Power Density Spectrum - Continuous Time

Young W Lim

January 22, 2021

Young W Lim Power Density Spectrum - Continuous Time

3.5

Copyright (c) 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

Based on Probability, Random Variables and Random Signal Principles, P.Z. Peebles, Jr. and B. Shi

Outline

2

Energy, Average Power - in time domain

a deterministic signal x(t)

$$x_{T}(t) = \begin{cases} x(t) & -T < t < T \\ 0 & otherwise \end{cases}$$

the energy

$$E(T) = \int_{-T}^{+T} x^2(t) dt$$

the average power

$$P(T) = \frac{1}{2T} \int_{-T}^{+T} x^2(t) dt$$

► < Ξ ►</p>

Fourier Transform Pair $x(t) \iff X(\boldsymbol{\omega})$

Fourier transform

$$X(\boldsymbol{\omega}) = \int_{-\infty}^{\infty} x(t) e^{-j\boldsymbol{\omega} t} dt$$

a deterministic signal x(t)

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} x(\omega) e^{j\omega t} d\omega$$

伺 と く ヨ と く ヨ と

bounded duration, bounded variation

for a finite T, $x_T(t)$ is assumed to have bounded variation

$$\int_{-T}^{+T} |x(t)| dt < \infty$$

the Fourier transform of $x_T(t)$

$$X_{T}(\boldsymbol{\omega}) = \int_{-\infty}^{+\infty} x_{T}(t) e^{-j\boldsymbol{\omega}t} dt$$
$$= \int_{-T}^{+T} x(t) e^{-j\boldsymbol{\omega}t} dt$$

Fourier transforms of $x_T(t)$ and $X_T(t)$ for continuous time signals

deterministic $X_T(\boldsymbol{\omega})$ v.s. random $X_T(\boldsymbol{\omega})$

a **deterministic** sample signal $x_T(t)$

$$x_T(t) \Longleftrightarrow X_T(\omega)$$

a random process signal $X_T(t)$

$$X_T(t) \Longleftrightarrow X_T(\omega)$$

(E)

for a deterministic $\overline{x_T(t)}$

a **deterministic** sample signal $x_T(t)$

$$\int_{-\infty}^{+\infty} x_T(\tau) x_T^*(\tau) d\tau = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X_T(\omega) X_T^*(\omega) d\omega$$
$$\int_{-\infty}^{+\infty} |x_T(\tau)|^2 d\tau = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X_T(\omega)|^2 d\omega$$

for a deterministic $x_T(t)$ v.s. a random $X_T(t)$

• a deterministic signal $x_T(t) \iff X_T(\omega)$

$$\int_{-T}^{+T} |x_T(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X_T(\omega)|^2 d\omega$$

• a random signal
$$X_T(t) \iff X_T(\omega)$$

$$\int_{-T}^{+T} E\left[|X_T(t)|^2\right] dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} E\left[|X_T(\omega)|^2\right] d\omega$$

- ∢ ⊒ →

Energy, Average Power – Parseval's theorem applied

a deterministic signal $x_T(t)$

$$\mathbf{x}_{T}(t) = \left\{ egin{array}{cc} \mathbf{x}(t) & -T < t < T \ 0 & otherwise \end{array}
ight.$$

the energy by Parseval's theorem

$$E(T) = \int_{-T}^{+T} x^{2}(t) dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X_{T}(\omega)|^{2} d\omega$$

the average power by Parseval's theorem

$$P(T) = \frac{1}{2T} \int_{-T}^{+T} x^2(t) dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{|X_T(\omega)|^2}{2T} d\omega$$

E(T) and P(T) in frequency domain – deterministic case for continuous time signals

deterministic $x_T(t) \iff X_T(\boldsymbol{\omega})$

the energy for the deterministic $X_T(\omega)$

$$E(T) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X_T(\omega)|^2 d\omega$$

the average power for the deterministic $X_T(\omega)$

$$P(T) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{|X_T(\omega)|^2}{2T} d\omega$$

the power density spectrum for the deterministic $X_T(\omega)$

$$\lim_{T\to\infty}\frac{|X_T(\boldsymbol{\omega})|^2}{2T}$$

E(T) and P(T) in frequency domain – random case for continuous time signals

random $X_T(t) \iff X_T(\boldsymbol{\omega})$

the energy for the random $X_T(\omega)$

$$E(T) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} E[|X_T(\omega)|^2] d\omega$$

