Characteristics of Multiple Random Variables

Young W Lim

June 24, 2019

Copyright (c) 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

Based on
Probability, Random Variables and Random Signal Principles, P.Z. Peebles,Jr. and B. Shi

Outline

(1) Joint Guassian Random Variables

Bivariate Gaussian Density

Definition

The two random variables X and Y are said to be jointly Gaussian, if their joint density function is

$$
\begin{gathered}
f_{X, Y}(x, y)=\frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}}} \cdot \\
\exp \left\{\frac{-1}{2\left(1-\rho^{2}\right)} \cdot\left[\frac{(x-\bar{X})^{2}}{\sigma_{X}^{2}}-\frac{2 \rho(x-\bar{X})(y-\bar{Y})}{\sigma_{X} \sigma_{Y}}+\frac{(y-\bar{Y})^{2}}{\sigma_{Y}^{2}}\right]\right\} \\
\bar{X}=E[X], Y=E[Y], \sigma_{X}^{2}=E\left[(X-\bar{X})^{2}\right], \sigma_{Y}^{2}=E\left[(Y-\bar{Y})^{2}\right], \\
\rho=E[(X-\bar{X})(Y-\bar{Y})] / \sigma_{X} \sigma_{Y}
\end{gathered}
$$

Bivariate Gaussian Density - Maximum value

$$
f_{X, Y}(x, y) \leq f_{X, Y}(\bar{X}, \bar{Y})=\frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}}}
$$

Bivariate Gaussian Density - Uncorrelated

two random variables
$f_{X, Y}(x, y)=f_{X}(x) f_{Y}(x)$ is sufficient to guarantee that X and Y are statistically independent. Any uncorrelated Guassian random variables are also statistically independent a coordinate rotation (linear transformation of X and Y) through the angle

$$
\theta=\frac{1}{2} \tan ^{-1}\left[\frac{2 \rho \sigma_{X} \sigma_{Y}}{\sigma_{X}^{2} \sigma_{Y}^{2}}\right]
$$

is sufficient to convert correlated random variables X and Y having σ_{X}^{2} and σ_{Y}^{2}, respectively, correlation coefficient ρ, and the joint densityof $f_{X, Y}(x, y)=\frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}}} \cdot \exp [\cdots]$ into two statistically independent Gaussian random variables

Multi-variate Gaussian Density

N random variables $X_{1}, X_{2}, \ldots, X_{N}$ are called jointly Gaussian if their joint density function can be written as

$$
\begin{gathered}
f_{X_{1}, \cdots, x_{N}}\left(x_{1}, \cdots, x_{N}\right)=\frac{\mid\left[\left.\left.C_{X}\right|^{-1}\right|^{1 / 2}\right.}{(2 \pi)^{N / 2}} \exp \left\{-\frac{[x-\bar{X}]^{t}\left[C_{X}\right][x-\bar{X}]}{2}\right\} \\
{[x-\bar{X}]=\left[\begin{array}{c}
x_{1}-\bar{X}_{1} \\
x_{2}-\bar{X}_{2} \\
\\
x_{N}-\bar{X}_{N}
\end{array}\right], \quad\left[C_{X}\right]=\left[\begin{array}{cccc}
C_{11} & C_{12} & \cdots & C_{1 N} \\
C_{21} & C_{22} & \cdots & C_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
C_{N 1} & C_{N 2} & \cdots & C_{N N}
\end{array}\right]}
\end{gathered}
$$

Multi-variate Gaussian Density - notations N random variables

N random variables $X_{1}, X_{2}, \ldots, X_{N}$ are called jointly Gaussian if their joint density function can be written as

$$
f_{X_{1}, \cdots, X_{N}}\left(x_{1}, \cdots, x_{N}\right)=\frac{\mid\left[\left.\left.C_{X}\right|^{-1}\right|^{1 / 2}\right.}{(2 \pi)^{N / 2}} \exp \left\{-\frac{[x-\bar{X}]^{t}\left[C_{X}\right][x-\bar{X}]}{2}\right\}
$$

where $[\bullet]^{t}$ denotes a matrix transposition,
$[\bullet]^{-1}$ denotes a matrix inversion

Covariance Matrix

N random variables

N random variables $X_{1}, X_{2}, \ldots, X_{N}$ are called jointly Gaussian if their joint density function can be written as

$$
f_{X_{1}, \cdots, X_{N}}\left(x_{1}, \cdots, x_{N}\right)=\frac{\mid\left[\left.\left.C_{X}\right|^{-1}\right|^{1 / 2}\right.}{(2 \pi)^{N / 2}} \exp \left\{-\frac{[x-\bar{X}]^{t}\left[C_{X}\right][x-\bar{X}]}{2}\right\}
$$

where $\left[C_{x}\right]$ is called the covariance matrix of N random variables

$$
C_{i j}=E\left[\left(X_{i}-\bar{X}_{i}\right)\left(X_{j}-\bar{X}_{j}\right)\right]=\left\{\begin{array}{cl}
\sigma_{X_{i}}^{2} & i=j \\
C_{X_{i} X_{j}} & i \neq j
\end{array}\right.
$$

Covariance Matrix ($N=2$)

N random variables

$$
\begin{gathered}
f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)=\frac{\mid\left[\left.\left.C_{X}\right|^{-1}\right|^{1 / 2}\right.}{(2 \pi)^{2 / 2}} \exp \left\{-\frac{[x-\bar{X}]^{t}\left[C_{X}\right][x-\bar{X}]}{2}\right\} \\
{\left[C_{X}\right]=\left[\begin{array}{cc}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right]=\left[\begin{array}{cc}
\sigma_{X_{1}}^{2} & \rho \sigma_{X_{1}} \sigma_{X_{2}} \\
\rho \sigma_{X_{1}} \sigma_{X_{2}} & \sigma_{X_{2}}^{2}
\end{array}\right]} \\
{\left[C_{X}\right]^{-1}=\frac{1}{1-\rho^{2}}\left[\begin{array}{cc}
\sigma_{X_{1}}^{2} & -\rho / \sigma_{X_{1}} \sigma_{X_{2}} \\
-\rho / \sigma_{X_{1}} \sigma_{X_{2}} & \sigma_{X_{2}}^{2}
\end{array}\right]} \\
\left|\left[C_{X}\right]^{-1}\right|=1 / \sigma_{X_{1}}^{2} \sigma_{X_{2}}^{2}\left(1-\rho^{2}\right)
\end{gathered}
$$

