Eulerian Cycle (2A)

Copyright (c) 2015-2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Path and Trail

A path is a trail in which all vertices are distinct. (except possibly the first and last)

A trail is a walk in which all edges are distinct.

	Vertices	Edges	
Walk	may repeat	may repeat	(Closed/Open)
Trail	may repeat	cannot repeat	(Open)
Path	cannot repeat	cannot repeat	(Open)
Circuit	may repeat Cycle	cannot repeat repeat	cannot repeat

Simple Paths and Cycles

Most literatures require that all of the edges and vertices of a path be distinct from one another.

But, some do not require this and instead use the term simple path to refer to a path which contains no repeated vertices.

A simple cycle may be defined as a closed walk with no repetitions of vertices and edges allowed, other than the repetition of the starting and ending vertex

There is considerable variation of terminology!!!
Make sure which set of definitions are used...

Simple Paths and Cycles

narrow sense path \& cycle
some

path		cycle
	simple path	simple cycle

wide sense path \& cycle

Paths and Cycles

$$
\begin{aligned}
& \begin{array}{llllllll}
& e^{e_{1}} & \mathrm{o}^{e_{2}} & \mathrm{o}^{e_{3}} & \mathrm{o} & \cdots & e_{k} & \mathrm{o} \\
v_{0} & v_{1} & v_{2} & v_{3} & & & v_{k}
\end{array} \\
& \text { path } \quad v_{0,} e_{1}, v_{1}, e_{2}, \cdots, e_{k}, v_{k} \\
& \text { cycle } \quad v_{0}, e_{1}, v_{1}, e_{2}, \cdots, e_{k}, v_{k} \quad\left(v_{0}=v_{k}\right)
\end{aligned}
$$

One of a kind

path	cycle

Two different kinds

Euler Cycle

Some people reserve the terms path and cycle to mean non-self-intersecting path and cycle.

A (potentially) self-intersecting path is known as a trail or an open walk;
and a (potentially) self-intersecting cycle, a circuit or a closed walk.

This ambiguity can be avoided by using the terms Eulerian trail and Eulerian circuit
no repeating vertices repeating vertices
repeating vertices repeating vertices when self-intersection is allowed

$$
\begin{aligned}
\text { Eulerian } \Rightarrow & \text { ron-repeating edges } \\
& + \text { all the edges }
\end{aligned}
$$

Euler Cycle

visits every edge exactly once
the existence of Eulerian cycles
all vertices in the graph have an even degree
connected graphs with all vertices of even degree h ave an Eulerian cycles

```
non-repeating edges
repeatable vertices
circuit
```

Eulerian circuit : more suitable terminology

Euler Path

visits every edge exactly once
the existence of Eulerian paths
all the vertices in the graph have an even degree
except only two vertices with an odd degree

An Eulerian path starts and ends at different vertices An Eulerian cycle starts and ends at the same vertex.
 An ulerian cyle stans andend


```
non-repeating edges
repeatable vertices
Eulerian trail : more suitable terminology
```


Conditions for Eulerian Cycles and Paths

An odd vertex = a vertex with an odd degree An even vertex $=a$ vertex with an even degree

\# of odd vertices	Eulerian Path	Eulerian Cycle
$\mathbf{0}$	No	Yes
$\mathbf{2}$	Yes	No
$4,6,8, \ldots$	No	No
$1,3,5,7, \ldots$	No such graph	No such graph

If the graph is connected

The number of odd vertices

\# of odd vertices	Eulerian Path	Eulerian Cycle
$\mathbf{0}$	No	Yes
$\mathbf{2}$	Yes	No

Degree of a vertex

the degree (or valency) of a vertex is the number of edges incident to the vertex, with loops counted twice.

