Stationary Random Processes - Examples

Young W Lim

May 31, 2022

Young W Lim Stationary Random Processes - Examples

★ 3 → < 3</p>

Copyright (c) 2022 - 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

-

Based on Probability, Random Variables and Random Signal Principles, P.Z. Peebles, Jr. and B. Shi

Outline

- Random Phase Oscillator
 - Problem definition
 - First order distribution
 - ${\color{black}\bullet}$ Uniform random variable ${\color{black}\Theta}$
 - Uniform random variable T
 - Second order distribution
 - Mean and variance
- 2 Stationary Process Examples
 - Examples A
 - Examples B

Problem definition

Outline

Random Phase Oscillator Problem definition

 First order distribution • Uniform random variable Θ \bigcirc Uniform random variable T Second order distribution

- Mean and variance
- - Examples A
 - Examples B

Problem definition First order distribution Second order distribution Mean and variance

sin(t), Asin(t)

• sin(*t*)

• not random process.

•
$$x(t) = A\sin(t)$$

- a random process because A is a random variable
- However, x(t) is not stationary, but it is cyclostationary,
- its statistical properties vary periodically.

https://dsp.stackexchange.com/questions/32000/why-is-sint-a-stationary-process

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Problem definition First order distribution Second order distribution Mean and variance

$A\sin(t+\phi)$

- $x(t) = A\sin(t+\phi)$
 - the *x*(*t*) process is **stationary** because of the added **random phase**
 - the random phase φ ∈ [0, 2π] is
 a uniformly distributed random variable which is independent of A.
 - its statistical properties are <u>independent</u> of *t*, and hence, the process is **stationary**.

https://dsp.stackexchange.com/questions/32000/why-is-sint-a-stationary-process

- 4 同 ト 4 三 ト

Problem definition First order distribution Second order distribution Mean and variance

Signals in an oscilloscope

When analyzing a signal with an <u>oscilloscope</u>, it can be observed that

the signal's **amplitude spectrum** does not vary over moving windows

so a sinusoidal wave is sort of stationary in frequency.

Additionally, the signal is itself stationary in envelope

(modulus 1 for the analytic version of the signal).

https://dsp.stackexchange.com/questions/32000/why-is-sint-a-stationary-process

イロト イポト イヨト イヨ

Problem definition First order distribution Second order distribution Mean and variance

Window function (1)

In signal processing and statistics, a **window function** is a mathematical function that is

- zero-valued outside of some chosen interval
- normally symmetric around the middle of the interval
- usually near a maximum in the middle
- usually tapering away from the middle.

https://en.wikipedia.org/wiki/Window_function

周 ト イ ヨ ト イ ヨ ト

Problem definition First order distribution Second order distribution Mean and variance

Window function (2)

when another function or waveform is "multiplied" by a **window function**,

the product is also <u>zero</u>-valued <u>outside</u> the interval: all that is left is the part where they <u>overlap</u>, the "*view through the window*".

https://en.wikipedia.org/wiki/Window_function

4 3 5 4 3 5

Problem definition First order distribution Second order distribution Mean and variance

Envelope

- the **envelope** of an oscillating signal is a smooth curve outlining its extremes.
- the envelope thus generalizes the concept of a constant amplitude into an instantaneous amplitude.
- a <u>modulated</u> sine wave varying between an upper envelope and a lower envelope.
- the **envelope function** may be a function of time, space, angle, or indeed of any variable

https://en.wikipedia.org/wiki/Envelope (waves)

A 3 3 4

Problem definition First order distribution Second order distribution Mean and variance

Random Variable Definition

A random variable

a real function over a sample space $S = \{s_1, s_2, s_3, ..., s_n\}$

 $s \to X(s)$ x = X(s)

a random variable : a capital letter X a particular value : a lowercase letter x

a sample space $S = \{s_1, s_2, s_3, ..., s_n\}$ an element of S : s

- 4 同 1 4 回 1 4 回 1

Problem definition First order distribution Second order distribution Mean and variance

Random Variable Example

Example

...

- $\begin{array}{ll} X(s_1) = x_1 & s_1 \longrightarrow x_1 \\ X(s_2) = x_2 & s_2 \longrightarrow x_2 \end{array}$
- $X(s_n) = x_n \qquad s_n \longrightarrow x_n$

...

 $S = \{s_1, s_2, s_3, ..., s_n\}$ $X = \{x_1, x_2, x_3, ..., x_n\}$

a sample space a random variable

(日)

э

Problem definition First order distribution Second order distribution Mean and variance

Random Process (1)

A random process

a function of both time t and outcome θ

 $X(t,\theta)$

assigning a time function to every outcome θ_i

 $\theta_i \rightarrow x_i(t)$

where $x_i(t) = x(t, \theta_i)$

the <u>family</u> of such time functions is called a random process and denoted by $X(t, \theta)$

イロト イヨト イヨト イヨト

Problem definition First order distribution Second order distribution Mean and variance

Random Process (2)

A random process

a random process $X(t, \theta)$ assigns a time function for a every outcome θ

 $x(t,\theta) = X(t,\theta)$

a short notation

$$\mathbf{x}(\mathbf{t}) = X(\mathbf{t})$$

Young W Lim Stationary Random Processes - Examples

- - E + - E +

< A >

Problem definition First order distribution Second order distribution Mean and variance

Ensemble of time functions

Time functions

A random process $X(t, \theta)$ represents a family or ensemble of time functions

(E)

< A >

Problem definition First order distribution Second order distribution Mean and variance

A sample function $x(t, \theta)$

A random process $X(t, \theta)$ represents a <u>family</u> or <u>ensemble</u> of time functions

$$\theta \to x(t, \theta) = \cos(\omega t + \theta)$$

$x(t, \theta)$ represents

- a sample function
- an ensemble member
- a realization of the process

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

Image: Image:

