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sin(t), Asin(t)

sin(t)

not random process.

x(t) = Asin(t)

a random process because A is a random variable
However, x(t) is not stationary, but it is cyclostationary,
its statistical properties vary periodically.

https://dsp.stackexchange.com/questions/32000/why-is-sint-a-stationary-process
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Asin(t + φ)

x(t) = Asin(t + φ)

the x(t) process is stationary
because of the added random phase
the random phase φ ∈ [0,2π] is
a uniformly distributed random variable
which is independent of A.
its statistical properties are independent of t,
and hence, the process is stationary.

https://dsp.stackexchange.com/questions/32000/why-is-sint-a-stationary-process
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Signals in an oscilloscope

When analyzing a signal with an oscilloscope,
it can be observed that

the signal’s amplitude spectrum
does not vary over moving windows

so a sinusoidal wave is sort of stationary in frequency.

Additionally, the signal is itself stationary in envelope

(modulus 1 for the analytic version of the signal).

https://dsp.stackexchange.com/questions/32000/why-is-sint-a-stationary-process
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Window function (1)

In signal processing and statistics, a window function
is a mathematical function that is

zero-valued outside of some chosen interval
normally symmetric around the middle of the interval
usually near a maximum in the middle
usually tapering away from the middle.

https://en.wikipedia.org/wiki/Window_function
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Window function (2)

when another function or waveform is
"multiplied" by a window function,

the product is also zero-valued outside the interval:
all that is left is the part where they overlap,
the "view through the window".

https://en.wikipedia.org/wiki/Window_function
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Envelope

the envelope of an oscillating signal is
a smooth curve outlining its extremes.
the envelope thus generalizes
the concept of a constant amplitude
into an instantaneous amplitude.
a modulated sine wave varying
between an upper envelope and a lower envelope.
the envelope function may be a function
of time, space, angle, or indeed of any variable

https://en.wikipedia.org/wiki/Envelope_(waves)
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Random Variable Definition

A random variable
a real function over a sample space S = {s1,s2,s3, ...,sn}

s → X (s)

x = X (s)

a random variable : a capital letter X
a particular value : a lowercase letter x

a sample space S = {s1,s2,s3, ...,sn}
an element of S : s

Young W Lim Stationary Random Processes - Examples
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Random Variable Example

Example

X (s1) = x1 s1 −→ x1
X (s2) = x2 s2 −→ x2
... ...

X (sn) = xn sn −→ xn

S = {s1, s2, s3, ..., sn} a sample space
X = {x1,x2,x3, ...,xn} a random variable
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Random Process (1)

A random process
a function of both time tand outcome θ

X (t,θ)

assigning a time function to every outcome θi

θi → xi (t)

where xi (t) = x(t,θi )�
�

�
�

the family of such time functions
is called a random process
and denoted by X (t,θ)
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Random Process (2)

A random process
a random process X (t,θ)
assigns a time function for a every outcome θ

x(t,θ) = X (t,θ)

a short notation
x(t) = X (t)
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Ensemble of time functions

Time functions
A random process X (t,θ) represents
a family or ensemble of time functions

X (t,θ1) = x1(t) θ1 −→ x1(t) = cos(ωt + θ1)
X (t,θ2) = x2(t) θ2 −→ x2(t) = cos(ωt + θ2)
... ...

X (t,θn) = xn(t) θn −→ xn(t) = cos(ωt + θn)

S = { θ1, θ2, θ3, ... , θn} a sample space
X (t) = {x1(t),x2(t),x3(t), ... ,xn(t)} a random process
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A sample function x(t,θ )

A random process X (t,θ) represents
a family or ensemble of time functions

θ → x(t,θ) = cos(ωt + θ)

x(t,θ) represents
a sample function
an ensemble member
a realization of the process

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Random process X (t,θ )

A random process X (t,θ) represents
a family or ensemble of time functions

θ → x(t,θ) = cos(ωt + θ)

x(t) = X (t,θ)

X (t,θ) becomes
a single time function x(t,θ)

when t is a variable and θ is fixed at an outcome
http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Random variables with time

a random process X (t,s) represents a single time function
when t is a variable and s is fixed at an outcome

a random process X (t,s) represents a single random variable
when both t and s are fixed at a time and an outcome, respectively

Xi =X (ti ,s) = X (ti ) random variable

X (t,s) = X (t) random process
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Random phase in X (t) = cos(ωt + Θ)

