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filter (1)

: y = filter (b, a, x)
: [y, sf] = filter (b, a, x, si)
: [y, sf] = filter (b, a, x, [], dim)
: [y, sf] = filter (b, a, x, si, dim)

https://octave.sourceforge.io/octave/function/filter.html
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filter (2)

Apply a 1-D digital filter to the data x.

filter returns the solution to the following 
linear, time-invariant difference equation:

where N=length(a)-1 and M=length(b)-1. 

∑
k=0

N

a(k+1) y (n−k ) = ∑
k=0

M

b (k+1)x (n−k) for 1 ≤ n ≤ length(x)

https://octave.sourceforge.io/octave/function/filter.html

a = [a(1), a(2) ,⋯, a(N+1)]
b = [b(1), b(2) ,⋯, b(M+1)]
length(a)= N+1
length(b) = M+1

x = [ x(1) , x(2) ,⋯, x (L+1)]
length(x) = L+1

1 ≤ n ≤ L+1
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filter (3)

The result is calculated over the first non-singleton dimension of x 
or over dim if supplied.

https://octave.sourceforge.io/octave/function/filter.html

x(1, 1) , x(1, 2) , x (1, 3) , ⋯ , x(1,K )

x (2, 1) , x (2, 2) , x (2, 3) , ⋯ , x (2,K )

x (3, 1) , x (3, 2) , x (3, 3) , ⋯ , x (3,K )

x (L ,1) , x(L ,2) , x(L,3) , ⋯ , x (L , K )

x ( : , 1) , x( : , 2) , x( : , 3) , ⋯ , x ( : , K )

y (1, 1) , y (1, 2) , y(1, 3) , ⋯ , y(1,K )

y (2, 1) , y(2, 2) , y (2, 3) , ⋯ , y (2,K )

y (3, 1) , y(3, 2) , y (3, 3) , ⋯ , y (3,K )

y (L ,1) , y (L ,2) , y (L ,3) , ⋯ , y(L , K )

y ( : , 1) , y ( : , 2) , y ( : , 3) , ⋯ , y ( : , K )

x (1) , x (2) , x (3) , ⋯ , x(K ) x (1) , x (2) , x (3) , ⋯ , x(K )
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filter (4)

where c = a/a(1) and d = b/a(1). 

https://octave.sourceforge.io/octave/function/filter.html

∑
k=0

N

a(k+1) y (n−k ) = ∑
k=0

M

b (k+1)x (n−k) for 1 ≤ n ≤ length(x)

a(1) y (n) + ∑
k=1

N

a(k+1) y(n−k ) = ∑
k=0

M

b(k+1)x (n−k)

a(1) y (n) = −∑
k=1

N

a(k+1) y (n−k ) + ∑
k=0

M

b(k+1) x (n−k )

y (n) = −∑
k=1

N

c(k+1) y(n−k) + ∑
k=0

M

d (k+1)x (n−k) for1 ≤ n ≤ length(x)

y (n) = −∑
k=1

N a(k+1)
a(1)

y (n−k) + ∑
k=0

M b (k+1)
a(1)

x(n−k)
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filter (5)

si : the initial state of the system  
sf : the final state 

the state vector is a column vector 
whose length is equal to the length of 
the longest coefficient vector – 1 

No si is presented, the zero initial state.

in terms of the z transform, 
y is the result of passing the discrete-time signal x 
through a system characterized 
by the following rational system function:

H (z) =
∑
k=0

M

d (k+1) z−k

1+∑
k=1

N

c(k+1) z−k

https://octave.sourceforge.io/octave/function/filter.html
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freqz (1)

: [h, w] = freqz (b, a, n, "whole")
: [h, w] = freqz (b)
: [h, w] = freqz (b, a)
: [h, w] = freqz (b, a, n)
: h = freqz (b, a, w)
: [h, w] = freqz (…, Fs)
: freqz (…)

https://octave.sourceforge.io/octave/function/freqz.html
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freqz (2)

Return the complex frequency response h 
of the rational IIR filter 
with the numerator coefficients b and 
the denominator coefficients a 

The response is evaluated 
at n angular frequencies between 0 and 2*pi.

The output value w is a vector of the frequencies.

h : the frequency response vector
w : the frequency vector

https://octave.sourceforge.io/octave/function/freqz.html
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freqz (3)

If a is omitted, the denominator is assumed to be 1 
(this corresponds to a simple FIR filter).

If n is omitted, a value of 512 is assumed. 
For fastest computation, n should factor 
into a small number of small primes.

If the fourth argument, "whole", is omitted 
the response is evaluated 
at frequencies between 0 and pi.

https://octave.sourceforge.io/octave/function/freqz.html
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freqz (4)

freqz (b, a, w)

Evaluate the response 
at the specific frequencies in the vector w. 
The values for w are measured in radians.

freqz (…)

Plot the magnitude and phase response 
of h rather than returning them.

https://octave.sourceforge.io/octave/function/freqz.html
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freqz (5)

[…] = freqz (…, Fs)

Return frequencies in Hz instead of radians 
assuming a sampling rate Fs. 
If you are evaluating the response 
at specific frequencies w, 
those frequencies should be requested 
in Hz rather than radians.

