
Young Won Lim
6/3/17

GHCi: Getting started (1A)

Young Won Lim
6/3/17

 Copyright (c) 2016 - 2017 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Haskell Overview 3 Young Won Lim
6/3/17

Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

Haskell Overview 4 Young Won Lim
6/3/17

Interpreter GHCi

young@MNTSys-BB1 ~ $ ghci

GHCi, version 7.10.3: http://www.haskell.org/ghc/ :? for help

Prelude> "hello, world!"

"hello, world!"

Prelude> putStrLn "hello, world!"

hello, world!

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

Haskell Overview 5 Young Won Lim
6/3/17

Function

Prelude> let fac n = if n == 0 then 1 else n * fac (n-1)

Prelude> fac 5

120

Prelude> fac 2

2

Prelude> fac 3

6

Prelude> fac 4

24

Prelude>

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

Haskell Overview 6 Young Won Lim
6/3/17

Compiler GHC

young@MNTSys-BB1 ~ $ ghc -o hello hello.hs

[1 of 1] Compiling Main (hello.hs, hello.o)

Linking hello ...

young@MNTSys-BB1 ~ $./hello

hello, world!

young@MNTSys-BB1 ~ $ cat hello.hs

main = putStrLn "hello, world!"

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

Haskell Overview 7 Young Won Lim
6/3/17

Layout

main = do putStrLn "Type an integer : ?"

 x <- readLn

 if even x

 then putStrLn "even number"

 else putStrLn "odd number"

t.hs

ghc t.hs

./t

the first non-space character after do.

every line that starts in the same column
as that p is in the do block

If you indent more, it is the nested block in do

If you indent less, it is an end of the do block.

ghc –o run t.hs

./t

Haskell Overview 8 Young Won Lim
6/3/17

Multi-line in GHCi

ghci multi-line

Prelude> :{

Prelude| main = do { putStrLn "Type an integer: "; x<-readLn;

Prelude| if even x then putStrLn "even" else putStrLn "odd"; }

Prelude| :}

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

Haskell Overview 9 Young Won Lim
6/3/17

Types

 Int an integer with at least 30 bits of precision.

 Integer an integer with unlimited precision.

 Float a single precision floating point number.

 Double a double precision floating point number.

 Rational a fraction type, with no rounding error.

Types and Class Types start with capital letters

Variables start with lower case letters

Declaring a type :: type

Asking which type :t something

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

Haskell Overview 10 Young Won Lim
6/3/17

Type Classes

Prelude> 3 :: Int
3
Prelude> 3 :: Float
3.0
Prelude> 4 :: Double
4.0
Prelude> 2 :: Integer
2
Prelude> :t 3
3 :: Num a => a 3 can be used as any numeric type
Prelude> :t 2.0
2.0 :: Fractional a => a 2.0 can be used as any fractional type
Prelude> :t gcd 15 20
gcd 15 20 :: Integral a => a gcd 15 20 can be used as any integral type
Prelude> :t True
True :: Bool
Prelude> :t 'A'
'A' :: Char

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

the types of t must be Num type class

the types of t must be Fractional type class

the types of t must be Integral type class

class constraint

(Num t) =>

(Fractional t) =>

(Integral t) =>

the type t is constrained by the context

(Num t), (Fractional t), (Integral t)

Haskell Overview 11 Young Won Lim
6/3/17

Type Classes

 Int

 Integer

 Float

 Double

 Rational

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

Instances of
Integral type

Instances of
Fractional type

Instances of
Num type

Type Class : a set of type (instances)

 Int

 Integer

 Float

 Double

 Rational

Instances of
Num type

Instances of
Integral type

Instances of
Fractional type

Haskell Overview 12 Young Won Lim
6/3/17

Lists and Tuples

Lists multiple values of the same type

Strings lists of characters.

Tuples a fixed number of values, which can have different types.

The : operator appends an item to the beginning of a list

 Zip : two lists into a list of tuples.