Consider the output of a sinusoidal oscillator
that has a random phase and an amplitude of the form:

X (t) = cos(ωt + Θ)

where the random variable Θ ∼ U([0,2π])

to specify the explicit dependence
on the underlying sample space S
the oscillator output can be written as

x(t,Θ) = cos(ωt + Θ)

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Random variable Xt(θ )

Consider the random variable

X (t,θ) = cos(ωt + θ)

where the time t is fixed
In other words,

Xt(θ) = cos(ωt + θ)

where θ0 = ωt is fixed (a non-random quantity)
thus the time t is fixed

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Values of a time function

Consider the random variable for the fixed time t

Xt(θ) = cos(ωt + θ)

if the sample value θ as well as the time t is fixed,
then the values of the time function

x1 = x(t1) = cos(ωt1 + θ)

x2 = x(t2) = cos(ωt2 + θ)

where x is the time function for a fixed outcome θ and
let xi denotes the value of the time function x at times ti
(here xi is not a sample function)

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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First order distribution (1)

The first order distribution of the process X (t) = cos(ωt + Θ)
can be found by looking at the distribution
of the random variable

Xt(Θ) = cos(θ0 + Θ)

where θ0 = ωt is fixed (a non-random quantity)
this can easily be shown via the derivative method
to be of the form:

fX (x) =
1

π
√
1−x2

, |x |< 1

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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First order distribution (2)

The first order distribution of the process X (t) = cos(ωt + Θ)

fX (x) =
1

π
√
1−x2

, |x |< 1

dependent only on the set of values x
that the process X (t) takes

independent of
the particular sampling instant t
the constant phase offset θ0 = ωt

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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pdf of X (t) = cos(ωt + Θ)

Uniform Random Variable Θ
http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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pdf of X (t) = cos(ωt + Θ)

Let Θ be a uniform random variable on [0,2π]
Then FΘ(θ) = θ

2π
,

X (t) = cos(ωt + Θ)

be the random variable describing x in terms of Θ.
http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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pdf of X (t) = cos(ωt + Θ)

FX (x) = P(X ≤ x)

= P(cos(ωt + Θ)≤ x)

= P
(
cos−1(x)≤ ωt + Θ≤ 2π− cos−1(x)

)
= P

(
cos−1(x)−ωt ≤Θ≤ 2π− cos−1(x)−ωt

)
= FΘ

(
2π− cos−1(x)−ωt

)
−FΘ

(
cos−1(x)−ωt

)
https://math.stackexchange.com/questions/3456122/probability-density-function-

of-harmonic-oscillation
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pdf of X (t) = cos(ωt + Θ)

Differentiating both sides, we get:

d

dx
FX (x) =

d

dx

{
FΘ

(
2π− cos−1(x)−ωt

)
−FΘ

(
cos−1(x)−ωt

)}
=

d

dθ
FΘ

(
2π− cos−1(x)−ωt

) d

dx

(
−cos−1(x)

)
− d

dθ
FΘ

(
cos−1(x)−ωt

) d

dx

(
cos−1(x)

)
fX (x) = fΘ

(
cos−1(x)−ωt

) d

dx

(
−cos−1(x)

)
− fΘ

(
2π− cos−1(x)−ωt

) d

dx

(
cos−1(x)

)
https://math.stackexchange.com/questions/3456122/probability-density-function-

of-harmonic-oscillation
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pdf of X (t) = cos(ωt + Θ)

fX (x) = fΘ
(
cos−1(x)−ωt

) d

dx

(
−cos−1(x)

)
− fΘ

(
2π− cos−1(x)−ωt

) d

dx

(
cos−1(x)

)
Now, since fΘ(θ) = 1

2π
and d

dx cos−1(x) =− 1√
1−x2 , we have:

fX (x) =
1
2π

(
1√

1−x2
+

1√
1−x2

)
=

1
π
√
1−x2

https://math.stackexchange.com/questions/3456122/probability-density-function-

of-harmonic-oscillation
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pdf of X (t) = cos(ωt + Θ)

Consider the output of a sinusoidal oscillator
that has a random phase and an amplitude of the form:

X (t) = cos(ωt + Θ)

where Θ is a uniform random variable on [0,2π]
then the first order pdf of X (t) is

fX (x) =
1

π
√
1−x2

, x ∈ (−1,1)

Note that the probability is unaffected by angular velocity
and initial phase (ω,θ0), which is, intuitively, expected.