Problem definition First order distribution Second order distribution Mean and variance

Random process $X(t, \theta)$

A random process $X(t, \theta)$ represents a family or ensemble of time functions

$$heta
ightarrow x(t, heta) = \cos(\omega t + heta)$$

 $x(t) = X(t, heta)$

X(t, θ) becomes a single time function x(t, θ)

• when t is a variable and θ is fixed at an outcome

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

→ 3 → 4 3

Problem definition First order distribution Second order distribution Mean and variance

Random variables with time

a random process X(t,s) represents a single time function when t is a variable and s is fixed at an outcome

a random process X(t,s) represents a single random variable when both t and s are fixed at a time and an outcome, respectively

$$X_i = X(t_i, s) = X(t_i)$$
 random variable

X(t,s) = X(t) random process

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Problem definition First order distribution Second order distribution Mean and variance

Random phase in $X(t) = \cos(\omega t + \Theta)$

Consider the output of a sinusoidal oscillator that has a **random phase** and an **amplitude** of the form:

 $X(t) = \cos(\omega t + \Theta)$

where the random variable $\Theta \sim U([0,2\pi])$

to specify the <u>explicit dependence</u> on the underlying **sample space** Sthe oscillator output can be written as

 $x(t,\Theta) = \cos(\omega t + \Theta)$

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

Problem definition First order distribution Second order distribution Mean and variance

Random variable $X_t(\theta)$

Consider the random variable

$$X(t, \theta) = \cos(\omega t + \theta)$$

where the time t is fixed

In other words,

$$X_t(\theta) = \cos(\omega t + \theta)$$

where $\theta_0 = \omega t$ is fixed (a *non-random* quantity) thus the time t is fixed

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

Problem definition First order distribution Second order distribution Mean and variance

Values of a time function

Consider the random variable for the fixed time t

$$X_t(\theta) = \cos(\omega t + \theta)$$

if the sample value θ as well as the time t is fixed, then the values of the time function

$$x_1 = x(t_1) = \cos(\omega t_1 + \theta)$$
$$x_2 = x(t_2) = \cos(\omega t_2 + \theta)$$

where x is the **time function** for a fixed outcome θ and let x_i denotes the value of the time function x at times t_i (here x_i is not a sample function)

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

伺 ト イヨト イヨト

Problem definition First order distribution Second order distribution Mean and variance

Outline

- 2 Stationary Process Examples
 - Examples A
 - Examples B

< ∃⇒

Problem definition First order distribution Second order distribution Mean and variance

First order distribution (1)

The first order distribution of the process $X(t) = \cos(\omega t + \Theta)$ can be found by looking at the distribution of the random variable

$$X_t(\Theta) = \cos(\theta_0 + \Theta)$$

where $\theta_0 = \omega t$ is fixed (a *non-random* quantity) this can easily be shown via the **derivative method** to be of the form:

$$f_X(x) = rac{1}{\pi \sqrt{1-x^2}}, \qquad |x| < 1$$

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Problem definition First order distribution Second order distribution Mean and variance

First order distribution (2)

The first order distribution of the process $X(t) = \cos(\omega t + \Theta)$

$$f_X(x) = rac{1}{\pi \sqrt{1-x^2}}, \qquad |x| < 1$$

- dependent only on the set of values xthat the process X(t) takes
- independent of
 - the particular sampling instant t
 - the constant **phase offset** $\theta_0 = \omega t$

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

4 3 6 4 3

Problem definition First order distribution Second order distribution Mean and variance

pdf of $X(t) = \cos(\omega t + \Theta)$

• Uniform Random Variable Θ

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

(日)

Problem definition First order distribution Second order distribution Mean and variance

pdf of $X(t) = \cos(\omega t + \Theta)$

Let Θ be a uniform random variable on $[0, 2\pi]$ Then $F_{\Theta}(\theta) = \frac{\theta}{2\pi}$,

$$X(t) = \cos(\omega t + \Theta)$$

be the random variable describing x in terms of Θ .

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Problem definition First order distribution Second order distribution Mean and variance

pdf of $X(t) = \cos(\omega t + \Theta)$

$$F_X(x) = P(X \le x)$$

= $P(\cos(\omega t + \Theta) \le x)$
= $P(\cos^{-1}(x) \le \omega t + \Theta \le 2\pi - \cos^{-1}(x))$
= $P(\cos^{-1}(x) - \omega t \le \Theta \le 2\pi - \cos^{-1}(x) - \omega t)$
= $F_{\Theta}(2\pi - \cos^{-1}(x) - \omega t) - F_{\Theta}(\cos^{-1}(x) - \omega t)$

https://math.stackexchange.com/questions/3456122/probability-density-functionof-harmonic-oscillation

イロト イボト イヨト イヨト

э

Problem definition First order distribution Second order distribution Mean and variance

pdf of $X(t) = \cos(\omega t + \Theta)$

Differentiating both sides, we get:

$$\begin{aligned} \frac{d}{dx}F_X(x) &= \frac{d}{dx}\left\{F_\Theta\left(2\pi - \cos^{-1}(x) - \omega t\right) - F_\Theta\left(\cos^{-1}(x) - \omega t\right)\right\} \\ &= \frac{d}{d\theta}F_\Theta\left(2\pi - \cos^{-1}(x) - \omega t\right)\frac{d}{dx}\left(-\cos^{-1}(x)\right) \\ &- \frac{d}{d\theta}F_\Theta\left(\cos^{-1}(x) - \omega t\right)\frac{d}{dx}\left(\cos^{-1}(x)\right) \\ &f_X(x) &= f_\Theta\left(\cos^{-1}(x) - \omega t\right)\frac{d}{dx}\left(-\cos^{-1}(x)\right) \\ &- f_\Theta\left(2\pi - \cos^{-1}(x) - \omega t\right)\frac{d}{dx}\left(\cos^{-1}(x)\right) \end{aligned}$$

https://math.stackexchange.com/questions/3456122/probability-density-function-

of-harmonic-oscillation

(日)