[h, w] = freqz (b, a, n, "whole", Fs)
[h, w] = freqz (b, Fs)
[h, w] = freqz (b, a, Fs)
[h, w] = freqz (b, a, n, Fs)
h = freqz (b, a, w, Fs)

https://octave.sourceforge.io/octave/function/freqz.html
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freqz_plot 

: freqz_plot (w, h)
: freqz_plot (w, h, freq_norm)

    Plot the magnitude and phase response of h.

    If the optional freq_norm argument is true, 
    the frequency vector w is in units of normalized radians. 
    If freq_norm is false, or not given, 
    then w is measured in Hertz.

https://octave.sourceforge.io/octave/function/freqz_plot.html
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conv 

: conv (a, b)
: conv (a, b, shape)

Convolve two vectors a and b.

The output convolution is a vector 
with length equal to length (a) + length (b) - 1. 
When a and b are the coefficient vectors of two polynomials, 
the convolution represents 
the coefficient vector of the product polynomial.

The optional shape argument may be
    shape = "full"
        Return the full convolution. (default)
    shape = "same"
        Return the central part of the convolution with the length(a). 

https://octave.sourceforge.io/octave/function/conv.html
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fftconv 

: fftconv (x, y)
: fftconv (x, y, n)

Convolve two vectors using the FFT for computation.

c = fftconv (x, y) returns 
a vector of length equal to length(x) + length(y) - 1 

If x and y are the coefficient vectors of two polynomials, 
the returned value is the coefficient vector of the product polynomial.

The computation uses the FFT 
by calling the function fftfilt. 

If the optional argument n is specified, 
an n-point FFT is used.

https://octave.sourceforge.io/octave/function/fftconv.html
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deconv 

: deconv (y, a)

Deconvolve two vectors.

[b, r] = deconv (y, a) solves for b and r such that y = conv (a, b) + r.

If y and a are polynomial coefficient vectors, 
b will contain the coefficients of the polynomial quotient and 
r will be a remainder polynomial of lowest order. 

https://octave.sourceforge.io/octave/function/deconv.html
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Low Pass filter 

t = 0: 1/100 : 1;
x = sin(2 * pi * t);
x  = (x > 0);
x = (x – 0.5) * 2;
xd = [x 0 0 0];
for i=1 : length(x)
 y(i) = xd(i) + xd(i+1) + xd(i+2) + xd(i+3)) / 4;
endfor
hold
plot(t, x)
plot(t, y, ‘m—’);

DSP for sound engineers (in Korean), J.W. Chae
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Low Pass filter 

ir = zeros(1, 44100);
ir(1:2) = 0.5;
irfft = abs(fft(ir));
irfft = irfft(1: 22050);
plot(irfft)

ir = zeros(1, 44100);
ir(1:3) = 0.333;
irfft = abs(fft(ir));
irfft = irfft(1: 22050);
plot(irfft)

ir = zeros(1, 44100);
ir(1:4) = 0.25;
irfft = abs(fft(ir));
irfft = irfft(1: 22050);
plot(irfft)

DSP for sound engineers (in Korean), J.W. Chae
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Low Pass filter 

h0=0.36281; h1= 0.28920; h2 = 0.12082;
sys = zeros(1, 44100);
sys(1)=h2; sys(2) = h1; sys(3)=h0; sys(4)=h1; sys(5)=h2;
sysft = abs( fft(sys) );
sysft = sysft(1: 44100/2);
plot(sysft)

DSP for sound engineers (in Korean), J.W. Chae
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High Pass filter 

ir=zeros(1, 44100);
Ir(1)=0.5;
Ir(2)=-0.5;
irfft=abs(fft(ir));
Irfft = irfft(1: 22050);
plot(irfft);

DSP for sound engineers (in Korean), J.W. Chae
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High Pass filter 

h0=0.63719; h1 = 0.28920; h2 = 0.12082;
sys = zeros(1, 44100);
sys(1) = h2; sys(2) =- h1; sys(3) = h0; sys(4)=-h1; sys(5)=h2;
sysft = abs(fft(sys));
sysft = sysft(1: 44100/2);
plot(sysft);

DSP for sound engineers (in Korean), J.W. Chae



Audio
Signal Processing

23 Young Won Lim
2/22/18

--plot gnuplot | octave 

sox --plot gnuplot s6s.wav -n fir 0.1 0.2 0.4 0.3          >fir1.plt
sox --plot gnuplot s6s.wav -n fir coeff.txt                    >fir2.plt
sox --plot gnuplot s6s.wav -n biquad .6 .2 .4 1 -1.5 .6 >fir3.plt
sox --plot gnuplot s6s.wav -n fir 0.2 0.2 0.2 0.2 0.2    >fir4.plt
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--plot gnuplot | octave 
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