https://math.stackexchange.com/questions/3456122/probability-density-function-

of-harmonic-oscillation
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pdf of X = cos(ωT + φ)

Uniform Random Variable T
http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

Young W Lim Stationary Random Processes - Examples



Random Phase Oscillator
Stationary Process Examples

Problem definition
First order distribution
Second order distribution
Mean and variance

PDF of X = cos(ωT + φ)

Let T be a uniform random variable on [0, 2π

ω
]

that describes time. Then FT (t) = ω

2π
· t = ft,

where f is the oscilation’s frequency.
Now, let:

X = cos(ωT + φ)

be the random variable describing x in terms of T .
not a time function

X (t) 6= cos(ωT + φ)

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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PDF of X = cos(ωT + φ)

FX (x) = P(X ≤ x)

= P(cos(ωT + φ)≤ x)

= P
(
cos−1(x)≤ ωT + φ ≤ 2π− cos−1(x)

)
= P

(
cos−1(x)−φ

ω
≤ T ≤ 2π− cos−1(x)−φ

ω

)
= FT

(
2π− cos−1(x)−φ

ω

)
−FT

(
cos−1(x)−φ

ω

)
https://math.stackexchange.com/questions/3456122/probability-density-function-

of-harmonic-oscillation
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pdf of X (t) = cos(ωt + Θ)

Differentiating both sides, we get:

d

dx
FX (x) =

d

dx

{
FT

(
2π− cos−1(x)−φ

ω

)
−FT

(
cos−1(x)−φ

ω

)}
=

d

dt
FT

(
2π− cos−1(x)−φ

ω

)
d

dx

(
−cos−1(x)

ω

)
− d

dt
FT

(
cos−1(x)−φ

ω

)
d

dx

(
cos−1(x)

ω

)

fX (x) = fT

(
cos−1(x)−φ

ω

)
d

dx

(
−cos−1(x)

ω

)
− fT

(
2π− cos−1(x)−φ

ω

)
d

dx

(
cos−1(x)

ω

)
https://math.stackexchange.com/questions/3456122/probability-density-function-

of-harmonic-oscillation
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PDF of X = cos(ωT + φ)

Differentiating both sides, we get:

fX (x) = fT

(
cos−1(x)−φ

ω

) (−cos−1(x)
)′

ω

− fT

(
2π− cos−1(x)−φ

ω

) (
cos−1(x)

)′
ω

Now, since fT (t) = f = ω

2π
and d

dx cos−1(x) =− 1√
1−x2 , we have:

fX (x) =
1
2π

(
1√

1−x2
+

1√
1−x2

)
=

1
π
√
1−x2

https://math.stackexchange.com/questions/3456122/probability-density-function-

of-harmonic-oscillation
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PDF of X = cos(ωT + φ)

fX (x) =
1

π
√
12−x2

, x ∈ (−1,1)

the probability is unaffected by angular velocity (ω)
and initial phase (φ), which is, intuitively, expected.

https://math.stackexchange.com/questions/3456122/probability-density-function-

of-harmonic-oscillation

Young W Lim Stationary Random Processes - Examples



Random Phase Oscillator
Stationary Process Examples

Problem definition
First order distribution
Second order distribution
Mean and variance

Outline

1 Random Phase Oscillator
Problem definition
First order distribution

Uniform random variable Θ
Uniform random variable T

Second order distribution
Mean and variance

2 Stationary Process Examples
Examples - A
Examples - B

Young W Lim Stationary Random Processes - Examples



Random Phase Oscillator
Stationary Process Examples

Problem definition
First order distribution
Second order distribution
Mean and variance

Second order distribution (1)

to get the second-order distribution
use the conditional distribution fX (t1)|X (t2)(x1|x2)
as in :

fX (t1),X (t2)(x1,x2) = fX (t2)(x2)fX (t1)|X (t2)(x1|x2)

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Second order distribution (2)

x2 = x(t2) = cos(ωt2 + θ)
This can happen only when :

(ωt2 + θ) = cos−1(x2)

(ωt2 + θ) = 2π− cos−1(x2)

