FlipFlop Timing (3D)

Copyright (c) 2011-2013 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Register

Types of Timing Diagrams

a timing diagram without delays

a timing diagram with delays

4

DFF Testbench

module dff(d, clk, rst, q, qb); input d, clk, rst; output q, qb; reg q;

always @(posedge clk) begin if (~rst) q = 0; else q = d; end

assign $qb = \sim q$; endmodule

Nonblocking Assignments	<=
Blocking Assignments	=

ir b	nitial egin #20	clk =0; d =0; rst =1; rst =0; rst = 1;	
	#10 #10 #10 #10 #10 #10	<pre>d <= 1; d <= 0; d <= 1; d <= 0; d <= 1; d <= 1;</pre>	
\$finish; end			
	#10 #10 #10 #10 #10 #10	<pre>d = 1; d = 0; d = 1; d = 0; d = 1; d = 1;</pre>	

`timescale 1ns/100ps module dff_tb; reg d, clk, rst; dff U1 (d, clk, rst, q, qb); always #10 clk = ~clk; initial begin

\$dumpfile("test.vcd"); \$dumpvars(0, dff_tb); end

endmodule

Testbench with Nonblocking Assignments

```
module dff(d, clk, rst, q, qb);
input d, clk, rst;
output q, qb;
reg q;
```

```
always @(posedge clk)
begin
if (~rst) q = 0;
else q = d;
end
```

assign qb = \sim q; endmodule `timescale 1ns/100ps module dff_tb; reg d, clk, rst; dff U1 (d, clk, rst, q, qb); always #10 clk = ~clk; initial begin \$dumpfile("test.vcd"); \$dumpvars(0, dff tb);

endmodule

end

DFF Testbench Waveforms

Nonblocking Assignments

samples the <u>unchanged</u> d input values at the posedge of clk

Blocking Assignments

samples the <u>changed</u> d input values at the posedge of clk

Blocking Assignments

Nonblocking Assignments

Nonblocking Assignments

FF Timing – Input and Output Delays

Reg to Reg Timing

Clock Skew

Path Delay

Setup & Hold Time (1)

Setup & Hold Time (2)

FF Timing (3D)

15

Clock Gating

Register Timing

NOR-based SR Latch

References

- [1] http://en.wikipedia.org/
- [2] http://planetmath.org/[3] M.L. Boas, "Mathematical Methods in the Physical Sciences"