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The Same Cardinality

https://en.wikipedia.org/wiki/Cardinality

If there exists a bijection mapping
from the set X to the set 
then |X| = |Y| 
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A less than equal cardinality 

https://en.wikipedia.org/wiki/Cardinality

If there exists a injective mapping
from the set X to the set 
then |X| <= |Y| 
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A less than cardinality

https://en.wikipedia.org/wiki/Cardinality

If there exists a injective but not a surjective mapping
(thus not a bijective mapping) 
from the set X to the set 
then |X| < |Y| 
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Types of Functions and Cardinalities

https://en.wikipedia.org/wiki/Function_(mathematics)

surjectioninjection

bijection

|X|= |Y|

|X| ≤ |Y|

|X| < |Y|
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The Cardinality of a Power Set

https://en.wikipedia.org/wiki/Function_(mathematics)



Sets (4A) 8 Young Won Lim
3/23/18

A Finite Set

https://en.wikipedia.org/wiki/Cardinality

A set S is finite wit cardinality n ∈ N 
If there is a bijection from the set {0, 1, …, n-1} to S.

A set is infinite if it is not finite 

0
1
2
3
…
n-1

bijection infinite

S

N

the set of natural numbers

n

the n-element set 
{0, 1, …, n-1}

…
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0
1
2
3
…
n-1

N

the set of natural numbers

n

the n-element set 
{0, 1, …, n-1}

The set of natural numbers

https://en.wikipedia.org/wiki/Cardinality

The set of natural numbers is an infinite set.

N is an infinite set.

0
1
2
3
…
n-1
n
n+1
...

bijection infinite

N

(injective but not surjective)
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A Countable Set

https://en.wikipedia.org/wiki/Cardinality

A set that is either finite or has the same cardinality as 
the set of positive integers (natural numbers N) is 
countable. 

A set that is not countable is called uncountable.

When an infinite set S is countable,
We denote the cardinality of S by  ℵ

0
 .

We write |S| =  ℵ
0
 (aleph null)

finite

infinite

countable

|S| = ℵ
0
 = |N| 



Sets (4A) 11 Young Won Lim
3/23/18

The Cardinality  ℵ
0
    

https://en.wikipedia.org/wiki/Cardinality

ℵ
0 
= |N| 

Bijective mapping 
from integer to even numbers

the set of 
natural numbers

the set of  
even numbers

the same cardinality 
as the set of natural numbers 

countable
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0
1
2
3
…
n-1
n
n+1
...

The set of rational numbers

https://en.wikipedia.org/wiki/Cardinality

The set of rational numbers is an infinite but 
countable set.

1
1/2
2
3
…
r
r+1
r+1/2
...

bijection countable

Q

(injective and surjective)

N
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0
1
2
3
…
n-1
n
n+1
...

The set of real numbers

https://en.wikipedia.org/wiki/Cardinality

The set of real numbers is an infinite and  
uncountable set.

0.111
0.414
…

…

…
...

bijection uncountable

RN

Cantor’s diagonalization 
argument
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Finite, Infinite, Countable Sets

https://en.wikipedia.org/wiki/Cardinality

Any set X with cardinality less than that of the natural 
numbers, |X| < |N|, is said to be a finite set

Any set X with cardinality equal to that of the natural 
numbers, |X| = |N|, is said to be a countably infinite set

Any set X with cardinality greater than that of the natural 
numbers, |X| > |N|, is said to be a uncountable set
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Function

https://en.wikipedia.org/wiki/Cardinality
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Cantor’s diagonal argument

https://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument

An illustration of Cantor's diagonal argument 
(in base 2) for the existence of uncountable 
sets. The sequence at the bottom cannot occur 
anywhere in the enumeration of sequences 
above.
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Function

https://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument
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Function

https://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument
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Function

https://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument
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Function

https://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument
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Function

https://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument

the set T of all infinite sequences of binary digits 

If s1, s2, … , sn, … is any enumeration of elements from T, 
then there is always an element s of T 
which corresponds to no sn in the enumeration.

To prove this, given an enumeration of elements from T, like e.g.

    s1 = (0, 0, 0, 0, 0, 0, 0, ...)
    s2 = (1, 1, 1, 1, 1, 1, 1, ...)
    s3 = (0, 1, 0, 1, 0, 1, 0, ...)
    s4 = (1, 0, 1, 0, 1, 0, 1, ...)
    s5 = (1, 1, 0, 1, 0, 1, 1, ...)
    s6 = (0, 0, 1, 1, 0, 1, 1, ...)
    s7 = (1, 0, 0, 0, 1, 0, 0, ...)
    ...
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Function

https://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument

construct the sequence s by choosing 
the 1st digit as complementary to the 1st digit of s1, 
the 2nd digit as complementary to the 2nd digit of s2, 
the 3rd digit as complementary to the 3rd digit of s3, 
and generally for every n, 
the nth digit as complementary to the nth digit of sn. 

In the example, this yields:

    s1 = (0, 0, 0, 0, 0, 0, 0, ...)
    s2 = (1, 1, 1, 1, 1, 1, 1, ...)
    s3 = (0, 1, 0, 1, 0, 1, 0, ...)
    s4 = (1, 0, 1, 0, 1, 0, 1, ...)
    s5 = (1, 1, 0, 1, 0, 1, 1, ...)
    s6 = (0, 0, 1, 1, 0, 1, 1, ...)
    s7 = (1, 0, 0, 0, 1, 0, 0, ...)
    ...
    s = (1, 0, 1, 1, 1, 0, 1, ...)
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Function

https://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument

By construction, 
s differs from each sn, 
since their nth digits differ. 
Hence, s cannot occur in the enumeration.

Based on this theorem, 
Cantor then uses a proof by contradiction to show that:

    The set T is uncountable.
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Function

https://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument

    The set T is uncountable.

He assumes for contradiction that T was countable. 
Then all its elements could be written 
as an enumeration s1, s2, … , sn, … . 

Applying the previous theorem to this enumeration 
would produce a sequence s not belonging to the enumeration. 

However, s was an element of T 
and should therefore be in the enumeration. 

This contradicts the original assumption, 
so T must be uncountable.
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Function

https://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument
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