θ = cos−1(x2)−ωt2

θ = 2π− cos−1(x2)−ωt2

where 0≤ cos−1(x2)≤ π and 0≤ θ ≤ 2π

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Second order distribution (3)

given that x2 = x(t2) = cos(ωt2 + θ):
find θ ,

θ=

{
+
(
cos−1(x2)−ωt2

)
−
(
cos−1(x2) + ωt2

)
then x1 = x(t1) = cos(ωt1 + θ) have two values

x(t1) =

{
cos
(
ωt1 +

(
cos−1(x(t2))−ωt2

))
= x11

cos
(
ωt1−

(
cos−1(x(t2)) + ωt2

))
= x12

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Second order distribution (4)

given that x2 = x(t2) = cos(ωt2 + θ)
find θ , then x1 = x(t1) = cos(ωt1 + θ)
has only two values with an equal probability 0.5

x(t1) =

{
cos
(
ωt1 +

(
cos−1(x(t2))−ωt2

))
= x11

cos
(
ωt1−

(
cos−1(x(t2)) + ωt2

))
= x12

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Second order distribution (5)

the conditional distribution of x(t1) = x1 given that x(t2) = x2:

fX (t1)|X (t2)(x1|x2) =

(
1
2

δ (x1−x11) +
1
2

δ (x1−x12)

)
=

1
2

δ
(
x1− cos

[
ωt1 +

(
cos−1(x2)−ωt2

)])
+

1
2

δ
(
x1− cos

[
ωt1−

(
cos−1(x2) + ωt2

)])
fX (t1)|X (t2)(x(t1)|x(t2)) =

(
1
2

δ(x(t1)−x11) +
1
2

δ(x(t1)−x12)

)
=

1
2

δ
(
x(t1)−cos

[
ωt1 +

(
cos−1(x(t2)−ωt2

)])
+

1
2

δ
(
x(t1)−cos

[
ωt1−

(
cos−1(x(t2) + ωt2

)])
http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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First order distribution fX (x) (1)

the first order distribution of x(t2) = x2 = cos(ωt2 + θ):

fX (t2)(x2) =
1

2π

√
1−x22

fX (t2)(x(t2)) =
1

2π
√

1−x2(t2)

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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First order distribution fX (x) (2)

the first order distribution fX (x) of X (t,θ) = cos(ωt + θ)

dependent only on the set of values x (−1≤ x ≤ 1)
that the process X (t,θ) takes
independent of

the particular sampling instant t
the constant phase offset θ0 = ωt

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Second order distribution (7)

The second order pdf of the process X (t) = cos(ωt + Θ)

fX (t1),X (t2)(x1,x2) = fX (t1)(x1)fX (t2)|X (t1)(x2|x1)

= fX (t1)(x1)

(
1
2

δ (x2−x21) +
1
2

δ (x2−x22)

)
fX (t1),X (t2)(x1,x2) = fX (t2)(x2)fX (t1)|X (t2)(x1|x2)

= fX (t1)(x2)

(
1
2

δ (x1−x11) +
1
2

δ (x1−x12)

)
where x(t1) = x1 and x(t2) = x2

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

Young W Lim Stationary Random Processes - Examples



Random Phase Oscillator
Stationary Process Examples

Problem definition
First order distribution
Second order distribution
Mean and variance

Second order distribution (8)

fX (t1),X (t2)(x1,x2) = fX (t2)(x2)fX (t1)|X (t2)(x1|x2)

=

 1

2π

√
1−x22

δ
(
x1− cos

[
ωt1 +

(
cos−1(x2)−ωt2

)])

+

 1

2π

√
1−x22

δ
(
x1− cos

[
ωt1−

(
cos−1(x2) + ωt2

)])
http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Second order distribution (9)

fX (t1),X (t2)(x(t1),x(t2)) = fX (t2)(x(t2))fX (t1)|X (t2)(x(t1)|x(t2))

=

{
1

2π
√

1−x2(t2)

}
δ
(
x(t1)− cos

[
ωt1 +

(
cos−1(x(t2))−ωt2

)])
+

{
1

2π
√

1−x2(t2)

}
δ
(
x(t1)− cos

[
ωt1−

(
cos−1(x(t2)) + ωt2

)])
http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Second order distribution (10)

The second order pdf can thus be written as

fX (t1),X (t2)(x1,x2) = fX (t2)(x2)fX (t2)|X (t1)(x1|x2)

= fX (t2)(x2)

(
1
2

δ (x1−x11) +
1
2

δ (x1−x12)

)

fX (t1),X (t2)(x(t1),x(t2)) = fX (t2)(x(t2))fX (t2)|X (t1)(x(t1)|x(t2))

