}

the subspace W' contains
all possible linear combination 
of the vectors in S

vector space

S ⊂ W '

the subspace W' contains
all the vectors in S
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Spanning Set 

span(S) = span {w1 , w2 , ⋯ , wk}

S = {w1,w2, ⋯ ,w r} a nonempty set of a vector space V

all linear combination of the vectors in S 
is a subspace  of V

W = {w ∣w = c1 w1+c2 w2+ ⋯ +cr w r}
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Spanning Set : not unique

S1 = {v1, v2, ⋯ , v r} a nonempty set of a vector space V

S2 = {w1, w2, ⋯ ,wk} a nonempty set of a vector space V

span{v1, v2, ⋯ , vr} = span{w1, w2, ⋯ ,wk}

each vector in S
1
 is a linear combination of the vectors in S

2

each vector in S
2
 is a linear combination of the vectors in S

1
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Containment : Subspaces

S = {w1, w2, ⋯ , w r} S may not be a  subspace  of V

W = {w ∣w = c1 w1+c2 w2+ ⋯ +cr w r} W is a  subspace  of V

W ' = {w ∣w = c1 w1+c2 w2+ ⋯ +cq wq}

If W' is a  subspace of V and contains all the vectors in S

q > r

q = r

q < r the vectors in S are linearly dependent

W' contains W

W' contains W

W' contains W

span(W ') ≥ span (W )

span(W ') = span (W )

span(W ') = span (W )
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Building Subspaces

the intersection of these subspaces
are also a subspace of V

if W
1
, W

2
, … , W

n
 

of a vector space of V

are subspaces 

S = {w1,w2, ⋯ ,w r} a nonempty set of a vector space V

the set W
 
of all possible linear 

combination of the vectors in S

w = c1 w1 + c2 w2 + ⋯ + cr w r

 a subspace of V

the set W
 
is the smallest subspace of V that contains all of the vectors in S

any other subspace that contains all of the vectors in S contains W

S W
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Subspace Example (1)

any two non-collinear vectors

any one vector

any three or more vectors

line through 0

plane (linearly indep.)

(linearly indep.)

(linearly dep.)

R2In vector space

R1

R2

v1

v1

v2

v3 = k1 v1 + k 2v 2

v1

v2 v3

spans

spans

spans R2 plane

v1

R2R1 R2

R2Subspaces of

{0}
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Subspace Example (2)

any one vector line through 0(linearly indep.)

R2In vector space

R1

u

spans

v u
v

u+v

u
u

2u

v v 2v

u =
(0,1)

v =
(1,2)

u+v =
(1,3)

vector space
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Subspace Example (3)

any two non-collinear vectors

any one vector

any three vectors
non-collinear, non-coplanar

line through 0

plane through 0(linearly indep.)

(linearly indep.)

(linearly indep.)

R3
In vector space

R1

R2

spans

spans

spans R3 3-dim space

any four or more vectors (linearly dep.) spans R3 3-dim space

R3Subspaces of

line through 0 plane through 0

R1 R2 R3

3-dim space

{0}
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Dimension

all bases the same number of vectors

RnIn a finite-dimensional vector space R∞

n

u1

u2
(xu , yu)

v1

v2
(x v , y v)

w1

w2
(xw , yw)

basis  {u1 , u2} basis  {v1 , v2} basis  {w1 , w2}

many bases but the same number of basis vectors

R2 R2 R2

The dimension of  a finite-dimensional vector space V

dim(V) the number of vectors in a basis
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Dimension of a Basis (1)

any two non-collinear vectors

any one vector

any three or more vectors

line through 0

plane (linearly indep.)

(linearly indep.)

(linearly indep.)

R2In vector space

R2

spans

spans

spans R2 plane

R2

any two non-collinear vectors

any one vector

any three vectors
non-collinear, non-coplanar

line through 0

plane through 0(linearly indep.)

(linearly indep.)

(linearly indep.)

R3
In vector space

spans

spans

spans R3 3-dim space

any four or more vectors (linearly indep.) spans R3 3-dim space

R3

R3

basis

basis
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Dimension of a Basis (2)

n vectors of a basis

any n-1 vectors

any n+1 vectors

line through 0

plane (linearly indep.)

(linearly indep.)

(linearly indep.)

RnIn vector space

Rn

spans

spans

spans Rn plane

Rn

basis

?

?