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

Haskell Overview 13 Young Won Lim
6/3/17

Functions

[1 .. 10]

map (+ 2) [1 .. 10]

filter (> 2) [1 .. 10]

fst (1, 2)

snd (1, 2)

map fst [(1, 2), (3, 4), (5, 6)]

fst (1, 2, 3)

snd (1, 2, 3)

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

[1,2,3,4,5,6,7,8,9,10]

[3,4,5,6,7,8,9,10,11,12]

[3,4,5,6,7,8,9,10]

1

2

 [1,3,5]

Haskell Overview 14 Young Won Lim
6/3/17

Functions

my_sum m n = m+n

main = do putStrLn "Give two numbers: "

 x <- readLn

 y <- readLn

 print (my_sum x y)

Give two numbers:

10

20

30

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

Haskell Overview 15 Young Won Lim
6/3/17

Convenient Syntax

secsToWeeks secs =let perMinute = 60

 perHour = 60 * perMinute

 perDay = 24 * perHour

 perWeek = 7 * perDay

 in secs / perWeek

classify age = case age of 0 -> "newborn"

 1 -> "infant"

 2 -> "toddler"

 _ -> "senior citizen"

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

Haskell Overview 16 Young Won Lim
6/3/17

Using Libraries

import Prelude hiding (lookup)
import Data.Map

employeeDept = fromList([("John","Sales"), ("Bob","IT")])
deptCountry = fromList([("IT","USA"), ("Sales","France")])
countryCurrency = fromList([("USA", "Dollar"), ("France", "Euro")])

employeeCurrency :: String -> Maybe String
employeeCurrency name = do
 dept <- lookup name employeeDept
 country <- lookup dept deptCountry
 lookup country countryCurrency

main = do
 putStrLn $ "John's currency: " ++ (show (employeeCurrency "John"))
 putStrLn $ "Pete's currency: " ++ (show (employeeCurrency "Pete"))

https://downloads.haskell.org/~ghc/latest/docs/html/libraries/containers-0.5.7.1/Data-Map-Lazy.html

Haskell Overview 17 Young Won Lim
6/3/17

fromList (1)

fromList :: Eq key => (key -> Int32) -> [(key, val)] -> IO (HashTable key val)
base Data.HashTable
Convert a list of key/value pairs into a hash table. Equality on keys is taken from the Eq instance
for the key type.

fromList :: [(Key, a)] -> IntMap a
containers Data.IntMap.Strict, containers Data.IntMap.Lazy
O(n*min(n,W)). Create a map from a list of key/value pairs.
> fromList [] == empty
> fromList [(5,"a"), (3,"b"), (5, "c")] == fromList [(5,"c"), (3,"b")]
> fromList [(5,"c"), (3,"b"), (5, "a")] == fromList [(5,"a"), (3,"b")]

fromList :: [Key] -> IntSet
containers Data.IntSet
O(n*min(n,W)). Create a set from a list of integers.

fromList :: [a] -> Seq a
containers Data.Sequence
O(n). Create a sequence from a finite list of elements. There is a function toList in the opposite
direction for all instances of the Foldable class, including Seq.

https://www.haskell.org/hoogle/?hoogle=fromList

Haskell Overview 18 Young Won Lim
6/3/17

fromList (2)

fromList :: Ord a => [a] -> Set a
containers Data.Set
O(n*log n). Create a set from a list of elements. If the elemens are ordered, linear-time
implementation is used, with the performance equal to fromDistinctAscList.

fromList :: Ord k => [(k, a)] -> Map k a
containers Data.Map.Lazy, containers Data.Map.Strict
O(n*log n). Build a map from a list of key/value pairs. See also fromAscList. If the list contains
more than one value for the same key, the last value for the key is retained. If the keys of the list
are ordered, linear-time implementation is used, with the performance equal to
fromDistinctAscList.
> fromList [] == empty
> fromList [(5,"a"), (3,"b"), (5, "c")] == fromList [(5,"c"), (3,"b")]
> fromList [(5,"c"), (3,"b"), (5, "a")] == fromList [(5,"a"), (3,"b")]

https://www.haskell.org/hoogle/?hoogle=fromList

Haskell Overview 19 Young Won Lim
6/3/17

lookup (1)

lookup :: Eq a => a -> [(a, b)] -> Maybe b
base Prelude, base Data.List
lookup key assocs looks up a key in an association list.

lookup :: HashTable key val -> key -> IO (Maybe val)
base Data.HashTable
Looks up the value of a key in the hash table.

lookup :: Key -> IntMap a -> Maybe a
containers Data.IntMap.Strict, containers Data.IntMap.Lazy
O(min(n,W)). Lookup the value at a key in the map. See also lookup.

lookup :: Ord k => k -> Map k a -> Maybe a
containers Data.Map.Lazy, containers Data.Map.Strict
O(log n). Lookup the value at a key in the map. The function will return the corresponding value
as (Just value), or Nothing if the key isn't in the map. An example of using lookup:

https://www.haskell.org/hoogle/?hoogle=fromList

Haskell Overview 20 Young Won Lim
6/3/17

lookup (2)