= fX (t2)(x(t2))

(
1
2

δ(x(t1)−x11) +
1
2

δ(x(t1)−x12)

)

These depend only on t2− t1,
and thus the second order pdf is stationary

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Second order distribution (11)

given that x(t2) = x2 = cos(ωt2 + θ)
find θ , then x(t1) = x1 = cos(ωt1 + θ)
has only two values with an equal probability 0.5

x(t1) =

{
x11 = cos

(
ωt1 +

(
cos−1(x(t2))−ωt2

))
x12 = cos

(
ωt1−

(
cos−1(x(t2)) + ωt2

))

fX (t1),X (t2)(x(t1),x(t2)) = fX (t2)(x(t2))fX (t2)|X (t1)(x(t1)|x(t2))

= fX (t2)(x(t2))

(
1
2

δ(x(t1)−x11) +
1
2

δ(x(t1)−x12)

)

These depend only on t2− t1,
and thus the second order pdf is stationary

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Second order distribution (12)

δ (x(t1)−x11) when x(t1) is equal to x11 = cos(ωt1 + θ1)
δ (x(t1)−x12) when x(t1) is equal to x12 = cos(ωt1 + θ2)

fX (t2)(x(t2)) =
1

2π
√

1−x2(t2)

These depend only on t2− t1,
and thus the second order pdf is stationary

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Problem definition
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Second order distribution
Mean and variance

Second-Order Stationary Process

fX (x1,x2; t1, t2)

if X (t) is to be a second-order stationary

fX (x1,x2; t1, t2) = fX (x1,x2; t1 + ∆, t2 + ∆)

must be true for any time t1, t2 and any real number ∆

the second order density function
does not change with a shift in time origin
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Second-Order Stationary Process

fX (x1,x2; t1, t2)

fX (x1,x2; t1, t2) is independent of t1and t2
the second order density function
does not change with a shift in time origin

the autocorrelation function
RXX (t, t + τ) = E [X (t)X (t + τ)] = RXX (τ)
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Example: X (t) = cos(ωt + Θ)

the random process X (t)

the first-order moments µX

the second-order moments σ2
X

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Example: X (t) = cos(ωt + Θ)

The mean of the process is obtained
by taking the expectation operator
with respect to the random parameter Θ on both sides

Xt(Θ) = cos(ωt + Θ)

EΘ [Xt(Θ)] = EΘ[cos(ωt + Θ)]

note that the expectation integral is a linear operation:
http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Example: X (t) = cos(ωt + Θ)

µX = EΘ [Xt(Θ)] = EΘ[cos(ωt + Θ)]

= EΘ[cos(ωt)cos(Θ)− sin(ωt)sin(Θ)]

= EΘ[cos(Θ)]cos(ωt)−EΘ[sin(Θ)]sin(ωt)

Since the random parameter Θ is uniformly distributed

µX = EΘ[cos(Θ)]cos(ωt)−EΘ[sin(Θ)]sin(ωt)

= cos(ωt)

(
1
2π

)∫ 2π

0
cos(θ)dθ − sin(ωt)

(
1
2π

)∫ 2π

0
sin(θ)dθ

= 0

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Example: X (t) = cos(ωt + Θ)

The variance of the random process X(t)

σ
2
X = EΘ[(xt(Θ)−µX )2] = EΘ

[
[xt(Θ)]2

]
−µ

2
X

Substituting the mean of the process

σ
2
X =

(
1
2π

)∫ 2π

0
cos2(ωt + θ)dθ

=

(
1
2π

)∫ 2π

0
[1+ cos(2ωt +2θ)2]dθ

=
1
2

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Example: X (t) = cos(ωt + Θ)

the average power of the random sinusoidal signal X(t)

PX
ave = σ

2
X =

1
2

.
the same as the average power of a sinusoid the phase is not
random

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Mean and variance

Example: X (t) = cos(ωt + Θ)

the correlation between the R.Vs x(t1) and x(t2) denoted as
RXX (t1, t2)

RXX (t1, t2) = EΘ[x(t1)x(t2)] =
∫ 2π

0
cos[ωt1 + θ ] cos[ωt2 + θ ]dθ

=

(
1
4π

)∫ 2π

0
cos[ω(t1 + t2) +2θ ]dθ

+

(
1
4π

)∫ 2π

0
cos[ω(t1− t2)]dθ

=

(
1
2

)
cos[ω(t1− t2)]

