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Branch and Branch with Link (B, BL)

Branch and Branch with Link (B, BL)
B{L} {<cond>} <target address>

L : the branch and link
<cond> : condition codes, AL if omitted
<target address> : a label  in the assembler code

 The assembler will generate the offset 
 target address – branch instruction address + 8

B <target address>
B<cond> <target address>
BL <target address>
BL<cond> <target address>
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Condition Code Suffixes <cond>

Suffix Flags Meaning
EQ Z = 1 Equal
NE Z = 0 Not equal
CS or HS C = 1 Higher or same, unsigned
CC or LO C = 0 Lower, unsigned
MI N = 1 Negative
PL N = 0 Positive or zero
VS V = 1 Overflow
VC V = 0 No overflow
HI C = 1 and Z = 0 Higher, unsigned
LS C = 0 or   Z = 1 Lower or same, unsigned
GE N = V Greater than or equal, signed
LT N != V Less than, signed
GT Z = 0 and N = V Greater than, signed
LE Z = 1 and N != V Less than or equal, signed
AL any value Always. This is the default when no suffix is specified.

https://community.arm.com/processors/b/blog/posts/condition-codes-1-condition-flags-and-codes
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Conditional Flags

N=1 if the result is negative
Z=1 if the result is zero 
C=1 the carry out of the ALU

when the operation is arithmetic 
(ADD, ADC, SUB, SBC, RSB, RSC, CMP, CMN), or
the carry out of the shifter (C is preserved when no shift)

V=1 if overflow is occurred during arithmetic operations
only when an arithmetic operation has operands 
that are viewed as 2’s complement signed value
(V is preserved when non-arithmetic operations)
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Conditional Flag Setting Instructions

Data Processing Instructions
<op> {<cond>} {S} Rd, Rn, #<32-bit immediate>
<op> {<cond>} {S} Rd, Rn, Rm, {<shift>}

Multiply Instructions
MUL {<cond>} {S} Rd, Rm, Rs
MLA {<cond>} {S} Rd, Rm, Rs, Rn 
<mul> {<cond>} {S} RdHi, RdLo, Rm, Rs

UMULL, UMLAL, SMULL, SMLAL

<op> Meaning
AND Logical bit-wise AND
EOR Logical bit-wise exclusive OR
SUB Subtract
RSUB Reverse subtract
ADD Add
ADC Add with carry
SBC Subtract with carry
RSC Reverse subtract with carry
TST Test

<mul> Meaning
MUL Multiply (32-bit)
MLA Multiply-Accumulate (32-bit)
UMULL Unsigned Multiply Long
UMLAL Unsigned Multiply Acc Long
SMULL Singed Multiply Long
SMLAL Unsigned Multiply  Acc Long



Assembly Programming 
(6A) Control

8 Young Won Lim
2/15/20

Branch Conditions 

B<cond>
B Unconditional Always take this branch
BAL Always Always take this branch
BEQ Equal Comparison equal or zero result
BNE Not equal Comparison not equal or non-zero result
BPL Plus Result positive or zero
BMI Minus Result minus or negative
BCC Carry clear Arithmetic operation did not give carry-out
BLO Lower Unsigned comparison give lower
BCS Carry set Arithmetic operation gave carry-out
BHS Higher or same Unsigned comparison gave higher or same 
BVC Overflow clear Signed integer operation; no overflow occurred
BVS Overflow set Signed integer operation; overflow occurred
BGT Greater than Signed integer comparison gave greater than
BGE Greater or equal Signed integer comparison gave greater or equal
BLT Less than Signed integer comparison gave less than
BLE Less or equal Signed integer comparison gave less than or equal
BHI Higher Unsigned comparison gave higher
BLS Lower or same Unsigned comparison gave low or same 
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Conditional Flag Setting Instructions

Branching
Conditional Branch
Jump

Conditional
if
if-else
switch-case 

Loop
while 
for
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Conditional Branch Instructions

BLO target ; Branch if unsigned less than if C=0, same as BCC
BLS target ; Branch if unsigned less than or equal to if C=0 or Z=1
BHS target ; Branch if unsigned greater than or equal to if C=1, same as BCS
BHI target ; Branch if unsigned greater if C=1 and Z=0 