2

Problem definition First order distribution Second order distribution Mean and variance

pdf of $X(t) = \cos(\omega t + \Theta)$

$$f_X(x) = f_\Theta \left(\cos^{-1}(x) - \omega t \right) \frac{d}{dx} \left(-\cos^{-1}(x) \right)$$
$$- f_\Theta \left(2\pi - \cos^{-1}(x) - \omega t \right) \frac{d}{dx} \left(\cos^{-1}(x) \right)$$

Now, since $f_{\Theta}(\theta) = \frac{1}{2\pi}$ and $\frac{d}{dx} \cos^{-1}(x) = -\frac{1}{\sqrt{1-x^2}}$, we have:

$$f_X(x) = rac{1}{2\pi} \left(rac{1}{\sqrt{1-x^2}} + rac{1}{\sqrt{1-x^2}}
ight) \ = rac{1}{\pi\sqrt{1-x^2}}$$

https://math.stackexchange.com/questions/3456122/probability-density-function-

of-harmonic-oscillation

3

Problem definition First order distribution Second order distribution Mean and variance

pdf of $X(t) = \cos(\omega t + \Theta)$

Consider the output of a sinusoidal oscillator that has a random phase and an amplitude of the form:

$$X(t) = cos(\omega t + \Theta)$$

where Θ is a uniform random variable on $[0, 2\pi]$ then the first order pdf of X(t) is

$$f_X(x) = rac{1}{\pi \sqrt{1-x^2}}, \qquad x \in (-1,1)$$

Note that the probability is unaffected by angular velocity and initial phase (ω, θ_0) , which is, intuitively, expected.

https://math.stackexchange.com/questions/3456122/probability-density-function-

of-harmonic-oscillation

イロト イポト イヨト イヨ

Problem definition First order distribution Second order distribution Mean and variance

pdf of $X = \cos(\omega T + \phi)$

• Uniform Random Variable *T*

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

(日)

Problem definition First order distribution Second order distribution Mean and variance

PDF of $X = \cos(\omega T + \phi)$

Let *T* be a uniform random variable on $[0, \frac{2\pi}{\omega}]$ that describes time. Then $F_T(t) = \frac{\omega}{2\pi} \cdot t = ft$, where *f* is the oscilation's frequency. Now, let:

$$X = \cos(\omega T + \phi)$$

be the **random variable** describing x in terms of T. not a time function

$$X(t) \neq \cos(\omega T + \phi)$$

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Problem definition First order distribution Second order distribution Mean and variance

PDF of $X = \cos(\omega T + \phi)^{T}$

$$F_X(x) = P(X \le x)$$

= $P(\cos(\omega T + \phi) \le x)$
= $P(\cos^{-1}(x) \le \omega T + \phi \le 2\pi - \cos^{-1}(x))$
= $P\left(\frac{\cos^{-1}(x) - \phi}{\omega} \le T \le \frac{2\pi - \cos^{-1}(x) - \phi}{\omega}\right)$
= $F_T\left(\frac{2\pi - \cos^{-1}(x) - \phi}{\omega}\right) - F_T\left(\frac{\cos^{-1}(x) - \phi}{\omega}\right)$

https://math.stackexchange.com/questions/3456122/probability-density-functionof-harmonic-oscillation

(日)

э

Problem definition First order distribution Second order distribution Mean and variance

pdf of $X(t) = \cos(\omega t + \Theta)$

Differentiating both sides, we get:

$$\begin{aligned} \frac{d}{dx}F_X(x) &= \frac{d}{dx} \left\{ F_T\left(\frac{2\pi - \cos^{-1}(x) - \phi}{\omega}\right) - F_T\left(\frac{\cos^{-1}(x) - \phi}{\omega}\right) \right\} \\ &= \frac{d}{dt}F_T\left(\frac{2\pi - \cos^{-1}(x) - \phi}{\omega}\right) \frac{d}{dx}\left(-\frac{\cos^{-1}(x)}{\omega}\right) \\ &- \frac{d}{dt}F_T\left(\frac{\cos^{-1}(x) - \phi}{\omega}\right) \frac{d}{dx}\left(\frac{\cos^{-1}(x)}{\omega}\right) \\ &f_X(x) &= f_T\left(\frac{\cos^{-1}(x) - \phi}{\omega}\right) \frac{d}{dx}\left(-\frac{\cos^{-1}(x)}{\omega}\right) \\ &- f_T\left(\frac{2\pi - \cos^{-1}(x) - \phi}{\omega}\right) \frac{d}{dx}\left(\frac{\cos^{-1}(x)}{\omega}\right) \end{aligned}$$

https://math.stackexchange.com/questions/3456122/probability-density-function-

Young W Lim Stationary Random Processes - Examples

Problem definition First order distribution Second order distribution Mean and variance

PDF of $X = \cos(\omega T + \phi)$

Differentiating both sides, we get:

$$f_X(x) = f_T\left(\frac{\cos^{-1}(x) - \phi}{\omega}\right) \frac{\left(-\cos^{-1}(x)\right)'}{\omega} - f_T\left(\frac{2\pi - \cos^{-1}(x) - \phi}{\omega}\right) \frac{\left(\cos^{-1}(x)\right)'}{\omega}$$