.
http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Example: X (t) = cos(ωt + Θ)

The covariance of R.Vs X (t1) and X (t2) denoted CXX (t1, t2)

CXX (t1, t2) = Rxx(t1, t2)−µX (t1)µX (t2) =

(
1
2

)
cos[ω(t1− t2)]

The correlation coefficient of the R.Vs X (t1) and X (t2) denoted
ρXX (t1, t2)

ρXX (t1, t2) = cos[ω(t1− t2)]

.
http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Problem definition
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Mean and variance

Example: X (t) = cos(ωt + Θ)

Looking at the mean and the variance
of the random process X (t)
we can see that they are shift-invariant and
consequently the process is first-order stationary.
The ACF and other second-order statistics of the process are
dependent only on the variable τ = t1− t2.
The random process X (t) is therefore a WSS process also.
The ACF can then expressed in terms of the variable τ = t1− t2 as:

RXX (τ) =

(
1
2

)
cos(ωτ)

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Random Phase Oscillator
Stationary Process Examples

Examples - A
Examples - B

Example A.1: X (t) = cos(ωt)

A white noise is not necessarily strictly stationary.

Let ω be a random variable uniformly distributed
in the interval (0,2π)

define the time series {X (t)}

X (t) = cos(ωt) (t = 1,2, ...)

https://en.wikipedia.org/wiki/Stationary_process
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Example A.1: X (t) = cos(ωt)

Then

E [X (t)] =
1
2π

∫ 2π

0
cos(tω)dω = 0

Var(X (t)) =
1
2π

∫ 2π

0
cos2(tω)dω = 1/2

Cov(x(t),x(s)) =
1
2π

∫ 2π

0
cos(tω)cos(sω)dω = 0 ∀t 6= s

So {X (t)} is a white noise,
however it is not strictly stationary.

https://en.wikipedia.org/wiki/Stationary_process
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Example A.2: X (t) = cos(t +U)

a stationary process example
for which any single realisation has
an apparently noise-free structure,

Let U have a uniform distribution on (0,2π] and
define the time series {X (t)} by

X (t) = cos(t +U) for t ∈ R

then {X (t)} is strictly stationary (SSS).

https://en.wikipedia.org/wiki/Stationary_process
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Example A.2: X (t) = cos(t +U)

Show that X (t) is a WSS process.
We need to check two conditions:

µX (t) = µX for t ∈ R

RX (t1, t2) = RX (t1− t2) for t1, t2 ∈ R

https://www.probabilitycourse.com/chapter10/10_1_4_stationary_processes.php
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Example A.2: X (t) = cos(t +U)

µX (t) = E [X (t)]

= E [cos(t +U)]

=
1
2π

∫ 2π

0
cos(t +u) du

= 0, for all t ∈ R.

https://www.probabilitycourse.com/chapter10/10_1_4_stationary_processes.php
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Example A.2: X (t) = cos(t +U)

RX (t1, t2) = E [X (t1)X (t2)]

= E [cos(t1 +U)cos(t2 +U)]

= E

[
1
2

cos(t1 + t2 +2U) +
1
2

cos(t1− t2)

]
= E

[
1
2

cos(t1 + t2 +2U)

]
+E

[
1
2

cos(t1− t2)

]
=

1
2π

∫ 2π

0
cos(t1 + t2 +u) du+

1
2

cos(t1− t2)

= 0+
1
2

cos(t1− t2) =
1
2

cos(t1− t2), for all t1, t2 ∈ R.

https://www.probabilitycourse.com/chapter10/10_1_4_stationary_processes.php
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Example A.3: X (t) = α cos(ωt + Θ)

The random phase signal X (t) = αcos(ωt + Θ)
where Θ ∈ U[0,2π] is SSS
it is known that the first order pdf is

fX (t)(x) =
1

πα
√

1− (x/α)2
, −α < x < +α

which is independent of t, and is therefore stationary
http://isl.stanford.edu/~abbas/ee278/lect07.pdf
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Example A.3: X (t) = α cos(ωt + Θ)

To find the second order pdf,
note that if we are given the value of X (t) at one point, say t1,
there are (at most) two possible sample functions

X (t1) = x1
at t1, two sinusoid waves intersect with each other

X (t2) = x21 or x22
at t2, two sinusoid waves do not intersect with each other

http://isl.stanford.edu/~abbas/ee278/lect07.pdf
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Example A.3: X (t) = α cos(ωt + Θ)