BLT target ; Branch if signed less than if (~N&V | N&~V)=1 if N<>V
BGE target ; Branch if signed less than or equal to if (~N&V | N&~V)=0 if N=V
BGT target ; Branch if signed greater than or equal to if (Z|~N&V|N&~V)=0 if Z=0 and N=V
BLE target ; Branch if signed greater if (Z|~N&V|N&~V)=1 if Z=1 and N<>V

Introduction to ARM Cortex-M Microcontrollers – Embedded Systems, Jonathan W. Valvano



Assembly Programming 
(6A) Control

11 Young Won Lim
2/15/20

if-then Instructions (1)

LDR R2, =G
LDR R0, [R2]
CMP R0, #7
BNS next1
BL GEqual7

Next1:

Introduction to ARM Cortex-M Microcontrollers – Embedded Systems, Jonathan W. Valvano

; R2 = &G
; R0 = G
; is G == 7 ?
; if not, skip
; G == 7

uint32_t G;
if (G == 7) {
  GEqual7();
}

LDR R2, =G
LDR R0, [R2]
CMP R0, #7
BEQ next2
BL GNotEqual7

Next2:

; R2 = &G
; R0 = G
; is G != 7 ?
; if not, skip
; G != 7

uint32_t G;
if (g != 7) {
  GNotEqual7();
}
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if-then Instructions (2)

LDR R2, =G1
LDRB R0, [R2]
CMP R0, #100
BLS next
MOV R1, #1
LDR R2, =G2
STRB R1, [R2]

next:

Introduction to ARM Cortex-M Microcontrollers – Embedded Systems, Jonathan W. Valvano

; R2 = &G1
; R0 = G1
; is G1 > 100?
; if not, skip to end
; R1 = 1
; R2 = &G2
; G2 = 1

uint32_t G1, G2;
if (G1 > 100) {
  G2 = 1;
}
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if-then Instructions (3)

LDR R2, =G1
LDRSB R0, [R2]
CMP R0, #100
BLE next
MOV R1, #1
LDR R2, =G2
STRB R1, [R2]

next:

Introduction to ARM Cortex-M Microcontrollers – Embedded Systems, Jonathan W. Valvano

; R2 = &G1
; R0 = G1 (signed)
; is G1 > 100?
; if not, skip to end
; R1 = 1
; R2 = &G2
; G2 = 1

uint32_t G1, G2;
if (G1 > 100) {
  G2 = 1;
}
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if-then-else Instructions (1)

LDR R2, =G1
LDR R0, [R2]
LDR R2, =G2
LDR R1, [R2]
BHI high

low BL is Less Eq
B next

hi BL isGreater
next:

Introduction to ARM Cortex-M Microcontrollers – Embedded Systems, Jonathan W. Valvano

; R2 = &G1
; R0 = G1 
; R2 = &G2
; R1 = G1 
; is G1 > G2 ?
; if so, skip to high
; G1 > G2 

uint32_t G1, G2;
if (G1 > G2) {
  isGreater();
}
else { 
  isLessEq();
}



Assembly Programming 
(6A) Control

15 Young Won Lim
2/15/20

if-then-else Instructions (2)

LDR R2, =G1

Introduction to ARM Cortex-M Microcontrollers – Embedded Systems, Jonathan W. Valvano

; R2 = &G1 a = (b==1) ? 10 : 1;

if (b==1) 
a = 10;

else 
a = 1;
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switch Instruction

uint32_t Last=10;

void OneStep(void) {
  uint32_t next;

  switch (Last) {
case 10: next =9; break;
case 9: next =5; break;
case 5: next =6; break;
case 6: next =10; break;
default: next =10; 

  }
  GPIO_PORTD_DATA_R = next;
  Last = next;
}

Introduction to ARM Cortex-M Microcontrollers – Embedded Systems, Jonathan W. Valvano

; R2 = &G1 a = (b==1) ? 10 : 1;

if (b==1) 
a = 10;

else 
a = 1;
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while Loop Instructions 

LDR R4, =G1
LDR R5, =G2

loop LDR R0, [R5]
LDR R1, [R4]
CMP R0, R1
BLS next
BL Body
B loop

next

Introduction to ARM Cortex-M Microcontrollers – Embedded Systems, Jonathan W. Valvano