Now, since $f_T(t) = f = \frac{\omega}{2\pi}$ and $\frac{d}{dx}\cos^{-1}(x) = -\frac{1}{\sqrt{1-x^2}}$, we have:

$$egin{aligned} f_X(x) &= rac{1}{2\pi} \left(rac{1}{\sqrt{1-x^2}} + rac{1}{\sqrt{1-x^2}}
ight) \ &= rac{1}{\pi\sqrt{1-x^2}} \end{aligned}$$

https://math.stackexchange.com/questions/3456122/probability-density-function-

of-harmonic-oscillation

э

Problem definition First order distribution Second order distribution Mean and variance

PDF of $X = \cos(\omega T + \phi)$

$$f_X(x) = rac{1}{\pi \sqrt{1^2 - x^2}}, \quad x \in (-1, 1)$$

the probability is unaffected by angular velocity (ω) and initial phase (ϕ), which is, intuitively, expected.

https://math.stackexchange.com/questions/3456122/probability-density-function-

of-harmonic-oscillation

(日)
Second order distribution

Outline

1 Random Phase Oscillator

- Problem definition
- First order distribution • Uniform random variable Θ • Uniform random variable T

Second order distribution

- Mean and variance
- - Examples A
 - Examples B

< ∃ >

Problem definition First order distribution Second order distribution Mean and variance

Second order distribution (1)

to get the second-order distribution use the conditional distribution $f_{X(t_1)|X(t_2)}(x_1|x_2)$ as in :

$$f_{X(t_1),X(t_2)}(x_1,x_2) = f_{X(t_2)}(x_2)f_{X(t_1)|X(t_2)}(x_1|x_2)$$

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

《口》《聞》 《臣》 《臣》

Problem definition First order distribution Second order distribution Mean and variance

Second order distribution (2)

 $x_2 = x(t_2) = \cos(\omega t_2 + \theta)$ This can happen only when :

$$(\omega t_2 + \theta) = \cos^{-1}(x_2)$$
$$(\omega t_2 + \theta) = 2\pi - \cos^{-1}(x_2)$$

$$\theta = \cos^{-1}(x_2) - \omega t_2$$

$$\theta = 2\pi - \cos^{-1}(x_2) - \omega t_2$$

where $0 \le \cos^{-1}(x_2) \le \pi$ and $0 \le \theta \le 2\pi$

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

(4 同) (ヨ) (ヨ)

Problem definition First order distribution Second order distribution Mean and variance

Second order distribution (3)

given that
$$x_2 = x(t_2) = \cos(\omega t_2 + \theta)$$
:
find θ ,

$$\theta = \begin{cases} +\left(\cos^{-1}(x_2) - \omega t_2\right) \\ -\left(\cos^{-1}(x_2) + \omega t_2\right) \end{cases}$$

then $x_1 = x(t_1) = \cos(\omega t_1 + \theta)$ have two values

$$x(t_{1}) = \begin{cases} \cos(\omega t_{1} + (\cos^{-1}(x(t_{2})) - \omega t_{2})) = x_{11} \\ \cos(\omega t_{1} - (\cos^{-1}(x(t_{2})) + \omega t_{2})) = x_{12} \end{cases}$$

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

- 4 同 6 4 日 6 4 日 6

Problem definition First order distribution Second order distribution Mean and variance

Second order distribution (4)

given that $x_2 = x(t_2) = \cos(\omega t_2 + \theta)$ find θ , then $x_1 = x(t_1) = \cos(\omega t_1 + \theta)$ has only two values with an equal probability 0.5

$$x(t_{1}) = \begin{cases} \cos(\omega t_{1} + (\cos^{-1}(x(t_{2})) - \omega t_{2})) = x_{11} \\ \cos(\omega t_{1} - (\cos^{-1}(x(t_{2})) + \omega t_{2})) = x_{12} \end{cases}$$

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

Problem definition First order distribution Second order distribution Mean and variance

Second order distribution (5)

the conditional distribution of $x(t_1) = x_1$ given that $x(t_2) = x_2$:

$$f_{X(t_1)|X(t_2)}(x_1|x_2) = \left(\frac{1}{2}\delta(x_1 - x_{11}) + \frac{1}{2}\delta(x_1 - x_{12})\right)$$

= $\frac{1}{2}\delta(x_1 - \cos[\omega t_1 + (\cos^{-1}(x_2) - \omega t_2)])$
+ $\frac{1}{2}\delta(x_1 - \cos[\omega t_1 - (\cos^{-1}(x_2) + \omega t_2)])$

$$\begin{split} f_{X(t_1)|X(t_2)}(x(t_1)|x(t_2)) &= \left(\frac{1}{2}\delta(x(t_1) - x_{11}) + \frac{1}{2}\delta(x(t_1) - x_{12})\right) \\ &= \frac{1}{2}\delta\left(x(t_1) - \cos\left[\omega t_1 + \left(\cos^{-1}(x(t_2) - \omega t_2)\right)\right] \\ &+ \frac{1}{2}\delta\left(x(t_1) - \cos\left[\omega t_1 - \left(\cos^{-1}(x(t_2) + \omega t_2)\right)\right]\right) \end{split}$$

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf 🛛 🗤 🕞 🖉 🖌 🖉 🕨 🛬 🖉

Problem definition First order distribution Second order distribution Mean and variance

First order distribution $f_X(x)$ (1)

the first order distribution of $x(t_2) = x_2 = \cos(\omega t_2 + \theta)$:

$$f_{X(t_2)}(x_2) = \frac{1}{2\pi\sqrt{1-x_2^2}}$$
$$f_{X(t_2)}(x(t_2)) = \frac{1}{2\pi\sqrt{1-x^2(t_2)}}$$

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Problem definition First order distribution Second order distribution Mean and variance