{v1 , v2 , ⋯ , vn}

Va finite-dimensional vector space

a basis

a set of more than n vectors

a set of less than n vectors

(linearly indep.)

spans V

linearly independentSis a basisS

spansS V

S = {v1 , v2 , ⋯ , vn} Vnon-empty finite set of vectors in 
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Basis Test 

linearly independentSis a basisS

spansS V

S = {v1 , v2 , ⋯ , vn} Vnon-empty finite set of vectors in 

linearly independentS

a set of n vectors in V

spans V

V an n-dimensional vector space

S = {v1 , v2 , ⋯ , vn}

is a basisS

S is a basisS
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Plus / Minus Theorem

span(S) span(S) span(S)

v

v v

S ∪ {v } S − {v } S − {v }

Va nonempty set of vectors in a vector space

: linear independent 

S

S

v a vector in V but outside of span(S)
S ∪ {v } : linear independent 

v , ui ∈ S

v = k1u1 + k2u2 + ⋯ + knun

span(S) = span(S − {v})
linear combination 
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Finding a Basis

Va nonempty set of vectors in a vector space

: linear independent 

S

S

v a vector in V but outside of span(S)
S ∪ {v } : linear independent 

v , ui ∈ S

v = k1u1 + k2u2 + ⋯ + knun

span(S) = span(S − {v})
linear combination 

if S spans V but is not a basis for V, 
then S can be reduced to a basis for V
by removing appropriate vectors from S

if S is a linearly independent set that is not already a basis for V,
then S can be enlarged to a basis for V
by inserting appropriate vectors into S
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Vectors in a Vector Space

Va nonempty set of vectors in a vector spaceS

if S spans V but is not a basis for V, 
then S can be reduced to a basis for V
by removing appropriate vectors from S

if S is a linearly independent set that is not already a basis for V,
then S can be enlarged to a basis for V
by inserting appropriate vectors into S

Every spanning set for a subspace is 
either a basis for that subspace
or has a basis as a subset

Every linearly independent set in a subspace is
either a basis for that subspace
or can be extended to a basis for it
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Dimension of a Subspace

Va subspace of a finite-dimensional vector spaceW

W is finite-dimensional

dim(W) ≤ dim(V)

W = V dim(W) = dim(V)
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Vector Space Examples

{0 }

Mmn

Rn

mxn matrix

F (−∞ , +∞) real-valued functions in the interval (−∞ , +∞)

C (−∞ , +∞) real-valued continuous functions in the interval (−∞ , +∞)

C1
(−∞ , +∞) real-valued continuously differentiable functions in (−∞ , +∞)

P∞ a0 + a1x + a2x
2
+ ⋯+ anx

n
+ ⋯

Ax = 0the solution space in n unknowns Rn
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Real-Valued Functions (1)

u = u(x)

the set of real-valued functions V

defined at every x in (−∞ , +∞)

v = v (x)

u+v = u(x ) + v(x )

ku = ku (x)

1. if u and v are objects in V, then u + v is in V
2. u + v = v + u
3. u + (v + w) = (u + v) + w
4. 0 + u = u + 0 = u (zero vector)
5. u + (–u) = (–u) + (u) = 0 
6. if k is any scalar and u is objects in V, then ku is in V
7. k(u + v) = ku + kv
8. (k + m)u = ku + mu
9. k(mu) = (km)u
10. 1(u) = u 
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Real-Valued Functions (2)

u1 = sin (x )

the set of real-valued functions V

defined at every x in [0, 2π]

um+vn = sin(mx) + sin(n x)

kum = ksin(mx)

1. if u and v are objects in V, then u + v is in V
2. u + v = v + u
3. u + (v + w) = (u + v) + w
4. 0 + u = u + 0 = u (zero vector)
5. u + (–u) = (–u) + (u) = 0 
6. if k is any scalar and u is objects in V, then ku is in V
7. k(u + v) = ku + kv
8. (k + m)u = ku + mu
9. k(mu) = (km)u
10. 1(u) = u 

{sin (x), sin (2x), sin (3x) , ⋯ }

u2 = sin (2x)

u3 = sin (3x)

⋯

basis R∞V

linear independent
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Real-Valued Functions (3)

u1 = [sin (0), sin(π /2) , sin(π), sin(3π/2)]

u2 = [sin (2⋅0) , sin (2⋅π/2) , sin (2⋅π), sin(2⋅3π/2)]

u3 = [sin (3⋅0) , sin (3⋅π/2) , sin (3⋅π), sin(3⋅3π/2)]

⋯

-1

-0.5

 0

 0.5

 1

 0  1  2  3  4  5  6

x

sin(x)
sin(2*x)
sin(3*x)

= [0.00000 0.70711 1.00000 0.70711 ]

= [0.00000 1.00000 0.00000 −1.00000 ]

= [0.00000 1.00000 0.00000 −1.00000 ]

4-tuple vectors

8-tuple vectors
12-tuple vectors
1024-tuple vectors
infinity-tuple vectors

R∞
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Real-Valued Functions (4)

⋯

-1

-0.5

 0

 0.5

 1

 0  1  2  3  4  5  6

x

sin(x)
sin(2*x)
sin(3*x)

8-tuple vectors
12-tuple vectors
1024-tuple vectors
infinity-tuple vectors

0 2π

−1

+1

+∞

−∞

0 2π

span

{sin (x ), sin (2x), sin (3x) , ⋯ }

sin(mx) ≠ sin(nx)

m ≠ n

linearly independent

R∞

dim(R∞
) = ∞

a basis
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