; R4 = &G1
; R5 = &G5
; R0 = G2
; R1 = G1
; is G2 <= G1
; if so, skip to next 
; body of the loop 

uint32_t G1, G2;

while (G2 > G1) {
  Body();
}
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do-while Loop Instructions 

LDR  R1, =PF1
LDR  R5, =PA5

loop LDR  R0, [R1]
EOR  R0, #2
STR  R0, [R1]
LDR  R2, [R5]
ANDS R2, #0x20 
BEQ  loop

next

Introduction to ARM Cortex-M Microcontrollers – Embedded Systems, Jonathan W. Valvano

; R1 = &PF1
; R5 = &PA5
; R0 = PF1
; toggle bit 1 of R0
; PF1 = R0 
; R2 = PA5
; if bit 5 of R2 set?
; then loop

// toggle PF1 while
// PA5 is low

do {
  PF1 = PF1 ^ 0x02;
} while (!(PA5&0x20));
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for Loop Instructions (1)

MOV  R4, #0
loop CMP  R4, #100

BHS  done
BL   process
ADD  R4, R4, #1
B    loop

done

Introduction to ARM Cortex-M Microcontrollers – Embedded Systems, Jonathan W. Valvano

; R4 = 0
; index >= 100 ?
; if so skip to done
; process function
; R4 = R4 1
; go to loop

for (i=0;i<100; i++) {
  process();
}
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for Loop Instructions (2)

MOV  R4, #0
loop

Introduction to ARM Cortex-M Microcontrollers – Embedded Systems, Jonathan W. Valvano

; R4 = 0
; i

for (i=100;i!=0; i--) {
  process();
}
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Conditional Flag Setting Instructions

CMP r3, r4
BNE Else
ADD r0, r1, r2
B   Exit

Else: SUB r0, r1, r2
Exit:
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Conditional Flag Setting Instructions

CMP R1, R2
BEQ L1

CMP R1, R2
BNE L1
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Conditional Flag Setting Instructions

if (i==j) f = g+h; 
else f = g-h;

CMP r3, r4
BNE Else ; go to Else if I <> j

ADD r0, r1, r2 ; f =g+h

B Exit

Else: SUB r0, r1, r2 ; f = g+h
Exit:
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Conditional Flag Setting Instructions

while (save[i] == k)
i += 1;

Loop: ADD r12, r6, r3, LSL #2

LDR r0, [r12, #0]

CMP r0, r5
BNE Exit

ADD r3, r3, #1

B Loop

Exit:
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Conditional Flag Setting Instructions

CMP r0, r1

BLQ L1 ; unsigned branch
BLT L2 ; signed branch

CMP r1, r2
BHS L3 ; Index out of bounds
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Switch – case 

switch (amount) {
case 20: fee = 2; break;
case 50: fee = 3; break;
case 100: fee = 5; break;
default: fee = 0;

}

If (amount == 20) fee = 2;
else If (amount == 50) fee = 2;
else If (amount == 100) fee = 5;
else  fee = 0;

Digital Design and Computer Architecture, D. M. Harris and S. L. Harris 
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While Loop

int pow = 1;
int x = 0;

while (pow ~= 128)
{
  pow = pow * 2;
  x = x + 1;
}

Digital Design and Computer Architecture, D. M. Harris and S. L. Harris 
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For Loop (1)

int sum = 0;
 
for (i=0; I != 10; i=i+1) {
  sum = sum + I;
}

int sum = 0;
int i= 0;

while (I != 10) {
  sum = sum + I;
  i = I + 1;
}

Digital Design and Computer Architecture, D. M. Harris and S. L. Harris 
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For Loop (2) 

int sum = 0;
 
for (i=0; I < 101; i=i*2) {
  sum = sum + I;
}

Digital Design and Computer Architecture, D. M. Harris and S. L. Harris 



Assembly Programming 
(6A) Control

30 Young Won Lim
2/15/20

For Loop (2) 

int sum = 0;
 
for (i=0; I < 101; i=i*2) {
  sum = sum + I;
}

Digital Design and Computer Architecture, D. M. Harris and S. L. Harris 
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