
Young Won Lim
2/15/20

Control (5A)

Young Won Lim
2/15/20

 Copyright (c) 2014 - 2020 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Assembly Programming
(6A) Control

3 Young Won Lim
2/15/20

Based on

ARM System-on-Chip Architecture, 2nd ed, Steve Furber

Introduction to ARM Cortex-M Microcontrollers
– Embedded Systems, Jonathan W. Valvano

Digital Design and Computer Architecture,
D. M. Harris and S. L. Harris

Assembly Programming
(6A) Control

4 Young Won Lim
2/15/20

Branch and Branch with Link (B, BL)

Branch and Branch with Link (B, BL)
B{L} {<cond>} <target address>

L : the branch and link
<cond> : condition codes, AL if omitted
<target address> : a label in the assembler code

 The assembler will generate the offset
 target address – branch instruction address + 8

B <target address>
B<cond> <target address>
BL <target address>
BL<cond> <target address>

Assembly Programming
(6A) Control

5 Young Won Lim
2/15/20

Condition Code Suffixes <cond>

Suffix Flags Meaning
EQ Z = 1 Equal
NE Z = 0 Not equal
CS or HS C = 1 Higher or same, unsigned
CC or LO C = 0 Lower, unsigned
MI N = 1 Negative
PL N = 0 Positive or zero
VS V = 1 Overflow
VC V = 0 No overflow
HI C = 1 and Z = 0 Higher, unsigned
LS C = 0 or Z = 1 Lower or same, unsigned
GE N = V Greater than or equal, signed
LT N != V Less than, signed
GT Z = 0 and N = V Greater than, signed
LE Z = 1 and N != V Less than or equal, signed
AL any value Always. This is the default when no suffix is specified.

https://community.arm.com/processors/b/blog/posts/condition-codes-1-condition-flags-and-codes

Assembly Programming
(6A) Control

6 Young Won Lim
2/15/20

Conditional Flags

N=1 if the result is negative
Z=1 if the result is zero
C=1 the carry out of the ALU

when the operation is arithmetic
(ADD, ADC, SUB, SBC, RSB, RSC, CMP, CMN), or
the carry out of the shifter (C is preserved when no shift)

V=1 if overflow is occurred during arithmetic operations
only when an arithmetic operation has operands
that are viewed as 2’s complement signed value
(V is preserved when non-arithmetic operations)

Assembly Programming
(6A) Control

7 Young Won Lim
2/15/20

Conditional Flag Setting Instructions

Data Processing Instructions
<op> {<cond>} {S} Rd, Rn, #<32-bit immediate>
<op> {<cond>} {S} Rd, Rn, Rm, {<shift>}

Multiply Instructions
MUL {<cond>} {S} Rd, Rm, Rs
MLA {<cond>} {S} Rd, Rm, Rs, Rn
<mul> {<cond>} {S} RdHi, RdLo, Rm, Rs

UMULL, UMLAL, SMULL, SMLAL

<op> Meaning
AND Logical bit-wise AND
EOR Logical bit-wise exclusive OR
SUB Subtract
RSUB Reverse subtract
ADD Add
ADC Add with carry
SBC Subtract with carry
RSC Reverse subtract with carry
TST Test

<mul> Meaning
MUL Multiply (32-bit)
MLA Multiply-Accumulate (32-bit)
UMULL Unsigned Multiply Long
UMLAL Unsigned Multiply Acc Long
SMULL Singed Multiply Long
SMLAL Unsigned Multiply Acc Long

Assembly Programming
(6A) Control

8 Young Won Lim
2/15/20

Branch Conditions

B<cond>
B Unconditional Always take this branch
BAL Always Always take this branch
BEQ Equal Comparison equal or zero result
BNE Not equal Comparison not equal or non-zero result
BPL Plus Result positive or zero
BMI Minus Result minus or negative
BCC Carry clear Arithmetic operation did not give carry-out
BLO Lower Unsigned comparison give lower
BCS Carry set Arithmetic operation gave carry-out
BHS Higher or same Unsigned comparison gave higher or same
BVC Overflow clear Signed integer operation; no overflow occurred
BVS Overflow set Signed integer operation; overflow occurred
BGT Greater than Signed integer comparison gave greater than
BGE Greater or equal Signed integer comparison gave greater or equal
BLT Less than Signed integer comparison gave less than
BLE Less or equal Signed integer comparison gave less than or equal
BHI Higher Unsigned comparison gave higher
BLS Lower or same Unsigned comparison gave low or same

Assembly Programming
(6A) Control

9 Young Won Lim
2/15/20

Conditional Flag Setting Instructions

Branching
Conditional Branch
Jump

Conditional
if
if-else
switch-case

Loop
while
for

Assembly Programming
(6A) Control

10 Young Won Lim
2/15/20

Conditional Branch Instructions

BLO target ; Branch if unsigned less than if C=0, same as BCC
BLS target ; Branch if unsigned less than or equal to if C=0 or Z=1
BHS target ; Branch if unsigned greater than or equal to if C=1, same as BCS
BHI target ; Branch if unsigned greater if C=1 and Z=0

