
Young Won Lim
2/22/18

Signal Processing

Young Won Lim
2/22/18

 Copyright (c) 2016 – 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Audio
Signal Processing

3 Young Won Lim
2/22/18

Based on

Signal Processing with Free Software : Practical Experiments
F. Auger

Audio
Signal Processing

4 Young Won Lim
2/22/18

filter (1)

: y = filter (b, a, x)
: [y, sf] = filter (b, a, x, si)
: [y, sf] = filter (b, a, x, [], dim)
: [y, sf] = filter (b, a, x, si, dim)

https://octave.sourceforge.io/octave/function/filter.html

Audio
Signal Processing

5 Young Won Lim
2/22/18

filter (2)

Apply a 1-D digital filter to the data x.

filter returns the solution to the following
linear, time-invariant difference equation:

where N=length(a)-1 and M=length(b)-1.

∑
k=0

N

a(k+1) y (n−k) = ∑
k=0

M

b (k+1)x (n−k) for 1 ≤ n ≤ length(x)

https://octave.sourceforge.io/octave/function/filter.html

a = [a(1), a(2) ,⋯, a(N+1)]
b = [b(1), b(2) ,⋯, b(M+1)]
length(a)= N+1
length(b) = M+1

x = [x(1) , x(2) ,⋯, x (L+1)]
length(x) = L+1

1 ≤ n ≤ L+1

Audio
Signal Processing

6 Young Won Lim
2/22/18

filter (3)

The result is calculated over the first non-singleton dimension of x
or over dim if supplied.

https://octave.sourceforge.io/octave/function/filter.html

x(1, 1) , x(1, 2) , x (1, 3) , ⋯ , x(1,K)

x (2, 1) , x (2, 2) , x (2, 3) , ⋯ , x (2,K)

x (3, 1) , x (3, 2) , x (3, 3) , ⋯ , x (3,K)

x (L ,1) , x(L ,2) , x(L,3) , ⋯ , x (L , K)

x (: , 1) , x(: , 2) , x(: , 3) , ⋯ , x (: , K)

y (1, 1) , y (1, 2) , y(1, 3) , ⋯ , y(1,K)

y (2, 1) , y(2, 2) , y (2, 3) , ⋯ , y (2,K)

y (3, 1) , y(3, 2) , y (3, 3) , ⋯ , y (3,K)

y (L ,1) , y (L ,2) , y (L ,3) , ⋯ , y(L , K)

y (: , 1) , y (: , 2) , y (: , 3) , ⋯ , y (: , K)

x (1) , x (2) , x (3) , ⋯ , x(K) x (1) , x (2) , x (3) , ⋯ , x(K)

Audio
Signal Processing

7 Young Won Lim
2/22/18

filter (4)

where c = a/a(1) and d = b/a(1).

https://octave.sourceforge.io/octave/function/filter.html

∑
k=0

N

a(k+1) y (n−k) = ∑
k=0

M

b (k+1)x (n−k) for 1 ≤ n ≤ length(x)

a(1) y (n) + ∑
k=1

N

a(k+1) y(n−k) = ∑
k=0

M

b(k+1)x (n−k)

a(1) y (n) = −∑
k=1

N

a(k+1) y (n−k) + ∑
k=0

M

b(k+1) x (n−k)

y (n) = −∑
k=1

N

c(k+1) y(n−k) + ∑
k=0

M

d (k+1)x (n−k) for1 ≤ n ≤ length(x)

y (n) = −∑
k=1

N a(k+1)
a(1)

y (n−k) + ∑
k=0

M b (k+1)
a(1)

x(n−k)

Audio
Signal Processing

8 Young Won Lim
2/22/18

filter (5)

si : the initial state of the system
sf : the final state

the state vector is a column vector
whose length is equal to the length of
the longest coefficient vector – 1

No si is presented, the zero initial state.

in terms of the z transform,
y is the result of passing the discrete-time signal x
through a system characterized
by the following rational system function:

H (z) =
∑
k=0

M

d (k+1) z−k

1+∑
k=1

N

c(k+1) z−k

https://octave.sourceforge.io/octave/function/filter.html

Audio
Signal Processing

9 Young Won Lim
2/22/18

freqz (1)

: [h, w] = freqz (b, a, n, "whole")
: [h, w] = freqz (b)
: [h, w] = freqz (b, a)
: [h, w] = freqz (b, a, n)
: h = freqz (b, a, w)
: [h, w] = freqz (…, Fs)
: freqz (…)

https://octave.sourceforge.io/octave/function/freqz.html

Audio
Signal Processing

10 Young Won Lim
2/22/18

freqz (2)

Return the complex frequency response h
of the rational IIR filter
with the numerator coefficients b and
the denominator coefficients a

The response is evaluated
at n angular frequencies between 0 and 2*pi.

The output value w is a vector of the frequencies.

h : the frequency response vector
w : the frequency vector

https://octave.sourceforge.io/octave/function/freqz.html

Audio
Signal Processing

11 Young Won Lim
2/22/18

freqz (3)

If a is omitted, the denominator is assumed to be 1
(this corresponds to a simple FIR filter).

If n is omitted, a value of 512 is assumed.
For fastest computation, n should factor
into a small number of small primes.

If the fourth argument, "whole", is omitted
the response is evaluated
at frequencies between 0 and pi.

https://octave.sourceforge.io/octave/function/freqz.html

Audio
Signal Processing

12 Young Won Lim
2/22/18

freqz (4)

freqz (b, a, w)

Evaluate the response
at the specific frequencies in the vector w.
The values for w are measured in radians.

freqz (…)

Plot the magnitude and phase response
of h rather than returning them.

https://octave.sourceforge.io/octave/function/freqz.html

Audio
Signal Processing

13 Young Won Lim
2/22/18

freqz (5)

[…] = freqz (…, Fs)

Return frequencies in Hz instead of radians
assuming a sampling rate Fs.
If you are evaluating the response
at specific frequencies w,
those frequencies should be requested
in Hz rather than radians.