First order distribution $f_X(x)$ (2)

the first order distribution $f_X(x)$ of $X(t, \theta) = \cos(\omega t + \theta)$

- dependent only on the set of values $x \ (-1 \le x \le 1)$ that the process $X(t, \theta)$ takes
- independent of
 - the particular sampling instant t
 - the constant phase offset $heta_0=\omega t$

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

4 B 6 4 B

Problem definition First order distribution Second order distribution Mean and variance

Second order distribution (7)

The second order pdf of the process $X(t) = cos(\omega t + \Theta)$

$$\begin{split} f_{X(t_1),X(t_2)}(x_1,x_2) &= f_{X(t_1)}(x_1)f_{X(t_2)|X(t_1)}(x_2|x_1) \\ &= f_{X(t_1)}(x_1)\left(\frac{1}{2}\delta(x_2 - x_{21}) + \frac{1}{2}\delta(x_2 - x_{22})\right) \\ f_{X(t_1),X(t_2)}(x_1,x_2) &= f_{X(t_2)}(x_2)f_{X(t_1)|X(t_2)}(x_1|x_2) \\ &= f_{X(t_1)}(x_2)\left(\frac{1}{2}\delta(x_1 - x_{11}) + \frac{1}{2}\delta(x_1 - x_{12})\right) \end{split}$$

where $x(t_1) = x_1$ and $x(t_2) = x_2$

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Problem definition First order distribution Second order distribution Mean and variance

Second order distribution (8)

$$f_{X(t_1),X(t_2)}(x_1,x_2) = f_{X(t_2)}(x_2)f_{X(t_1)|X(t_2)}(x_1|x_2)$$
$$= \left\{\frac{1}{2\pi\sqrt{1-x_2^2}}\right\}\delta\left(x_1 - \cos\left[\omega t_1 + \left(\cos^{-1}(x_2) - \omega t_2\right)\right]\right)$$
$$+ \left\{\frac{1}{2\pi\sqrt{1-x_2^2}}\right\}\delta\left(x_1 - \cos\left[\omega t_1 - \left(\cos^{-1}(x_2) + \omega t_2\right)\right]\right)$$

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

(日)

э

Problem definition First order distribution Second order distribution Mean and variance

Second order distribution (9)

$$f_{X(t_1),X(t_2)}(x(t_1),x(t_2)) = f_{X(t_2)}(x(t_2))f_{X(t_1)|X(t_2)}(x(t_1)|x(t_2))$$

$$= \left\{ \frac{1}{2\pi\sqrt{1-x^{2}(t_{2})}} \right\} \delta(x(t_{1}) - \cos[\omega t_{1} + (\cos^{-1}(x(t_{2})) - \omega t_{2})]) \\ + \left\{ \frac{1}{2\pi\sqrt{1-x^{2}(t_{2})}} \right\} \delta(x(t_{1}) - \cos[\omega t_{1} - (\cos^{-1}(x(t_{2})) + \omega t_{2})])$$

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

(日)

Problem definition First order distribution Second order distribution Mean and variance

Second order distribution (10)

The second order pdf can thus be written as

$$f_{X(t_1),X(t_2)}(x_1,x_2) = f_{X(t_2)}(x_2)f_{X(t_2)|X(t_1)}(x_1|x_2)$$

= $f_{X(t_2)}(x_2)\left(\frac{1}{2}\delta(x_1-x_{11}) + \frac{1}{2}\delta(x_1-x_{12})\right)$

$$f_{X(t_1),X(t_2)}(x(t_1),x(t_2)) = f_{X(t_2)}(x(t_2))f_{X(t_2)|X(t_1)}(x(t_1)|x(t_2))$$

= $f_{X(t_2)}(x(t_2))\left(\frac{1}{2}\delta(x(t_1)-x_{11})+\frac{1}{2}\delta(x(t_1)-x_{12})\right)$

These depend only on $t_2 - t_1$, and thus **the second order pdf** is **stationary**

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

4 3 5 4 3 5

Problem definition First order distribution Second order distribution Mean and variance

Second order distribution (11)

given that $x(t_2) = x_2 = \cos(\omega t_2 + \theta)$ find θ , then $x(t_1) = x_1 = \cos(\omega t_1 + \theta)$ has only two values with an equal probability 0.5

$$x(t_{1}) = \begin{cases} x_{11} = \cos(\omega t_{1} + (\cos^{-1}(x(t_{2})) - \omega t_{2})) \\ x_{12} = \cos(\omega t_{1} - (\cos^{-1}(x(t_{2})) + \omega t_{2})) \end{cases}$$

$$f_{X(t_1),X(t_2)}(x(t_1),x(t_2)) = f_{X(t_2)}(x(t_2))f_{X(t_2)|X(t_1)}(x(t_1)|x(t_2))$$

= $f_{X(t_2)}(x(t_2))\left(\frac{1}{2}\delta(x(t_1)-x_{11})+\frac{1}{2}\delta(x(t_1)-x_{12})\right)$

These depend only on $t_2 - t_1$, and thus the second order pdf is stationary

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

Problem definition First order distribution Second order distribution Mean and variance

Second order distribution (12)

$$\delta(x(t_1) - x_{11})$$
 when $x(t_1)$ is equal to $x_{11} = \cos(\omega t_1 + \theta_1)$
 $\delta(x(t_1) - x_{12})$ when $x(t_1)$ is equal to $x_{12} = \cos(\omega t_1 + \theta_2)$

$$f_{X(t_2)}(x(t_2)) = \frac{1}{2\pi\sqrt{1-x^2(t_2)}}$$

These depend only on $t_2 - t_1$, and thus the second order pdf is stationary

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

< A ▶

Problem definition First order distribution Second order distribution Mean and variance