BLT target ; Branch if signed less than if (~N&V | N&~V)=1 if N<>V
BGE target ; Branch if signed less than or equal to if (~N&V | N&~V)=0 if N=V
BGT target ; Branch if signed greater than or equal to if (Z|~N&V|N&~V)=0 if Z=0 and N=V
BLE target ; Branch if signed greater if (Z|~N&V|N&~V)=1 if Z=1 and N<>V

Introduction to ARM Cortex-M Microcontrollers – Embedded Systems, Jonathan W. Valvano

Assembly Programming
(6A) Control

11 Young Won Lim
2/15/20

if-then Instructions (1)

LDR R2, =G
LDR R0, [R2]
CMP R0, #7
BNS next1
BL GEqual7

Next1:

Introduction to ARM Cortex-M Microcontrollers – Embedded Systems, Jonathan W. Valvano

; R2 = &G
; R0 = G
; is G == 7 ?
; if not, skip
; G == 7

uint32_t G;
if (G == 7) {
 GEqual7();
}

LDR R2, =G
LDR R0, [R2]
CMP R0, #7
BEQ next2
BL GNotEqual7

Next2:

; R2 = &G
; R0 = G
; is G != 7 ?
; if not, skip
; G != 7

uint32_t G;
if (g != 7) {
 GNotEqual7();
}

Assembly Programming
(6A) Control

12 Young Won Lim
2/15/20

if-then Instructions (2)

LDR R2, =G1
LDRB R0, [R2]
CMP R0, #100
BLS next
MOV R1, #1
LDR R2, =G2
STRB R1, [R2]

next:

Introduction to ARM Cortex-M Microcontrollers – Embedded Systems, Jonathan W. Valvano

; R2 = &G1
; R0 = G1
; is G1 > 100?
; if not, skip to end
; R1 = 1
; R2 = &G2
; G2 = 1

uint32_t G1, G2;
if (G1 > 100) {
 G2 = 1;
}

Assembly Programming
(6A) Control

13 Young Won Lim
2/15/20

if-then Instructions (3)

LDR R2, =G1
LDRSB R0, [R2]
CMP R0, #100
BLE next
MOV R1, #1
LDR R2, =G2
STRB R1, [R2]

next:

Introduction to ARM Cortex-M Microcontrollers – Embedded Systems, Jonathan W. Valvano

; R2 = &G1
; R0 = G1 (signed)
; is G1 > 100?
; if not, skip to end
; R1 = 1
; R2 = &G2
; G2 = 1

uint32_t G1, G2;
if (G1 > 100) {
 G2 = 1;
}

Assembly Programming
(6A) Control

14 Young Won Lim
2/15/20

if-then-else Instructions (1)

LDR R2, =G1
LDR R0, [R2]
LDR R2, =G2
LDR R1, [R2]
BHI high

low BL is Less Eq
B next

hi BL isGreater
next:

Introduction to ARM Cortex-M Microcontrollers – Embedded Systems, Jonathan W. Valvano

; R2 = &G1
; R0 = G1
; R2 = &G2
; R1 = G1
; is G1 > G2 ?
; if so, skip to high
; G1 > G2

uint32_t G1, G2;
if (G1 > G2) {
 isGreater();
}
else {
 isLessEq();
}

Assembly Programming
(6A) Control

15 Young Won Lim
2/15/20

if-then-else Instructions (2)

LDR R2, =G1

Introduction to ARM Cortex-M Microcontrollers – Embedded Systems, Jonathan W. Valvano

; R2 = &G1 a = (b==1) ? 10 : 1;

if (b==1)
a = 10;

else
a = 1;

Assembly Programming
(6A) Control

16 Young Won Lim
2/15/20

switch Instruction

uint32_t Last=10;

void OneStep(void) {
 uint32_t next;

 switch (Last) {
case 10: next =9; break;
case 9: next =5; break;
case 5: next =6; break;
case 6: next =10; break;
default: next =10;

 }
 GPIO_PORTD_DATA_R = next;
 Last = next;
}

Introduction to ARM Cortex-M Microcontrollers – Embedded Systems, Jonathan W. Valvano

; R2 = &G1 a = (b==1) ? 10 : 1;

if (b==1)
a = 10;

else
a = 1;

Assembly Programming
(6A) Control

17 Young Won Lim
2/15/20

while Loop Instructions

LDR R4, =G1
LDR R5, =G2

loop LDR R0, [R5]
LDR R1, [R4]
CMP R0, R1
BLS next
BL Body
B loop

next

Introduction to ARM Cortex-M Microcontrollers – Embedded Systems, Jonathan W. Valvano