[h, w] = freqz (b, a, n, "whole", Fs)
[h, w] = freqz (b, Fs)
[h, w] = freqz (b, a, Fs)
[h, w] = freqz (b, a, n, Fs)
h = freqz (b, a, w, Fs)

https://octave.sourceforge.io/octave/function/freqz.html

Audio
Signal Processing

14 Young Won Lim
2/22/18

freqz_plot

: freqz_plot (w, h)
: freqz_plot (w, h, freq_norm)

 Plot the magnitude and phase response of h.

 If the optional freq_norm argument is true,
 the frequency vector w is in units of normalized radians.
 If freq_norm is false, or not given,
 then w is measured in Hertz.

https://octave.sourceforge.io/octave/function/freqz_plot.html

Audio
Signal Processing

15 Young Won Lim
2/22/18

conv

: conv (a, b)
: conv (a, b, shape)

Convolve two vectors a and b.

The output convolution is a vector
with length equal to length (a) + length (b) - 1.
When a and b are the coefficient vectors of two polynomials,
the convolution represents
the coefficient vector of the product polynomial.

The optional shape argument may be
 shape = "full"
 Return the full convolution. (default)
 shape = "same"
 Return the central part of the convolution with the length(a).

https://octave.sourceforge.io/octave/function/conv.html

Audio
Signal Processing

16 Young Won Lim
2/22/18

fftconv

: fftconv (x, y)
: fftconv (x, y, n)

Convolve two vectors using the FFT for computation.

c = fftconv (x, y) returns
a vector of length equal to length(x) + length(y) - 1

If x and y are the coefficient vectors of two polynomials,
the returned value is the coefficient vector of the product polynomial.

The computation uses the FFT
by calling the function fftfilt.

If the optional argument n is specified,
an n-point FFT is used.

https://octave.sourceforge.io/octave/function/fftconv.html

Audio
Signal Processing

17 Young Won Lim
2/22/18

deconv

: deconv (y, a)

Deconvolve two vectors.

[b, r] = deconv (y, a) solves for b and r such that y = conv (a, b) + r.

If y and a are polynomial coefficient vectors,
b will contain the coefficients of the polynomial quotient and
r will be a remainder polynomial of lowest order.

https://octave.sourceforge.io/octave/function/deconv.html

Audio
Signal Processing

18 Young Won Lim
2/22/18

Low Pass filter

t = 0: 1/100 : 1;
x = sin(2 * pi * t);
x = (x > 0);
x = (x – 0.5) * 2;
xd = [x 0 0 0];
for i=1 : length(x)
 y(i) = xd(i) + xd(i+1) + xd(i+2) + xd(i+3)) / 4;
endfor
hold
plot(t, x)
plot(t, y, ‘m—’);

DSP for sound engineers (in Korean), J.W. Chae

Audio
Signal Processing

19 Young Won Lim
2/22/18

Low Pass filter

ir = zeros(1, 44100);
ir(1:2) = 0.5;
irfft = abs(fft(ir));
irfft = irfft(1: 22050);
plot(irfft)

ir = zeros(1, 44100);
ir(1:3) = 0.333;
irfft = abs(fft(ir));
irfft = irfft(1: 22050);
plot(irfft)

ir = zeros(1, 44100);
ir(1:4) = 0.25;
irfft = abs(fft(ir));
irfft = irfft(1: 22050);
plot(irfft)

DSP for sound engineers (in Korean), J.W. Chae

Audio
Signal Processing

20 Young Won Lim
2/22/18

Low Pass filter

h0=0.36281; h1= 0.28920; h2 = 0.12082;
sys = zeros(1, 44100);
sys(1)=h2; sys(2) = h1; sys(3)=h0; sys(4)=h1; sys(5)=h2;
sysft = abs(fft(sys));
sysft = sysft(1: 44100/2);
plot(sysft)

DSP for sound engineers (in Korean), J.W. Chae

Audio
Signal Processing

21 Young Won Lim
2/22/18

High Pass filter

ir=zeros(1, 44100);
Ir(1)=0.5;
Ir(2)=-0.5;
irfft=abs(fft(ir));
Irfft = irfft(1: 22050);
plot(irfft);

DSP for sound engineers (in Korean), J.W. Chae

Audio
Signal Processing

22 Young Won Lim
2/22/18

High Pass filter

h0=0.63719; h1 = 0.28920; h2 = 0.12082;
sys = zeros(1, 44100);
sys(1) = h2; sys(2) =- h1; sys(3) = h0; sys(4)=-h1; sys(5)=h2;
sysft = abs(fft(sys));
sysft = sysft(1: 44100/2);
plot(sysft);

DSP for sound engineers (in Korean), J.W. Chae

Audio
Signal Processing

23 Young Won Lim
2/22/18

--plot gnuplot | octave

sox --plot gnuplot s6s.wav -n fir 0.1 0.2 0.4 0.3 >fir1.plt
sox --plot gnuplot s6s.wav -n fir coeff.txt >fir2.plt
sox --plot gnuplot s6s.wav -n biquad .6 .2 .4 1 -1.5 .6 >fir3.plt
sox --plot gnuplot s6s.wav -n fir 0.2 0.2 0.2 0.2 0.2 >fir4.plt

Audio
Signal Processing

24 Young Won Lim
2/22/18

--plot gnuplot | octave

Young Won Lim
2/22/18

References

[1] F. Auger, Signal Processing with Free Software : Practical Experiments

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