The second order pdf can thus be written as

fX (t1),X (t2)(x1,x2) = fX (t1)(x1)fX (t2)|X (t1)(x2|x1)

= fX (t1)(x1)

(
1
2

δ (x2−x21) +
1
2

δ (x2−x22)

)
which depends only on t2− t1,
and thus the second order pdf is stationary

http://isl.stanford.edu/~abbas/ee278/lect07.pdf
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Example A.3: X (t) = α cos(ωt + Θ)

if we know that X (t1) = x1 and X (t2) = x2,
the sample path is totally determined
except when x1 = x2 = 0,

when x1 = x2 = 0,
two paths may be possible

thus all n-th order pdfs are stationary
http://isl.stanford.edu/~abbas/ee278/lect07.pdf
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Second order distribution
Mean and variance

2 Stationary Process Examples
Examples - A
Examples - B

Young W Lim Stationary Random Processes - Examples



Random Phase Oscillator
Stationary Process Examples

Examples - A
Examples - B

Example B.1: X (t) = Y

Let Y be any scalar random variable,
and define a time-series {X (t)}, by

X (t) = Y for all t.

Then {X (t)} is a stationary time series
realisations consist of a series of constant values,
a different constant value for each realisation.

https://en.wikipedia.org/wiki/Stationary_process
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Example B.1: X (t) = Y

X (t) = Y for all t.

X (t) is a first-order stationary

fX (x1; t1) = fX (x1; t1 + ∆) = const

X (t) is a second-order stationary

fX (x1,x2; t1, t2) = fX (x1,x2; t1 + ∆, t2 + ∆) = const

X (t) is to be a Nth-order stationary

fX (x1, · · · ,xN ; t1, · · · , tN) = fX (x1, · · · ,xN ; t1+∆, · · · , tN +∆) = const

https://en.wikipedia.org/wiki/Stationary_process
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Example B.2: Z (t) = X (t) +Y (t)

Let X (t) and Y (t) be
two jointly WSS random processes.

Consider the random process Z (t)

Z (t) = X (t) +Y (t)

.
Show that Z (t) is WSS.

https://www.probabilitycourse.com/chapter10/10_1_4_stationary_processes.php
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Example B.2: Z (t) = X (t) +Y (t)

Since X (t) and Y (t) are jointly WSS, we conclude

µX (t) = µX

µY (t) = µY

RX (t1, t2) = RX (t1− t2)

RY (t1, t2) = RY (t1− t2)

RXY (t1, t2) = RXY (t1− t2)

https://www.probabilitycourse.com/chapter10/10_1_4_stationary_processes.php
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Example B.2: Z (t) = X (t) +Y (t)

Since X(t) and Y(t) are jointly WSS, we conclude

µZ (t) = E [X (t) +Y (t)]

= E [X (t)] +E [Y (t)]

= µX + µY .

https://www.probabilitycourse.com/chapter10/10_1_4_stationary_processes.php
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Example B.2: Z (t) = X (t) +Y (t)

Since X(t) and Y(t) are jointly WSS, we conclude

RZ (t1, t2) = E
[(
X (t1) +Y (t1)

)(
X (t2) +Y (t2)

)]
= E [X (t1)X (t2)] +E [X (t1)Y (t2)]

+E [Y (t1)X (t2)]E [Y (t1)Y (t2)]

= RX (t1− t2) +RXY (t1− t2)

+RYX (t1− t2) +RY (t1− t2).

https://www.probabilitycourse.com/chapter10/10_1_4_stationary_processes.php
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Example B.3: X (t) =±sin t,±cos t

Let

X (t) =


+sin t p0 = 1

4

−sin t p1 = 1
4

+cos t p2 = 1
4

−cos t p3 = 1
4

E [X (t)] = 0

RX (t1, t2) =
1
2
cos(t2− t1)

thus X (t) is WSS

http://isl.stanford.edu/~abbas/ee278/lect07.pdf
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Example B.3: X (t) =±sin t,±cos t

Let

X (t) =


+sin t p0 = 1

4

−sin t p1 = 1
4

+cos t p2 = 1
4

−cos t p3 = 1
4

But X (0) and X ( π

4 ) do not have the same pmf (different ranges),
so the first order pmf is not stationary, and the process is not SSS

http://isl.stanford.edu/~abbas/ee278/lect07.pdf
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