; R4 = &G1
; R5 = &G5
; R0 = G2
; R1 = G1
; is G2 <= G1
; if so, skip to next
; body of the loop

uint32_t G1, G2;

while (G2 > G1) {
 Body();
}

Assembly Programming
(6A) Control

18 Young Won Lim
2/15/20

do-while Loop Instructions

LDR R1, =PF1
LDR R5, =PA5

loop LDR R0, [R1]
EOR R0, #2
STR R0, [R1]
LDR R2, [R5]
ANDS R2, #0x20
BEQ loop

next

Introduction to ARM Cortex-M Microcontrollers – Embedded Systems, Jonathan W. Valvano

; R1 = &PF1
; R5 = &PA5
; R0 = PF1
; toggle bit 1 of R0
; PF1 = R0
; R2 = PA5
; if bit 5 of R2 set?
; then loop

// toggle PF1 while
// PA5 is low

do {
 PF1 = PF1 ^ 0x02;
} while (!(PA5&0x20));

Assembly Programming
(6A) Control

19 Young Won Lim
2/15/20

for Loop Instructions (1)

MOV R4, #0
loop CMP R4, #100

BHS done
BL process
ADD R4, R4, #1
B loop

done

Introduction to ARM Cortex-M Microcontrollers – Embedded Systems, Jonathan W. Valvano

; R4 = 0
; index >= 100 ?
; if so skip to done
; process function
; R4 = R4 1
; go to loop

for (i=0;i<100; i++) {
 process();
}

Assembly Programming
(6A) Control

20 Young Won Lim
2/15/20

for Loop Instructions (2)

MOV R4, #0
loop

Introduction to ARM Cortex-M Microcontrollers – Embedded Systems, Jonathan W. Valvano

; R4 = 0
; i

for (i=100;i!=0; i--) {
 process();
}

Assembly Programming
(6A) Control

21 Young Won Lim
2/15/20

Conditional Flag Setting Instructions

CMP r3, r4
BNE Else
ADD r0, r1, r2
B Exit

Else: SUB r0, r1, r2
Exit:

Assembly Programming
(6A) Control

22 Young Won Lim
2/15/20

Conditional Flag Setting Instructions

CMP R1, R2
BEQ L1

CMP R1, R2
BNE L1

Assembly Programming
(6A) Control

23 Young Won Lim
2/15/20

Conditional Flag Setting Instructions

if (i==j) f = g+h;
else f = g-h;

CMP r3, r4
BNE Else ; go to Else if I <> j

ADD r0, r1, r2 ; f =g+h

B Exit

Else: SUB r0, r1, r2 ; f = g+h
Exit:

Assembly Programming
(6A) Control

24 Young Won Lim
2/15/20

Conditional Flag Setting Instructions

while (save[i] == k)
i += 1;

Loop: ADD r12, r6, r3, LSL #2

LDR r0, [r12, #0]

CMP r0, r5
BNE Exit

ADD r3, r3, #1

B Loop

Exit:

Assembly Programming
(6A) Control

25 Young Won Lim
2/15/20

Conditional Flag Setting Instructions

CMP r0, r1

BLQ L1 ; unsigned branch
BLT L2 ; signed branch

CMP r1, r2
BHS L3 ; Index out of bounds

Assembly Programming
(6A) Control

26 Young Won Lim
2/15/20

Switch – case

switch (amount) {
case 20: fee = 2; break;
case 50: fee = 3; break;
case 100: fee = 5; break;
default: fee = 0;

}

If (amount == 20) fee = 2;
else If (amount == 50) fee = 2;
else If (amount == 100) fee = 5;
else fee = 0;

Digital Design and Computer Architecture, D. M. Harris and S. L. Harris

Assembly Programming
(6A) Control

27 Young Won Lim
2/15/20

While Loop

int pow = 1;
int x = 0;

while (pow ~= 128)
{
 pow = pow * 2;
 x = x + 1;
}

Digital Design and Computer Architecture, D. M. Harris and S. L. Harris

Assembly Programming
(6A) Control

28 Young Won Lim
2/15/20

For Loop (1)

int sum = 0;

for (i=0; I != 10; i=i+1) {
 sum = sum + I;
}

int sum = 0;
int i= 0;

while (I != 10) {
 sum = sum + I;
 i = I + 1;
}

Digital Design and Computer Architecture, D. M. Harris and S. L. Harris

Assembly Programming
(6A) Control

29 Young Won Lim
2/15/20

For Loop (2)

int sum = 0;

for (i=0; I < 101; i=i*2) {
 sum = sum + I;
}

Digital Design and Computer Architecture, D. M. Harris and S. L. Harris

Assembly Programming
(6A) Control

30 Young Won Lim
2/15/20

For Loop (2)

int sum = 0;

for (i=0; I < 101; i=i*2) {
 sum = sum + I;
}

Digital Design and Computer Architecture, D. M. Harris and S. L. Harris

Assembly Programming
(6A) Control

31 Young Won Lim
2/15/20

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