> import Prelude hiding (lookup)
> import Data.Map
>
> employeeDept = fromList([("John", "Sales"), ("Bob", "IT")])
> deptCountry = fromList([("IT", "USA"), ("Sales", "France")])
> countryCurrency = fromList([("USA", "Dollar"), ("France", "Euro")])
>
> employeeCurrency :: String -> Maybe String
> employeeCurrency name = do
> dept <- lookup name employeeDept
> country <- lookup dept deptCountry
> lookup country countryCurrency
>
> main = do
> putStrLn $ "John's currency: " ++ (show (employeeCurrency "John"))
> putStrLn $ "Pete's currency: " ++ (show (employeeCurrency "Pete"))

The output of this program:
> John's currency: Just "Euro"
> Pete's currency: Nothing

https://www.haskell.org/hoogle/?hoogle=fromList

Haskell Overview 21 Young Won Lim
6/3/17

elem

elem :: Eq a => a -> [a] -> Bool
base Prelude, base Data.List

elem is the list membership predicate,
usually written in infix form, e.g., x `elem` xs.
For the result to be False, the list must be finite;
True, however, results from an element equal to x found
at a finite index of a finite or infinite list.

1 `elem` [1, 2, 4] -- True
2 `elem` [1, 2, 4] -- True
3 `elem` [1, 2, 4] -- False

https://www.haskell.org/hoogle/?hoogle=fromList

Haskell Overview 22 Young Won Lim
6/3/17

Generator

let removeLower x=[c| c<-x, c `elem` ['A'..'Z']]

a list comprehension

[c | c<-x, c `elem` ['A'..'Z']]

c <- x is a generator
c is a pattern

to be matched from the elements of the list x
 to be successively bound to the elements of the input list x

c `elem` ['A'..'Z']

is a predicate which is applied to each successive binding of c inside the comprehension
an element of the input only appears in the output list if it passes this predicate.

https://stackoverflow.com/questions/35198897/does-mean-assigning-a-variable-in-haskell

Haskell Overview 23 Young Won Lim
6/3/17

Assignment in Haskell

Assignment in Haskell : declaration with initialization:

 You declare a variable;
 Haskell doesn't allow uninitialized variables,

so an initial value must be supplied in the declaration
 There's no mutation, so the value given in the declaration

will be the only value for that variable throughout its scope.

https://stackoverflow.com/questions/35198897/does-mean-assigning-a-variable-in-haskell

Haskell Overview 24 Young Won Lim
6/3/17

Assignment in Haskell

filter (`elem` ['A' .. 'Z']) x

[c| c <- x]

do c <- x
 return c

x >>= \c -> return c

x >>= return

https://stackoverflow.com/questions/35198897/does-mean-assigning-a-variable-in-haskell

Haskell Overview 25 Young Won Lim
6/3/17

Monad Class Function >>= & >>

both >>= and >> are functions from the Monad class.

>>= passes the result of the expression on the left
as an argument to the expression on the right,
in a way that respects the context the argument and function use

>> is used to order the evaluation of expressions within some context;
it makes evaluation of the right depend on the evaluation of the left

https://www.quora.com/What-do-the-symbols-and-mean-in-haskell

Haskell Overview 26 Young Won Lim
6/3/17

Monad – List Comprehension Examples

[x*2 | x<-[1..10], odd x]

do
 x <- [1..10]
 if odd x
 then [x*2]
 else []

[1..10] >>= (\x -> if odd x then [x*2] else [])

https://stackoverflow.com/questions/44965/what-is-a-monad

Haskell Overview 27 Young Won Lim
6/3/17

Monad – I/O Examples

do
 putStrLn "What is your name?"
 name <- getLine
 putStrLn ("Welcome, " ++ name ++ "!")

https://stackoverflow.com/questions/44965/what-is-a-monad

Haskell Overview 28 Young Won Lim
6/3/17

Monad – A Parser Example

parseExpr = parseString <|> parseNumber

parseString = do
 char '"'
 x <- many (noneOf "\"")
 char '"'
 return (StringValue x)

parseNumber = do
 num <- many1 digit
 return (NumberValue (read num))

https://stackoverflow.com/questions/44965/what-is-a-monad

Haskell Overview 29 Young Won Lim
6/3/17

Monad – Asynchronous Examples

let AsyncHttp(url:string) =
 async { let req = WebRequest.Create(url)
 let! rsp = req.GetResponseAsync()
 use stream = rsp.GetResponseStream()
 use reader = new System.IO.StreamReader(stream)
 return reader.ReadToEnd() }

https://stackoverflow.com/questions/44965/what-is-a-monad

Young Won Lim
6/3/17

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