Second-Order Stationary Process

$f_X(x_1, x_2; t_1, t_2)$

if X(t) is to be a second-order stationary

$$f_X(x_1, x_2; t_1, t_2) = f_X(x_1, x_2; t_1 + \Delta, t_2 + \Delta)$$

must be true for any time t_1 , t_2 and any real number Δ

the second order density function does not change with a shift in time origin

- 4 同 ト 4 ヨ ト 4 ヨ ト

Problem definition First order distribution Second order distribution Mean and variance

Second-Order Stationary Process

$f_X(x_1, x_2; t_1, t_2)$

- f_X(x₁,x₂;t₁,t₂) is independent of t₁ and t₂ the second order density function does not change with a shift in time origin
- the autocorrelation function

 $R_{XX}(t,t+\tau) = E[X(t)X(t+\tau)] = R_{XX}(\tau)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Problem definition First order distribution Second order distribution Mean and variance

э.

Mean and variance

Outline

1 Random Phase Oscillator

- Problem definition
- First order distribution • Uniform random variable Θ • Uniform random variable T
- Second order distribution
- Mean and variance
- - Examples A
 - Examples B

Problem definition First order distribution Second order distribution Mean and variance

Example: $X(t) = \cos(\omega t + \Theta)$

- the random process X(t)
- the first-order moments μ_X
- the second-order moments σ_X^2

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

.

< A ▶

Problem definition First order distribution Second order distribution Mean and variance

Example: $X(t) = \cos(\omega t + \Theta)$

The **mean** of the process is obtained by taking the **expectation** operator with respect to the **random** parameter Θ on both sides

 $X_t(\Theta) = \cos(\omega t + \Theta)$ $E_{\Theta} [X_t(\Theta)] = E_{\Theta} [\cos(\omega t + \Theta)]$

note that the expectation integral is a linear operation:

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

- 母 ト - ヨ ト - ヨ ト

Problem definition First order distribution Second order distribution Mean and variance

Example: $X(t) = \cos(\omega t + \Theta)$

$$\mu_{X} = E_{\Theta}[X_{t}(\Theta)] = E_{\Theta}[\cos(\omega t + \Theta)]$$

= $E_{\Theta}[\cos(\omega t)\cos(\Theta) - \sin(\omega t)\sin(\Theta)]$
= $E_{\Theta}[\cos(\Theta)]\cos(\omega t) - E_{\Theta}[\sin(\Theta)]\sin(\omega t)$

Since the random parameter Θ is uniformly distributed

$$\mu_{X} = E_{\Theta}[\cos(\Theta)]\cos(\omega t) - E_{\Theta}[\sin(\Theta)]\sin(\omega t)$$
$$= \cos(\omega t) \left(\frac{1}{2\pi}\right) \int_{0}^{2\pi} \cos(\theta) d\theta - \sin(\omega t) \left(\frac{1}{2\pi}\right) \int_{0}^{2\pi} \sin(\theta) d\theta$$
$$= 0$$

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

(日)

Problem definition First order distribution Second order distribution Mean and variance

Example: $X(t) = \cos(\omega t + \Theta)$

The variance of the random process X(t)

$$\sigma_X^2 = E_{\Theta}[(x_t(\Theta) - \mu_X)^2] = E_{\Theta}\left[[x_t(\Theta)]^2\right] - \mu_X^2$$

Substituting the mean of the process

$$\sigma_X^2 = \left(\frac{1}{2\pi}\right) \int_0^{2\pi} \cos^2(\omega t + \theta) d\theta$$
$$= \left(\frac{1}{2\pi}\right) \int_0^{2\pi} [1 + \cos(2\omega t + 2\theta)2] d\theta$$
$$= \frac{1}{2}$$

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

(E)

< A ▶

Problem definition First order distribution Second order distribution Mean and variance

Example:
$$X(t) = \cos(\omega t + \Theta)$$

the average power of the random sinusoidal signal X(t)

$$P_{ave}^X = \sigma_X^2 = \frac{1}{2}$$

the same as the average power of a sinusoid the phase is $\underline{\mathsf{not}}$ random

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

- - E + - E +

< A ▶

Problem definition First order distribution Second order distribution Mean and variance

Example:
$$X(t) = \cos(\omega t + \Theta)$$

the correlation between the R.Vs $x(t_1)$ and $x(t_2)$ denoted as $R_{XX}(t_1, t_2)$

$$\begin{aligned} R_{XX}(t_1, t_2) &= E_{\Theta}[x(t_1)x(t_2)] = \int_0^{2\pi} \cos[\omega t_1 + \theta] \cos[\omega t_2 + \theta] d\theta \\ &= \left(\frac{1}{4\pi}\right) \int_0^{2\pi} \cos[\omega(t_1 + t_2) + 2\theta] d\theta \\ &+ \left(\frac{1}{4\pi}\right) \int_0^{2\pi} \cos[\omega(t_1 - t_2)] d\theta \\ &= \left(\frac{1}{2}\right) \cos[\omega(t_1 - t_2)] \end{aligned}$$

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

.

イロト イボト イヨト イヨト

3

Problem definition First order distribution Second order distribution Mean and variance

Example: $X(t) = \cos(\omega t + \Theta)$

.