The degree of a vertex v is denoted deg(v)
the maximum degree of a graph G, denoted by $\Delta(G)$ the minimum degree of a graph, denoted by $\delta(\mathrm{G})$

$$
\begin{aligned}
& \Delta(\mathrm{G})=5 \\
& \delta(\mathrm{G})=0
\end{aligned}
$$

In a regular graph, all degrees are the same

Regular Graphs

a regular graph is a graph where each vertex has the same number of neighbors; i.e. every vertex has the same degree or valency.

Handshake Lemma

$$
E=\{\text { edges }\}
$$

The degree sum formula states that, given a graph $G=(V, E)$

$$
\sum_{v \in V} \operatorname{deg}(v)=2|E|
$$

The formula implies that in any graph, the number of vertices with odd degree is even.

This statement (as well as the degree sum formula) is known as the handshaking lemma.

\# of odd vertices	Eulerian Path	Eulerian Cycle
$\mathbf{0}$	No	Yes
$\mathbf{2}$	Yes	No
$4,6,8, \ldots$	No	No
$\mathbf{1 , 3 , 5 , 7} \ldots$	No such graph	No such graph

https://en.wikipedia.org/wiki/Degree_(graph_theory)

The number of odd vertices

```
Odd vertices: \(\left\{x_{1,}, x_{2}, \cdots, x_{n}\right\}\)
\(S=\operatorname{deg}\left(x_{1}\right)+\operatorname{deg}\left(x_{2}\right)+\cdots+\operatorname{deg}\left(x_{n}\right)\)
    \(\operatorname{deg}\left(x_{i}\right)\) : even
\(S=\) even + even \(+\cdots+e v e n\)
```

```
Even vertices: \(\left\{y_{1}, y_{2}, \cdots, y_{n}\right\}\)
\(T=\operatorname{deg}\left(y_{1}\right)+\operatorname{deg}\left(y_{2}\right)+\cdots+\operatorname{deg}\left(y_{n}\right)\)
    \(\operatorname{deg}\left(y_{i}\right)\) : odd
\(T\) = odd + odd + \(\cdots\) + odd
```

S : even
$\begin{aligned} T: \text { even }= & \sum n \text { odd numbers } \\ & \Rightarrow n: \text { even }\end{aligned}$

The formula implies that in any graph, the number of vertices with odd degree is even.

References

[1] http://en.wikipedia.org/
[2]

Hamiltonian Cycle (3A)

Copyright (c) 2015-2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Hamiltonian Cycles - Properties (3)

A tournament (with more than two vertices) is Hamiltonian if and only if it is strongly connected.

The number of different Hamiltonian cycles in a complete undirected graph on n vertices is $(\mathrm{n}-1)$! / 2 in a complete directed graph on n vertices is ($n-1$)!.

These counts assume that cycles that are the same apart from their starting point are not counted separately.

Number of Hamiltonian Cycles (1)

$$
(5-1)!=24
$$

https://en.wikipedia.org/wiki/Hamiltonian_path

ABCDE	BACDE	CABDE	DABCE	EABCD
ABCED	BACED	CABED	DABEC	EABDC
ABDCE	BADCE	CADBE	DACBE	EACBD
ABDEC	BADEC	CADEB	DACEB	EACDB
ABECD	BAECD	CAEBD	DADBC	EADBC
ABEDC	BAEDC	CAEDB	DADCB	EADCB
ACBDE	BCADE	CBADE	DBACE	EBACD
ACBED	BCAED	CBAED	DBAEC	EBADC
ACDBE	BCDAE	CBDAE	DBCAE	EBCAD
ACDEB	BCDEA	CBDEA	DBCEA	EBCDA
ACEBD	BCEAD	CBEAD	DBEAC	EBDAC
ACEDB	BCEDA	CBEDA	DBECA	EBDCA
ADBCE	BDACE	CDABE	DCABE	ECABD
ADBEC	BDAEC	CDAEB	DCAEB	ECADB
ADCBE	BDCAE	CDBAE	DCBAE	ECBAD
ADCEB	BDCEA	CDBEA	DCBEA	ECBDA
ADEBC	BDEAC	CDEAB	DCEAB	ECDAB
ADECB	BDECA	CDEBA	DCEBA	ECDBA
AEBCD	BEACD	CEABD	DEABC	EDABC
AEBDC	BEADC	CEADB	DEACB	EDACB
AECBD	BECAD	CEBAD	DEBAC	EDBAC
AECDB	BECDA	CEBDA	DEBCA	EDBCA
AEDBC	BEDAC	CEDAB	DECAB	EDCAB
AEDCB	BEDCA	CEDBA	DECBA	EDCBA