the average power for the random $X_T(\omega)$

$$P(T) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{E\left[|X_T(\omega)|^2\right]}{2T} d\omega$$

the power density spectrum for the random $X_T(\omega)$

$$\lim_{T\to\infty}\frac{E\left[|X_T(\boldsymbol{\omega})|^2\right]}{2T}$$

Average power P(T) – bounded duraton (-T, +T) for continuous time signals

$$P(T) = \frac{1}{2T} \int_{-T}^{+T} x^2(t) dt$$

- not the average power in a random process only the power in one sample function
 - to obtain the **average power** over all possible **realizations**, replace x(t) by X(t)
 - take the **expected value** of $x^2(t)$, that is $E[X^2(t)]$
 - then, the **average power** is a **random variable** with respect to the **random process** X(t)
- not the average power in an entire sample function
 - take $T \rightarrow \infty$ to include all power in the **ensemble** member

Average power P_{XX} – unbounded duraton $(-\infty, +\infty)$ for continuous time signals

$$P(T) = \frac{1}{2T} \int_{-T}^{+T} x^2(t) dt$$

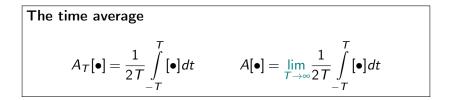
- replace x(t) by the random variable X(t)
- take the expected value of $x^2(t)$, that is $E[X^2(t)]$

$$P(T) = \frac{1}{2T} \int_{-T}^{+T} E\left[X^2(t)\right] dt$$

• take $T \rightarrow \infty$ to include all power

$$\boxed{P_{XX} = \lim_{T \to \infty} P(T)} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{+T} E[X^2(t)] dt$$

Average power P_{XX} – time average $A[\bullet]$ for continuous time signals



time average and sample average operations

$$P_{XX} = \lim_{T \to \infty} P(T) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{+T} E[X^2(t)] dt$$
$$= A[E[X^2(t)]]$$

.

for deterministic and random signals

the average power P(T) for a <u>deterministic</u> signal x(t)

$$P(T) = \frac{1}{2T} \int_{-T}^{+T} x^2(t) dt$$

the average power P_{XX} for a random process X(t)

$$P_{XX} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{+T} E\left[X^2(t)\right] dt$$
$$= A\left[E\left[X^2(t)\right]\right]$$

A B F A B F

the average power via power density

the average power P_{XX} for the random process $X_T(\omega)$

$$P_{XX} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \underbrace{\lim_{T \to \infty} \frac{E\left[|X_T(\omega)|^2\right]}{2T}}_{= \frac{1}{2\pi} \int_{-\infty}^{+\infty} S_{XX}(\omega) d\omega} d\omega$$

the power density spectrum $S_{XX}(\omega)$

$$S_{XX}(\boldsymbol{\omega}) = \lim_{T \to \infty} \frac{E\left[|X_T(\boldsymbol{\omega})|^2\right]}{2T}$$

Properties of Power Spectrum for continuous time signals

- $S_{XX}(\omega) \geq 0$
- $S_{XX}(-\omega) = S_{XX}(\omega)$ X(t) real
- S_{XX}(*w*) real
- $\frac{1}{2\pi}\int_{-\infty}^{+\infty}S_{XX}(\omega)d\omega = A\left[E\left[X^{2}(t)\right]\right]$

•
$$S_{\dot{X}\dot{X}}(\omega) = \omega^2 S_{XX}(\omega)$$

- $\frac{1}{2\pi}\int_{-\infty}^{+\infty}S_{XX}(\omega)e^{j\omega t}d\omega = A[R_{XX}(t,t+\tau)]$
- $S_{XX}(\omega) = \int_{-\infty}^{+\infty} A[R_{XX}(t,t+\tau)] e^{-j\omega\tau} d\tau$

伺 ト イヨ ト イヨト

the average power related equation

$$\frac{1}{2\pi}\int_{-\infty}^{+\infty}S_{XX}(\omega)d\omega=A\left[E\left[X^{2}(t)\right]\right]$$

the autocorrelation related equation

$$\frac{1}{2\pi}\int_{-\infty}^{+\infty}S_{XX}(\omega)e^{j\omega t}d\omega=A[R_{XX}(t,t+\tau)]$$

the average power related equation

$$\frac{1}{2\pi}\int_{-\infty}^{+\infty}S_{XX}(\omega)d\omega=A\left[E\left[X^{2}(t)\right]\right]$$

- a random process X(t) in time domain
- a random process $X_T(\omega)$ in frequency domain