The covariance of R.Vs $X(t_1)$ and $X(t_2)$ denoted $C_{XX}(t_1, t_2)$

$$C_{XX}(t_1, t_2) = R_{xx}(t_1, t_2) - \mu_X(t_1)\mu_X(t_2) = \left(\frac{1}{2}\right)\cos[\omega(t_1 - t_2)]$$

The correlation coefficient of the R.Vs $X(t_1)$ and $X(t_2)$ denoted $\rho_{XX}(t_1, t_2)$

$$\rho_{XX}(t_1,t_2) = \cos[\omega(t_1-t_2)]$$

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

- 4 同 ト - 4 三 ト

Problem definition First order distribution Second order distribution Mean and variance

Example: $X(t) = \cos(\omega t + \Theta)$

Looking at the **mean** and the **variance** of the random process X(t)we can see that they are <u>shift-invariant</u> and consequently the process is **first-order stationary**. The ACF and other second-order statistics of the process are dependent only on the variable $\tau = t_1 - t_2$. The random process X(t) is therefore a **WSS** process also. The ACF can then expressed in terms of the variable $\tau = t_1 - t_2$ as:

$$R_{XX}(\tau) = \left(\frac{1}{2}\right)\cos(\omega\tau)$$

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

- 母 ト - ヨ ト - ヨ ト

Examples - A Examples - B

Outline

Examples - A Examples - B

Example A.1: $X(t) = \cos(\omega t)$

A white noise is not necessarily strictly stationary.

Let ω be a random variable uniformly distributed in the interval $(0, 2\pi)$

define the time series $\{X(t)\}$

$$X(t) = \cos(\omega t) \quad (t = 1, 2, ...)$$

https://en.wikipedia.org/wiki/Stationary process

伺 ト イヨト イヨト

Examples - A Examples - B

Example A.1: $X(t) = \cos(\omega t)$

Then

$$E[X(t)] = \frac{1}{2\pi} \int_0^{2\pi} \cos(t\omega) d\omega = 0$$
$$Var(X(t)) = \frac{1}{2\pi} \int_0^{2\pi} \cos^2(t\omega) d\omega = 1/2$$
$$Cov(x(t), x(s)) = \frac{1}{2\pi} \int_0^{2\pi} \cos(t\omega) \cos(s\omega) d\omega = 0 \quad \forall t \neq s$$

So $\{X(t)\}$ is a white noise, however it is not strictly stationary.

https://en.wikipedia.org/wiki/Stationary process

A B F A B F

A 1

Example A.2: $X(t) = \cos(t+U)$

a **stationary process** example for which any <u>single</u> <u>realisation</u> has an apparently noise-free structure,

Let U have a uniform distribution on $(0,2\pi]$ and define the time series $\{X(t)\}$ by

$$X(t) = \cos(t+U)$$
 for $t \in \mathbb{R}$

then $\{X(t)\}$ is strictly stationary (SSS).

https://en.wikipedia.org/wiki/Stationary_process

伺 ト イヨト イヨト

Examples - A Examples - B

Example A.2: $X(t) = \cos(t+U)$

Show that X(t) is a **WSS** process. We need to check two conditions:

$$\mu_X(t) = \mu_X$$
 for $t \in \mathbb{R}$

$$R_X(t_1,t_2)=R_X(t_1-t_2) \quad ext{ for } t_1,t_2\in\mathbb{R}$$

https://www.probabilitycourse.com/chapter10/10 1 4 stationary processes.php

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Examples - A Examples - B

Example A.2: $X(t) = \cos(t+U)$

$$\mu_X(t) = E[X(t)]$$

= $E[\cos(t+U)]$
= $\frac{1}{2\pi} \int_0^{2\pi} \cos(t+u) du$
= 0, for all $t \in \mathbb{R}$.

https://www.probabilitycourse.com/chapter10/10 1 4 stationary processes.php

イロト イポト イヨト イヨト

э

Examples - A Examples - B

Example A.2: $X(t) = \cos(t+U)$

$$\begin{aligned} R_X(t_1, t_2) &= E[X(t_1)X(t_2)] \\ &= E[\cos(t_1 + U)\cos(t_2 + U)] \\ &= E\left[\frac{1}{2}\cos(t_1 + t_2 + 2U) + \frac{1}{2}\cos(t_1 - t_2)\right] \\ &= E\left[\frac{1}{2}\cos(t_1 + t_2 + 2U)\right] + E\left[\frac{1}{2}\cos(t_1 - t_2)\right] \\ &= \frac{1}{2\pi}\int_0^{2\pi}\cos(t_1 + t_2 + u) \, du + \frac{1}{2}\cos(t_1 - t_2) \\ &= 0 + \frac{1}{2}\cos(t_1 - t_2) = \frac{1}{2}\cos(t_1 - t_2), \quad \text{for all } t_1, t_2 \in \mathbb{R}. \end{aligned}$$

https://www.probabilitycourse.com/chapter10/10_1_4_stationary_processes.php

Example A.3: $X(t) = \alpha \cos(\omega t + \Theta)$

The random phase signal $X(t) = \alpha cos(\omega t + \Theta)$ where $\Theta \in U[0, 2\pi]$ is **SSS** it is known that the **first order pdf** is

$$f_{X(t)}(x) = rac{1}{\pi lpha \sqrt{1 - (x/lpha)^2}}, \quad -lpha < x < +lpha$$

which is independent of t, and is therefore stationary

http://isl.stanford.edu/~abbas/ee278/lect07.pdf

- - E + - E +

Example A.3: $X(t) = \alpha \cos(\omega t + \Theta)$

To find the second order pdf,

note that if we are given the value of X(t) at one point, say t_1 , there are (at most) two possible sample functions

• $X(t_1) = x_1$

• at t_1 , two sinusoid waves intersect with each other

•
$$X(t_2) = x_{21}$$
 or x_{22}

 \bullet at $t_2,$ two sinusoid waves do not intersect with each other <code>http://isl.stanford.edu/~abbas/ee278/lect07.pdf</code>

A (1) < A (2) < A (2) </p>

Examples - A Examples - B

Example A.3: $X(t) = \alpha \cos(\omega t + \Theta)$

The second order pdf can thus be written as

$$f_{X(t_1),X(t_2)}(x_1,x_2) = f_{X(t_1)}(x_1)f_{X(t_2)|X(t_1)}(x_2|x_1)$$

= $f_{X(t_1)}(x_1)\left(\frac{1}{2}\delta(x_2-x_{21}) + \frac{1}{2}\delta(x_2-x_{22})\right)$

which depends only on $t_2 - t_1$, and thus the second order pdf is **stationary**

http://isl.stanford.edu/~abbas/ee278/lect07.pdf
Examples - A Examples - B

Example A.3: $X(t) = \alpha \cos(\omega t + \Theta)$

- if we know that $X(t_1) = x_1$ and $X(t_2) = x_2$, the sample path is totally <u>determined</u> except when $x_1 = x_2 = 0$,
- when x₁ = x₂ = 0, two paths may be possible
- thus all n-th order pdfs are stationary

http://isl.stanford.edu/~abbas/ee278/lect07.pdf

・ 同 ト ・ ヨ ト ・ ヨ ト

Examples - A Examples - B

Outline

Examples - B

Examples - A Examples - B

Example B.1: X(t) = Y

Let Y be any scalar random variable, and define a time-series $\{X(t)\}$, by

X(t) = Y for all t.

Then $\{X(t)\}$ is a **stationary** time series

- realisations consist of a series of constant values,
- a different constant value for each realisation.

https://en.wikipedia.org/wiki/Stationary process

伺 ト イヨト イヨト

Examples - A Examples - B

Example B.1: X(t) = Y

$$X(t) = Y$$
 for all t .

X(t) is a first-order stationary

$$f_X(x_1; t_1) = f_X(x_1; t_1 + \Delta) = const$$

X(t) is a second-order stationary

 $f_X(x_1, x_2; t_1, t_2) = f_X(x_1, x_2; t_1 + \Delta, t_2 + \Delta) = const$

X(t) is to be a **N**th-order stationary

 $f_X(x_1,\cdots,x_N;t_1,\cdots,t_N) = f_X(x_1,\cdots,x_N;t_1+\Delta,\cdots,t_N+\Delta) = const$

https://en.wikipedia.org/wiki/Stationary_process

3

Examples - A Examples - B

Example B.2: Z(t) = X(t) + Y(t)

Let X(t) and Y(t) be two jointly **WSS** random processes.

Consider the random process Z(t)

Z(t) = X(t) + Y(t)

Show that Z(t) is **WSS**.

https://www.probabilitycourse.com/chapter10/10 1 4 stationary processes.php

(4 同) (ヨ) (ヨ)

Examples - A Examples - B

Example B.2: Z(t) = X(t) + Y(t)

Since X(t) and Y(t) are jointly WSS, we conclude

$$\mu_{X(t)} = \mu_X$$

$$\mu_{Y(t)} = \mu_Y$$

$$R_X(t_1, t_2) = R_X(t_1 - t_2)$$

$$R_Y(t_1, t_2) = R_Y(t_1 - t_2)$$

$$R_{XY}(t_1, t_2) = R_{XY}(t_1 - t_2)$$

https://www.probabilitycourse.com/chapter10/10 1 4 stationary processes.php

э

Examples - A Examples - B

Example B.2: Z(t) = X(t) + Y(t)

Since X(t) and Y(t) are jointly WSS, we conclude

$$\mu_{Z}(t) = E[X(t) + Y(t)]$$
$$= E[X(t)] + E[Y(t)]$$
$$= \mu_{X} + \mu_{Y}.$$

 $https://www.probabilitycourse.com/chapter10/10_1_4_stationary_processes.php$

イロト イポト イヨト イヨト

э

Example B.2: Z(t) = X(t) + Y(t)

Since X(t) and Y(t) are jointly WSS, we conclude

$$\begin{aligned} R_Z(t_1, t_2) &= E\left[\left(X(t_1) + Y(t_1)\right)\left(X(t_2) + Y(t_2)\right)\right] \\ &= E[X(t_1)X(t_2)] + E[X(t_1)Y(t_2)] \\ &+ E[Y(t_1)X(t_2)]E[Y(t_1)Y(t_2)] \\ &= R_X(t_1 - t_2) + R_{XY}(t_1 - t_2) \\ &+ R_{YX}(t_1 - t_2) + R_Y(t_1 - t_2). \end{aligned}$$

https://www.probabilitycourse.com/chapter10/10 1 4 stationary processes.php

イロト イポト イヨト イヨト

3

Examples - A Examples - B

Example B.3: $X(t) = \pm \sin t, \pm \cos t$

Let

$$X(t) = \begin{cases} +\sin t & p_0 = \frac{1}{4} \\ -\sin t & p_1 = \frac{1}{4} \\ +\cos t & p_2 = \frac{1}{4} \\ -\cos t & p_3 = \frac{1}{4} \end{cases}$$

$$E[X(t)] = 0$$

 $R_X(t_1, t_2) = rac{1}{2}cos(t_2 - t_1)$

thus X(t) is WSS

http://isl.stanford.edu/~abbas/ee278/lect07.pdf

Image: Image:

- * E > * E >

э

Examples - A Examples - B

Example B.3: $X(t) = \pm \sin t, \pm \cos t$

Let

$$X(t) = \begin{cases} +\sin t & p_0 = \frac{1}{4} \\ -\sin t & p_1 = \frac{1}{4} \\ +\cos t & p_2 = \frac{1}{4} \\ -\cos t & p_3 = \frac{1}{4} \end{cases}$$

But X(0) and $X(\frac{\pi}{4})$ do not have the same pmf (different ranges), so the first order pmf is not stationary, and the process is not **SSS**

http://isl.stanford.edu/~abbas/ee278/lect07.pdf

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Young W Lim Stationary Random Processes - Examples

æ