Number of Hamiltonian Cycles (2)

Eulerian Graph (1)

The Eulerian cycle corresponds to a Hamiltonian cycle in the line graph $L(\mathbf{G})$, so the line graph of every Eulerian graph is Hamiltonian graph.

G

Eulerian Cycle ABCDECA
$\mathrm{L}(\mathbf{G})$

\qquad Hamiltonian Cycle
1-2-3-4-5-6-1

Strongly Connected Component

a directed graph is said to be strongly connected or diconnected if every vertex is reachable from every other vertex.

The strongly connected components or diconnected components of an arbitrary directed graph form a partition into subgraphs that are themselves strongly connected.

SCC and WCC

a directed graph is strongly connected if there is a path from \mathbf{a} to \mathbf{b} and from \mathbf{b} to \mathbf{a} whenever \mathbf{a} and \mathbf{b} are vertices in the graph

a directed graph is weakly connected if there is a path between every two vertices in the underlying undirected graph (either way)
directions of edges are disregarded

SC examples (1)

SC examples (2)

SCC and WCC examples

three strongly connected components

References

[1] http://en.wikipedia.org/
[2]

Isomorphic Graph (8A)

```
Copyright (c) 2015-2018 Young W. Lim.
```

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Graph Isomorphism

The two graphs shown below are isomorphic, despite their different looking drawings.

$$
\begin{aligned}
& f(\mathrm{a})=1 \\
& \mathrm{f}(\mathrm{~b})=6 \\
& \mathrm{f}(\mathrm{c})=8 \\
& \mathrm{f}(\mathrm{~d})=3 \\
& \mathrm{f}(\mathrm{~g})=5 \\
& \mathrm{f}(\mathrm{~h})=2 \\
& \mathrm{f}(\mathrm{i})=4 \\
& \mathrm{f}(\mathrm{j})=7
\end{aligned}
$$

Graph G_{1} and its Adjacency Matrix

	a	b	c	d	g	h	i	j
a	0	0	0	0	1	1	1	0
b	0	0	0	0	1	1	0	1
c	0	0	0	0	1	0	1	1
d	0	0	0	0	0	1	1	1
g	1	1	1	0	0	0	0	0
h	1	1	0	1	0	0	0	0
i	1	0	1	1	0	0	0	0
j	0	1	1	1	0	0	0	0

Graph G_{2} and its Adjacency Matrix

	1	2	3	4	5	6	7	8
1	0	1	0	1	1	0	0	0
2	1	0	1	0	0	1	0	0
3	0	1	0	1	0	0	1	0
4	1	0	1	0	0	0	0	1
5	1	0	0	0	0	1	0	1
6	0	1	0	0	1	0	1	0
7	0	0	1	0	0	1	0	1
8	0	0	0	1	1	0	1	0

edge-preserving bijection
structure-preserving bijection.

Bijection Mapping f

		a	b	C	d	9	h	1	j
1	a	0	0	0	0	1	1	1	0
6	b	0	0	0	0	1	1	0	1
8	C	0	0	0	0	1	0	1	1
3	d	0	0	0	0	0	1	1	1
5	g	1	1	1	0	0	0	0	0
2	h	1	1	0	1	0	0	0	0
4	i	1	0	1	1	0	0	0	0
7	j	0	1	1	1	0	0	0	0

Converting the Adjacency Matrix

permuting the rows and columns

	1	6	8	3	5	2	4	7
1	0	0	0	0	1	1	1	0
6	0	0	0	0	1	1	0	1
8	0	0	0	0	1	0	1	1
3	0	0	0	0	0	1	1	1
5	1	1	1	0	0	0	0	0
2	1	1	0	1	0	0	0	0
4	1	0	1	1	0	0	0	0
7	0	1	1	1	0	0	0	0

Adjacency Matrix of G_{1}

	1	2	3	4	5	6	7	8
1	0	1	0	1	1	0	0	0
2	1	0	1	0	0	1	0	0
3	0	1	0	1	0	0	1	0
4	1	0	1	0	0	0	0	1
5	1	0	0	0	0	1	0	1
6	0	1	0	0	1	0	1	0
7	0	0	1	0	0	1	0	1
8	0	0	0	1	1	0	1	0

Adjacency Matrix of G_{2}

Converting the Adjacency Matrix

	1	6	8	3	5	2	4	7
1	0	0	0	0	1	1	1	0
6	0	0	0	0	1	1	0	1
8	0	0	0	0	1	0	1	1
3	0	0	0	0	0	1	1	1
5	1	1	1	0	0	0	0	0
2	1	1	0	1	0	0	0	0
4	1	0	1	1	0	0	0	0
7	0	1	1	1	0	0	0	0

G_{1} adjacency matrix after maping

	1	2	3	4	5	6	7	8
1	0	1	0	1	1	0	0	0
6	0	1	0	0	1	0	1	0
8	0	0	0	1	1	0	1	0
3	0	1	0	1	0	0	1	0
5	1	0	0	0	0	1	0	1
2	1	0	1	0	0	1	0	0
4	1	0	1	0	0	0	0	1
7	0	0	1	0	0	1	0	1

	1	2	3	4	5	6	7	8
1	0	1	0	1	1	0	0	0
2	1	0	1	0	0	1	0	0
3	0	1	0	1	0	0	1	0
4	1	0	1	0	0	0	0	1
5	1	0	0	0	0	1	0	1
6	0	1	0	0	1	0	1	0
7	0	0	1	0	0	1	0	1
8	0	0	0	1	1	0	1	0

G_{2} adjacency matrix after permuting rows and columns

References

[1] http://en.wikipedia.org/
[2]

Planar Graph (7A)

Copyright (c) 2015-2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Planar Graph

a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints.
it can be drawn in such a way that no edges cross each other. Such a drawing is called a plane graph or planar embedding of the graph. (planar representation)

A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points.

Planar Graph Examples

Planar Representation

Q_{3}

Discrete Mathematics, Rosen

No crossing
Q_{3} Planar

Non-planar Graph K ${ }_{3,3}$

no where v_{6}

Non-planar

Homeomorphism

two graphs G and G' are homeomorphic if there is a graph isomorphism from some subdivision of G to some subdivision of G^{\prime}.

homeo (identity, sameness)
iso (equal)
https://en.wikipedia.org/wiki/Planar_graph

Subdivision and Smoothing

https://en.wikipedia.org/wiki/Planar_graph

Homeomorphism Examples

isomorphic

Embedding on a surface

subdividing a graph preserves planarity.
Kuratowski's theorem states that
a finite graph is planar if and only if it contains no subgraph homeomorphic to K_{5} (complete graph on five vertices) or $K_{3,3}$ (complete bipartite graph on six vertices, three of which connect to each of the other three).

In fact, a graph homeomorphic to \mathbf{K}_{5} or $\mathbf{K}_{3,3}$ is called a Kuratowski subgraph.

Kuratowski's Theorem

A finite graph is planar if and only if it does not contain a subgraph that is a subdivision of the complete graph \mathbf{K}_{5} or the complete bipartite graph $\mathbf{K}_{3,3}$ (utility graph).

A subdivision of a graph results from inserting vertices into edges
(changing an edge zero or more times.

Kuratowski's Theorem

A subdivision of $K_{3,3}$

Non-planar graph examples

Euler's Formula

Euler's formula states that if a finite, connected, planar graph is drawn in the plane without any edge intersections, and v is the number of vertices, e is the number of edges and f is the number of faces (regions bounded by edges, including the outer, infinitely large region), then

$$
v-e+f=2
$$

Euler's Formula

In a finite, connected, simple, planar graph, any face (except possibly the outer one) is bounded by at least three edges and every edge touches at most two faces; using Euler's formula, one can then show that these graphs are sparse in the sense that if $v \geq 3$:

$$
e \leq 3 v-6
$$

Dual Graph

the dual graph of a plane graph G is a graph that has a vertex for each face of G.

The dual graph has an edge whenever two faces of G are separated from each other by an edge,
and a self-loop when the same face appears on both sides of an edge.

The red graph is the dual graph क of the blue graph, and vice versa.
each edge \mathbf{e} of G has a corresponding dual edge, whose endpoints are the dual vertices corresponding to the faces on either side of \mathbf{e}.

Dual Graph

http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf

Stick Layout

http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf

Stick Graph and Logic Diagram

http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf

Stick Graph and Logic Diagram

uninterrupted diffusion strip
http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf

References

[1] http://en.wikipedia.org/
[2]

Graph Search (6A)

Copyright (c) 2015-2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Graph Traversal

graph traversal (graph search) refers to the process of visiting (checking and/or updating) each vertex in a graph.

Such traversals are classified
by the order in which the vertices are visited.
Tree traversal is a special case of graph traversal.

General Graph Search Algorithm

```
Search( start, isGoal, criteria)
        insert(Start, Open);
    repeat
    if (empty(Open)) then return fail;
    select node from Open using Criteria;
    mark node as visited;
    if (isGoal(node)) then return node;
```


DFS

```
Open - Stack
Criteria - pop
DFS( Start, isGoal)
    push(Start, Open);
    repeat
        if (empty(Open)) then return fail;
        node := pop(Open);
        Mark node as visited;
        if (isGoal(node)) then return node;
        for each child of node do
            if (child not already visited) then
                push(child, Open);
```


BFS

```
Open - Stack
Criteria - dequeue
BFS( Start, isGoal)
    enqueue(Start, Open);
    repeat
            if (empty(Open)) then return fail;
            node := dequeue(Open);
            mark node as visited;
            if (isGoal(node)) then return node;
            for each child of node do
                if (child not already visited) then
                    enqueue(child, Open);
```


Algorithm Search

Initialize as follows:
unmark all nodes in N ;
mark node s;
pred(s) = 0; \{that is, it has no predecessor\}
LIST = \{s $\}$
while LIST $\neq \varnothing$ do
select a node i in LIST;
if node i is incident to an admissible arc (i, j) then
mark node j;
pred(j) := i;
add node j to the end of LIST;
else
delete node i from LIST

Algorithm Search

Initialize as follows:
unmark all nodes in N ;
mark node s;
pred(s) $=0$; \quad that is, it has no predecessor\}
LIST $=\{s\}$
while LIST $\neq \varnothing$ do
select a node in LIST;
if node i is incident to an admissible arc (i, j) then
mark node j;
pred(j) := i;
add node j to the end of LIST;
else
delete node i from LIST

DFS : select the last node i in LIST;
BFS : select the first node i in LIST;

Algorithm Search

Initialize as follows:
unmark all nodes in N ;
mark node s;
$\operatorname{pred}(\mathrm{s})=0$; \quad that is, it has no predecessor\}
LIST $=\{\mathrm{s}\}$
while LIST $\neq \varnothing$ do
select a node i in LIST;
if node i is incident to an admissible arc (i, j) then
mark node j;
pred(j) := i;
add node j to the end of LIST;
else
delete node i from LIST

DFS : select the last node in LIST;
BFS : select the first node i in LIST;

Algorithm Search

pred(j) is a node that precedes j on some path from s ;
A node is either marked or unmarked.
Initially only node s is marked.
If a node is marked, it is reachable from node s.
An arc (i,j) $\in A$ is admissible if node i is marked and j is not.

DFS

OPEN

CLOSED

\rightarrow (3)(1)00000

BFS

OPEN

CLOSED

Expand Function

DFS (Depth First Search)

Stack

BFS (Breadth First Search)

Queue

DFS Pseudocode

1 procedure DFS(G, v):
2 label v as explored
3 for all edges e in G.incidentEdges(v) do
4 if edge e is unexplored then
$5 \quad \mathrm{w} \leftarrow \mathrm{G} . \operatorname{adjacentVertex}(\mathrm{v}, \mathrm{e})$
6 if vertex w is unexplored then
8 recursively call DFS(G, w)
9 else
10 label e as a back edge

Depth First Search Example

https://en.wikipedia.org/wiki/Graph_traversal

Depth First Search Example

Depth First Search Example

A depth-first search (DFS)
is an algorithm for traversing a finite graph.
DFS visits the child vertices
before visiting the sibling vertices;
that is, it traverses the depth of any particular path before exploring its breadth.

A stack (often the program's call stack via recursion) is generally used when implementing the algorithm.

DFS Backtrack

The algorithm begins with a chosen "root" vertex;
it then iteratively transitions from the current vertex to an adjacent, unvisited vertex, until it can no longer find an unexplored vertex to transition to from its current location.

The algorithm then backtracks along previously visited vertices, until it finds a vertex connected to yet more uncharted territory.

It will then proceed down the new path as it had before, backtracking as it encounters dead-ends, and ending only when the algorithm has backtracked past the original "root" vertex from the very first step.

Breadth First Search Example

https://en.wikipedia.org/wiki/Graph_traversal

Breadth First Search Example

Breadth First Search Example

BFS

A breadth-first search (BFS) is another technique for traversing a finite graph.

BFS visits the neighbor vertices before visiting the child vertices
a queue is used in the search process
This algorithm is often used to find the shortest path from one vertex to another.

BFS Pseudocode

1 procedure BFS(G, v):
2 create a queue Q
3 enqueue v onto Q
4 mark v
5 while Q is not empty:
$6 \quad \mathrm{t} \leftarrow \mathrm{Q}$.dequeue()
7 if t is what we are looking for:
8 return t
9 for all edges e in G.adjacentEdges(t) do
$12 \quad \mathrm{o} \leftarrow \mathrm{G} . \operatorname{adjacentVertex}(\mathrm{t}, \mathrm{e})$
13
if o is not marked:
mark o
14
15 enqueue o onto Q
16 return null

References

[1] http://en.wikipedia.org/
[2]

Binary Search Tree (2A)

```
Copyright (c) 2015-2018 Young W. Lim.
```

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Binary Search Tree

Bnary search trees (BST), ordered binary trees sorted binary trees
are a particular type of container:
data structures that store "items"
(such as numbers, names etc.) in memory.
They allow fast lookup, addition and removal of items can be used to implement either dynamic sets of items lookup tables that allow finding an item by its key (e.g., finding the phone number of a person by name).

Binary Search Tree

keep their keys in sorted order
lookup operations can use the principle of binary search
when looking for a key in a tree
or looking for a place to insert a new key, they traverse the tree from root to leaf, making comparisons to keys stored in the nodes Deciding to continue in the left or right subtrees, on the basis of the comparison.
allowing to skip searching half of the tree each operation (lookup, insertion or deletion) takes time proportional to $\log n$
much better than the linear time but slower than the corresponding operations on hash tables.