Average power P_{XX} in time / frequency domain for continuous time signals

Definition

Using a random process X(t) in time domain

$$P_{XX} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{+T} E\left[X^2(t)\right] dt$$

$$= A\left[E\left[X^{2}(t)\right]\right]$$

Using a <u>random process</u> $X_T(\omega)$ in frequency domain

$$P_{XX} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left[\lim_{T \to \infty} \frac{E\left[|X_T(\omega)|^2 \right]}{2T} \right] d\omega$$
$$= \left[\frac{1}{2\pi} \int_{-\infty}^{+\infty} \left[S_{XX}(\omega) \right] d\omega \right]$$

▶ < ≡ ▶</p>

the average power related equation

$$\frac{1}{2\pi}\int_{-\infty}^{+\infty}S_{XX}(\omega)e^{j\omega t}d\omega=A[R_{XX}(t,t+\tau)]$$

auto-correlation function

$$R_{XX}(t,t+\tau) = E\left[X(t)X(t+\tau)\right] \Rightarrow R_{XX}(\tau)$$

- a random process X(t) in time domain
- a random process $X_T(\omega)$ in frequency domain

Fourier transforms of autocorrelation functions for continuous time signals

Definition

Fourier transform of an autocorrelation functions

$$S_{XX}(\omega) = \int_{-\infty}^{+\infty} R_{XX}(\tau) e^{-j\omega\tau} d\tau$$
$$S_{\dot{X}\dot{X}}(\omega) = \int_{-\infty}^{+\infty} R_{\dot{X}\dot{X}}(\tau) e^{-j\omega\tau} d\tau$$

auto-correlation function

$$R_{XX}(t, t+\tau) = E[X(t)X(t+\tau)] \Rightarrow R_{XX}(\tau)$$
$$R_{\dot{X}\dot{X}}(t, t+\tau) = E[\dot{X}(t)\dot{X}(t+\tau)] \Rightarrow R_{\dot{X}\dot{X}}(\tau)$$

- a random process X(t) in time domain
- $\dot{X}(t) = \frac{d}{dt}X(t)$: the derivative of X(t)

Fourier transform of an autocorrelation functions

$$x(t) \Longleftrightarrow X(\omega)$$
$$\frac{d^n}{dt^n} x(t) \Longleftrightarrow (j\omega)^n X(\omega)$$

→ Ξ →

э

Power Density Spectrum and Auto-correlation for continuous time signals

Definition

$$S_{XX}(\omega) = \int_{-\infty}^{+\infty} A[R_{XX}(t,t+\tau)] e^{-j\omega\tau} d\tau$$
$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} S_{XX}(\omega) e^{j\omega\tau} d\omega = A[R_{XX}(t,t+\tau)]$$

for a WSS X(t), $A[R_{XX}(t,t+\tau)] = R_{XX}(\tau)$

$$S_{XX}(\omega) = \int_{-\infty}^{+\infty} R_{XX}(\tau) e^{-j\omega\tau} d\tau$$
$$R_{XX}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} S_{XX}(\omega) e^{+j\omega\tau} d\omega$$

A B F A B F

the power spectrum

$$S_{XX}(\omega) = \int_{-\infty}^{+\infty} R_{XX}(\tau) e^{-j\omega \tau} d\tau$$

the auto-correlation function

$$R_{XX}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} S_{XX}(\omega) e^{+j\omega\tau} d\omega$$

the standard deviation is a measure of the spread in a density function. the analogous quantity for the normalized power spectrum is a measure of its spread that we call the rms bandwidth (root-mean-square)

$$W_{rms}^{2} = \frac{\int_{-\infty}^{+\infty} \omega^{2} S_{XX}(\omega) d\omega}{\int_{-\infty}^{+\infty} S_{XX}(\omega) d\omega}$$

the mean frequence $\bar{\omega}_0$

$$\bar{\omega}_0 = \frac{\int_{-\infty}^{+\infty} \omega S_{XX}(\omega) d\omega}{\int_{-\infty}^{+\infty} S_{XX}(\omega) d\omega}$$

the rms bandwidth

$$W_{rms}^{2} = \frac{4\int_{-\infty}^{+\infty} (\omega - \bar{\omega}_{0})^{2} S_{XX}(\omega) d\omega}{\int_{-\infty}^{+\infty} S_{XX}(\omega) d\omega}$$

Young W Lim Power Density Spectrum - Continuous Time

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Young W Lim Power Density Spectrum - Continuous Time

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで