Laurent Series and z-Transform

- Geometric Series Causality A

<u> </u>	$\overline{}$	1	$\overline{\mathbf{C}}$	$\overline{}$		$\overline{}$	
	(1		$\boldsymbol{\times}$	()	n	(1	n
_	v		U	v	\mathbf{U}	v	\mathbf{U}

Copyright (c) 2016 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

2 formulas of z

$$\frac{3}{2} \frac{-1}{(2-0.5)(2-2)} = \left(\frac{1}{\xi-0.5} - \frac{1}{\xi-2} \right)$$

$$\frac{3}{3} - \frac{(5-5)(5-0.5)}{2}$$

$$\frac{3}{3} \frac{-1}{(2-0.5)(5-2)} = \frac{3}{3} \frac{3}{2} \left(\frac{\xi-0.5}{1} - \frac{\xi-2}{1} \right)$$

$$\frac{\xi^{-1}}{\xi^{-0.5}} - \frac{1}{\xi^{-2}}$$

$$\frac{3}{2} \frac{-1}{(2^{\frac{1}{2}} - 0.5)(2^{\frac{1}{2}} - 2)} = \frac{3}{2} \frac{2}{3} \left(\frac{1}{2^{\frac{1}{2}} - 0.5} - \frac{1}{2^{\frac{1}{2}} - 2} \right) \\
= \left(\frac{2}{22^{\frac{1}{2}} - 1} - \frac{0.5}{0.52^{\frac{1}{2}} - 1} \right) \\
= \left(\frac{22}{2 - 2} - \frac{0.52}{0.5 - 2} \right) \\
= \left(\frac{-22}{2 - 2} + \frac{0.52}{2 - 0.5} \right) \\
= 2 \left(\frac{-2}{2 - 2} + \frac{0.52}{2 - 0.5} \right) \\
= 2 \left(\frac{-\frac{3}{2}}{(2 - 2)(2 - 0.5)} \right) \\
= \frac{3}{2} \frac{-2^{\frac{3}{2}}}{(2 - 2)(2 - 0.5)}$$

$$\frac{3}{2} \frac{-2^2}{(2-2)(2-0.5)} = \frac{3}{2} \frac{2}{3} \left(\frac{0.52}{(2-0.5)} - \frac{22}{(2-1)} \right)$$

f(z), g(z): causal form of Laurent series nominator polynomial of & denominator polynomial of & f(z'), g(z'): conti-causal form of Laurent series nominator polynomial of & denominator polynomial of 21 X(Z), Y(Z): causal form of Z-Trans nominator polynomial of 21 denominator polynomial of 21 X(ET). Y(ET): conti-rausal form of Z-Trans nominator polynomial of & denominator polynomial of &

2 formulas

2 representations each

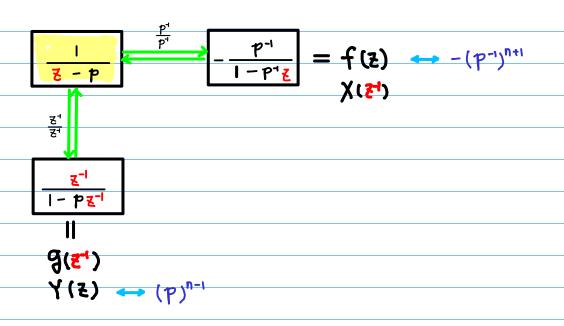
$$\frac{-\frac{p^{-1}}{1-p^{-1}z}}{\left|\frac{z^{-1}}{1-pz^{-1}}\right|} \triangleq f(z) = \chi(z^{-1})$$

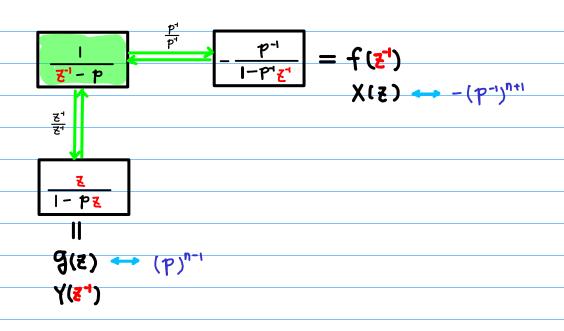
$$\frac{z}{1-pz} \triangleq g(z) = \chi(z^1)$$

$$\frac{z}{1-p^2z} \triangleq \chi(z) = f(z^2)$$

z po	lynomials		f(2)	 8(£)	₹ 1	olynomials
₹ ⁻¹ po.	lynomials		Y(2)	X(Z)	そ †	polynomials
2 po	lynomials	人(ぇ^^) =	- f(2)	१८३) = ४	(Z¹)	lynomials
2 90	ду по тиме з		- 1(6)		CC J C Po	zy no in wes
₹ ⁻¹ po.	lynomials	१(स् -') :	= \(\(\xi\)	$\chi(z) = c$	(2-1) Z-1 po.	lynomials

Laurent f(z), g(z): causal, $f(z^{-1})$, $g(z^{-1})$: canti-causal z- Trans X(z), Y(z): causal, $X(z^{-1})$. $Y(z^{-1})$: canti-causal

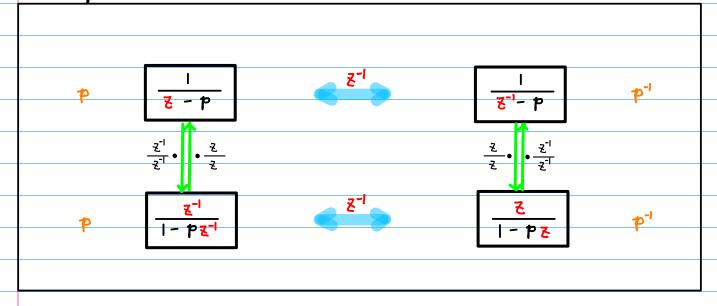


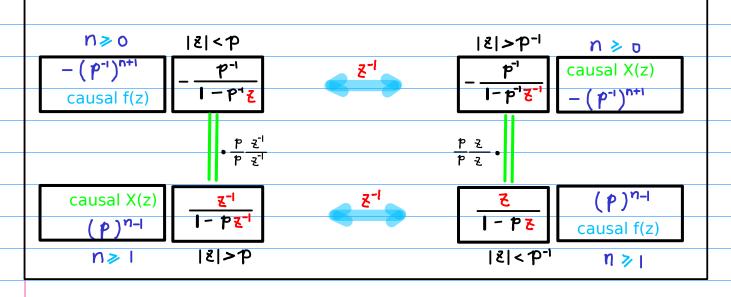


2 formulas of & f(z), g(z) 2 representations f(z'), g(z')

 $\chi(\xi)$, $\gamma(\xi)$ $X(\xi'), Y(\xi')$

* Simple Pale Forms





Laurent Series

$$f(z) (|z| < p) \leftrightarrow \alpha_n (n \ge 0)$$

$$f(z') (|z| > p') \leftrightarrow \alpha_n (n < 1)$$

$$f(z) (|z| > p) \leftrightarrow -\alpha_n (n < 0)$$

$$f(z') (|z| < p') \leftrightarrow -\alpha_n (n \ge 1)$$

Geometric Series Forms

$$f(z) = -\frac{p^{-1}}{1 - p^{+}z}$$

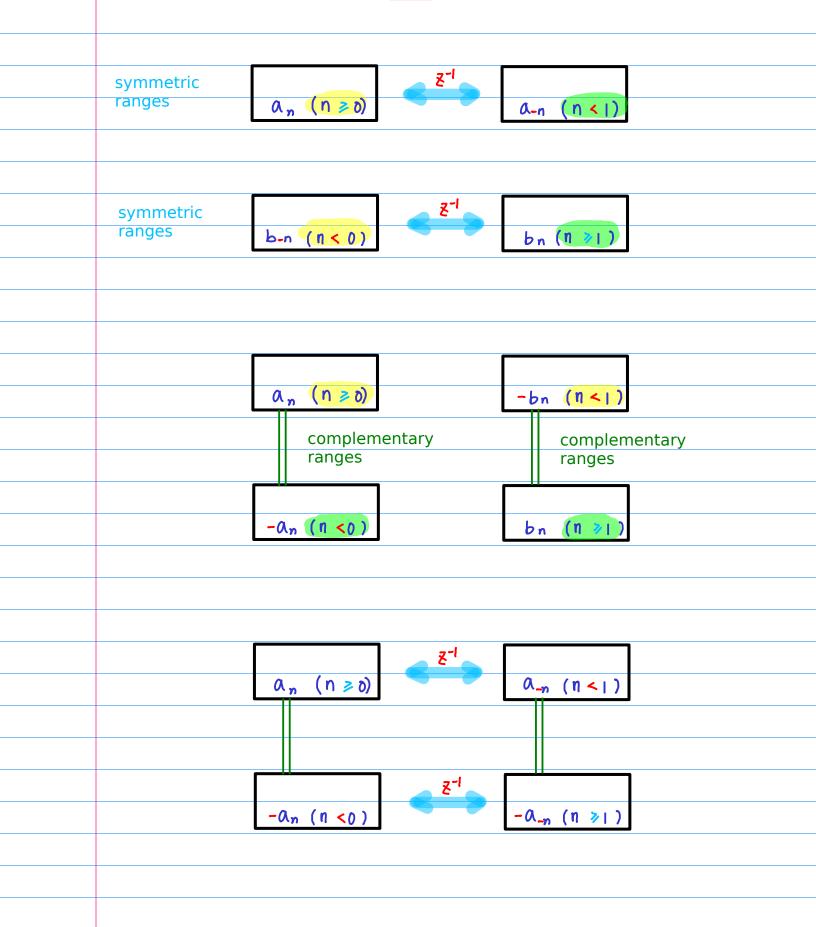
$$\frac{z}{|-pz|} = g(z) p^{-1}$$

$$f(z) = \begin{bmatrix} |z|$$

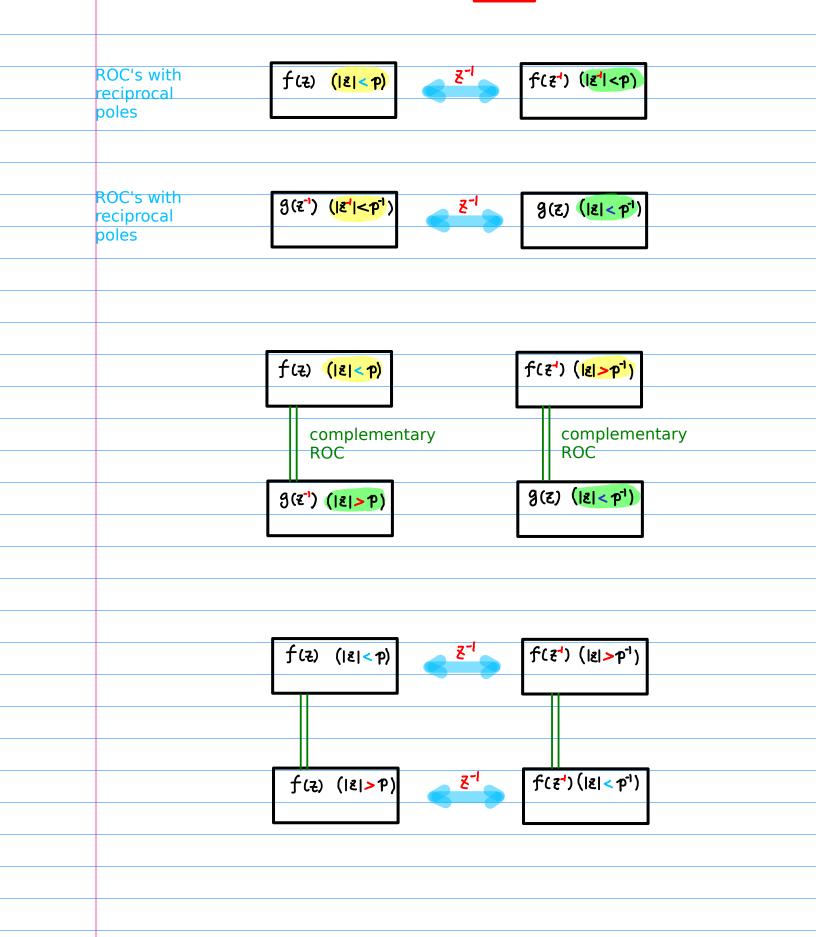
$$f(z) = \begin{bmatrix} -\frac{p^{-1}}{1-p^{-1}z} & |z| > p^{-1} \\ -\frac{p^{-1}}{1-p^{-1}z^{-1}} & = f(z^{-1}) \end{bmatrix}$$

$$\frac{z}{|z| < p^{-1}} = g(z)$$

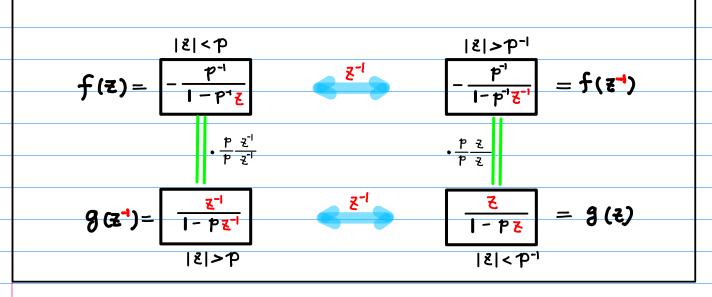
Laurent Series an f(z)

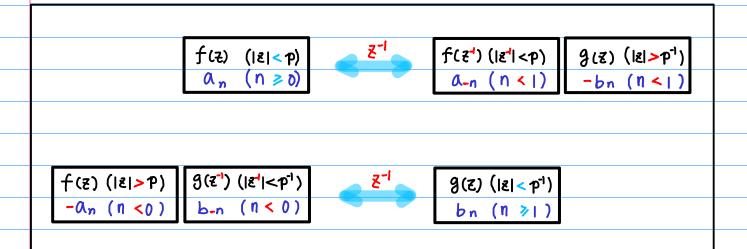


Laurent Series an f(2)

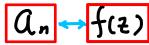


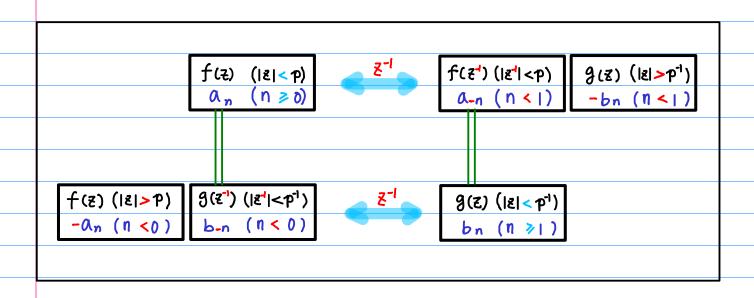
Laurent Series an f(z) bn = g(z)





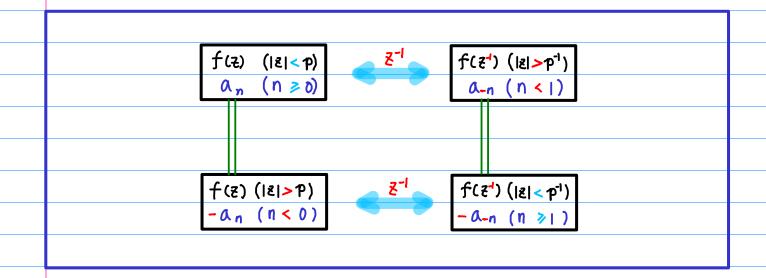
Laurent Series using only an f(2)





$$a_{-n} = -b_n$$
 $-a_{-n} = b_n$

$$-\alpha$$
-n = br



Geometric Series Forms

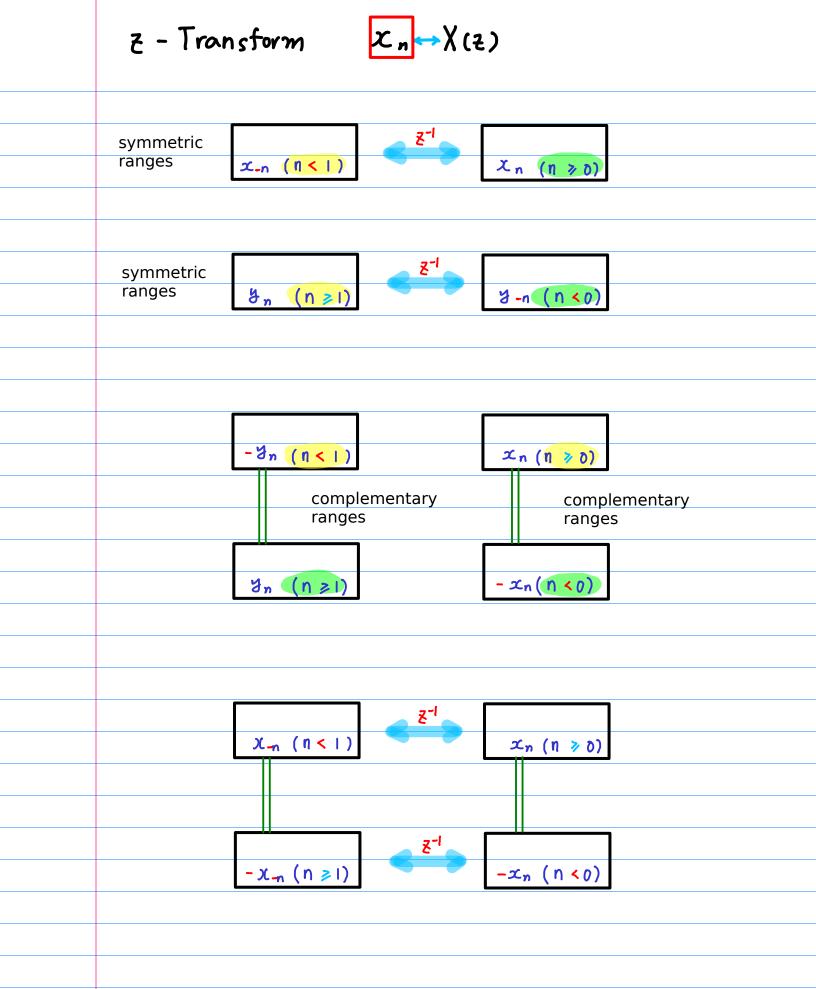
$$-\frac{1-b_1 \xi_{-1}}{b_{-1}} = \chi(\xi)$$

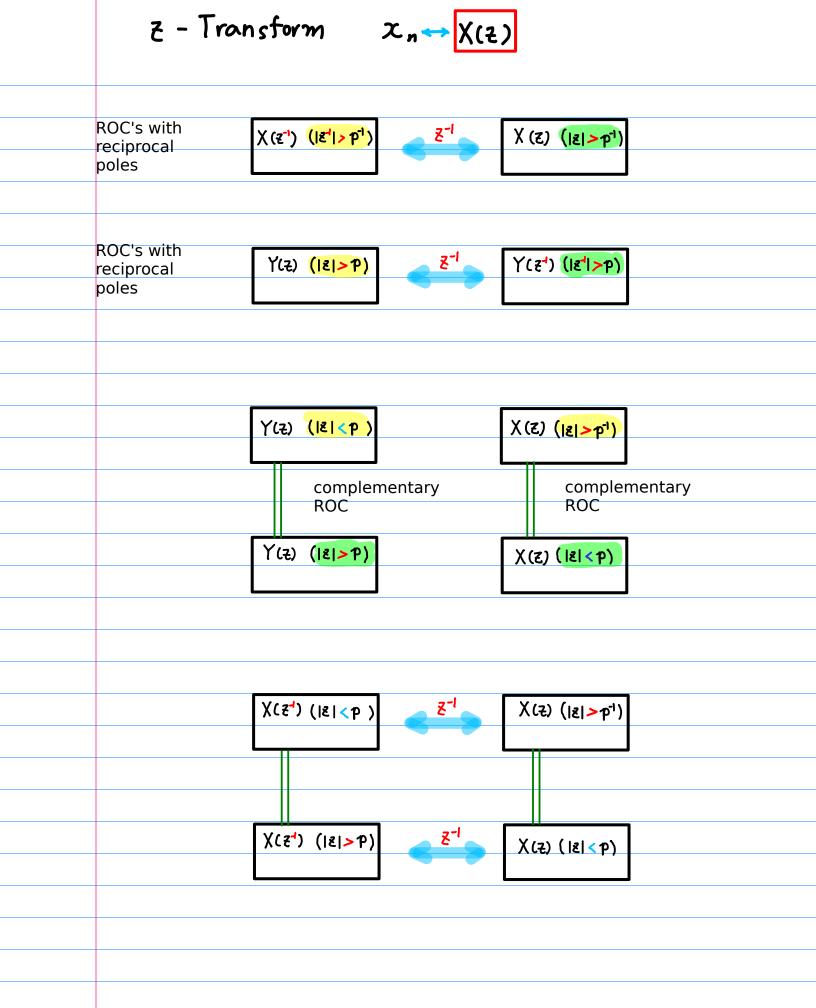
$$|\xi| < p$$

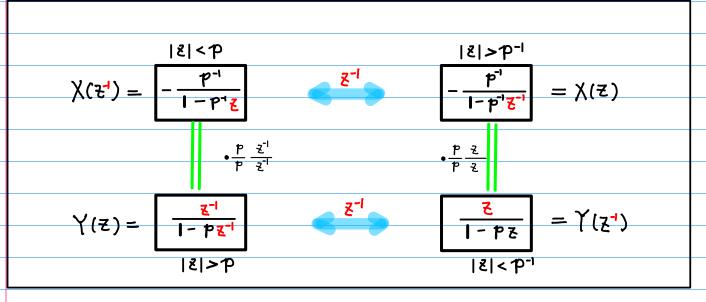
$$|\xi| < p$$

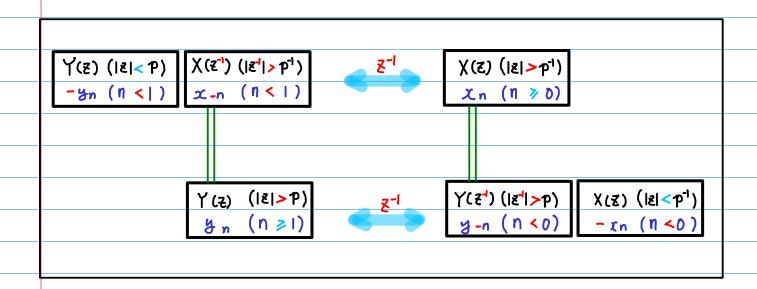
$$|-\frac{p^{-1}}{1 - p^{+}\xi}$$

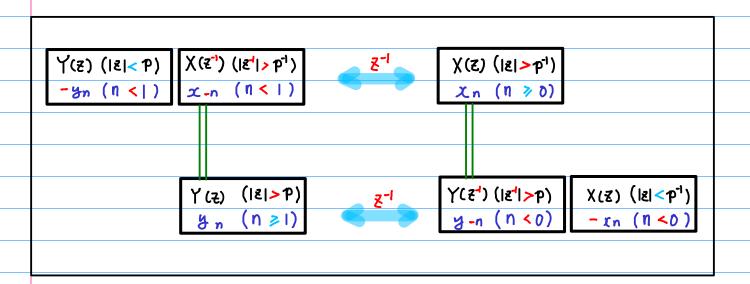
$$\frac{|\xi| > 1^{p^{-1}}}{|x|^{p^{-1}}} = \chi(z)$$



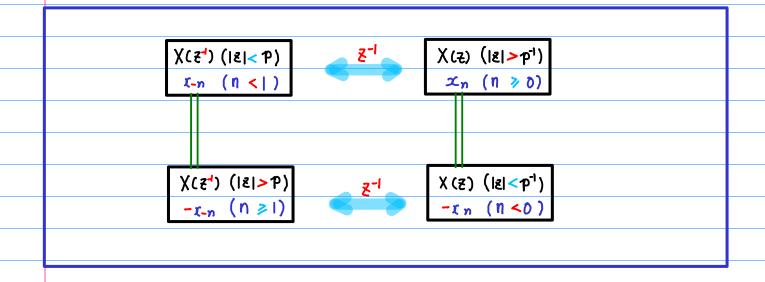


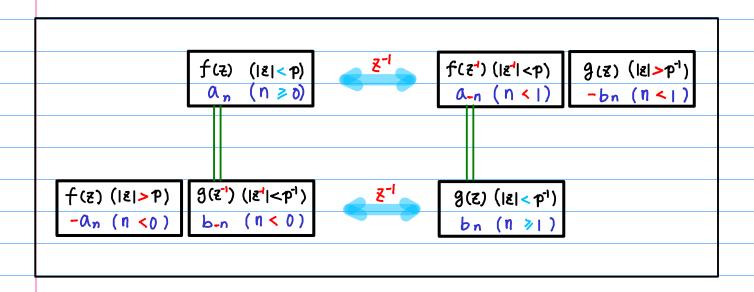


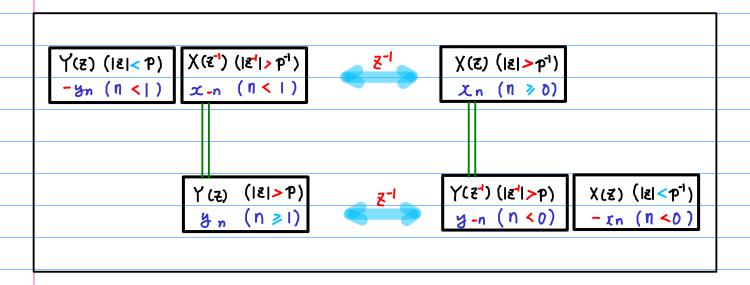


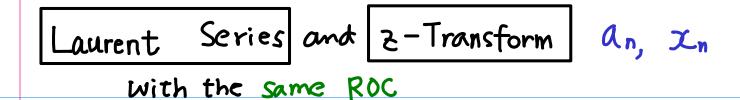


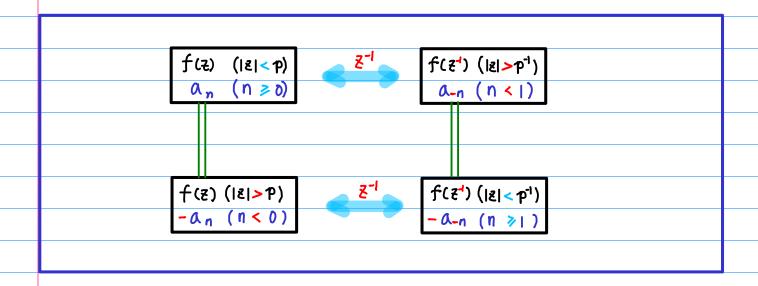
$$X_{-n} = -y_n$$
 $-x_{-n} = y_n$



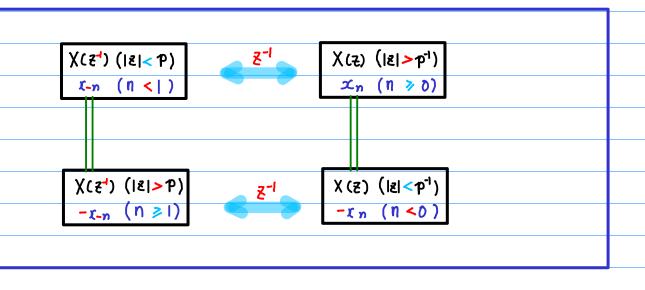


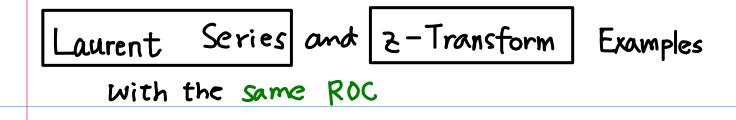


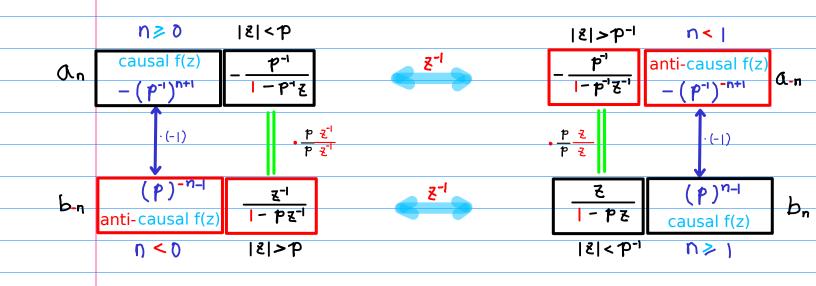




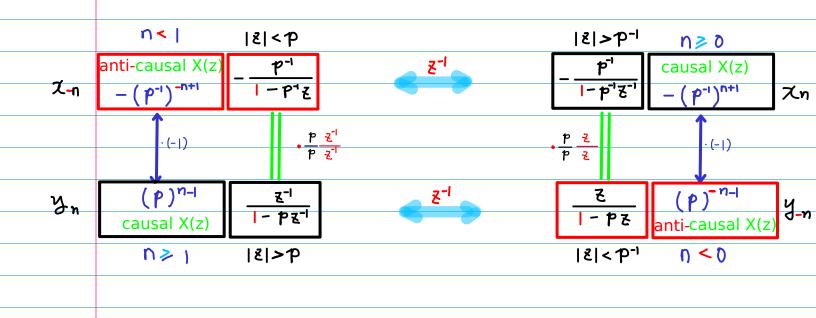
$$a_n = x_n$$







2-Transform



Laurent Series and 2-Transform

$$f(z) (|z| < p) \leftrightarrow \alpha_n (n \ge 0)$$

$$\chi(z') (|z| < p) \leftrightarrow x_{-n} (n < |)$$

$$f(z') (|z| > p') \leftrightarrow \alpha_{-n} (n < |)$$

$$\chi(z) (|z| > p') \leftrightarrow x_n (n \ge 0)$$

$$f(z) (|z| > p) \leftrightarrow -\alpha_n (n < 0)$$

$$\chi(z') (|z| > p) \leftrightarrow -x_n (n \ge 1)$$

$$f(z') (|z| < p') \leftrightarrow -x_n (n \ge 1)$$

$$\chi(z) (|z| < p') \leftrightarrow -x_n (n < 0)$$