Infix, Prefix, Postfix Notations

$$
\begin{gathered}
3<8<10 \\
1<3<6 \\
4<6<7 \\
1,3<14 \\
1,4,6,7,8,10,13,14
\end{gathered}
$$

Infix, Prefix, Postfix Notations

$$
\begin{gathered}
1,3,4,6,7<8<10,13,14 \\
1<3<4,6,7 \\
4<6<7 \\
10<13,14 \\
1,3,4,6,7,8,10,13,14
\end{gathered}
$$

Infix, Prefix, Postfix Notations

$$
\begin{gathered}
1,3,4,6,7<8<10,13,14 \\
1<3<4,6,7 \\
4<6<7 \\
10<13,14 \\
1,3,4,6,7,8,10,13,14
\end{gathered}
$$

Infix, Prefix, Postfix Notations

$$
\begin{gathered}
1,3,4,6,7<8<10,13,14 \\
1<3<4,6,7 \\
4<6<7 \\
10<13,14 \\
1,3,4,6,7,8,10,13,14
\end{gathered}
$$

Infix, Prefix, Postfix Notations

$1,3,4,6,7,8,10,13,14$

Infix, Prefix, Postfix Notations

$$
1,3,4,6,7,8,10,13,14 \quad 1,3,4,6,7,8,10,13,14
$$

$1,3,4,6,7,8,10,13,14$

Infix, Prefix, Postfix Notations

$1,3,4,6,7,8,10,13,14$
$1,3,4,6,7,8,10,13,14$

Binary Search

Insertion

Insertion begins as a search would begin; if the key is not equal to that of the root, we search the left or right subtrees as before. Eventually, we will reach an external node and add the new key-value pair (here encoded as a record 'newNode') as its right or left child, depending on the node's key. In other words, we examine the root and recursively insert the new node to the left subtree if its key is less than that of the root, or the right subtree if its key is greater than or equal to the root.

Deletion

1. Deleting a node with no children:
simply remove the node from the tree.
2. Deleting a node with one child:
remove the node and replace it with its child.
3. Deleting a node with two children:
call the node to be deleted D .
Do not delete D.
Instead, choose either its in-order predecessor node or its in-order successor node as replacement node E.
Copy the user values of E to D If E does not have a child
simply remove E from its previous parent G.
If E has a child, say F, it is a right child.
Replace E with F at E's parent.

Deletion

Deleting a node with two children from a binary search tree. First the leftmost node in the right subtree, the in-order successor E, is identified. Its value is copied into the node D being deleted. The in-order successor can then be easily deleted because it has at most one child. The same method works symmetrically using the in-order predecessor C.

References

[1] http://en.wikipedia.org/
[2]

Binary Search Tree (2A)

```
Copyright (c) 2015-2018 Young W. Lim.
```

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Binary Search Tree

Bnary search trees (BST), ordered binary trees sorted binary trees
are a particular type of container:
data structures that store "items"
(such as numbers, names etc.) in memory.
They allow fast lookup, addition and removal of items can be used to implement either dynamic sets of items lookup tables that allow finding an item by its key (e.g., finding the phone number of a person by name).

Binary Search Tree

keep their keys in sorted order
lookup operations can use the principle of binary search
when looking for a key in a tree
or looking for a place to insert a new key, they traverse the tree from root to leaf, making comparisons to keys stored in the nodes Deciding to continue in the left or right subtrees, on the basis of the comparison.
allowing to skip searching half of the tree each operation (lookup, insertion or deletion) takes time proportional to $\log n$
much better than the linear time but slower than the corresponding operations on hash tables.

Infix, Prefix, Postfix Notations

$$
\begin{gathered}
3<8<10 \\
1<3<6 \\
4<6<7 \\
1,3<14 \\
1,4,6,7,8,10,13,14
\end{gathered}
$$

Infix, Prefix, Postfix Notations

$$
\begin{gathered}
1,3,4,6,7<8<10,13,14 \\
1<3<4,6,7 \\
4<6<7 \\
10<13,14 \\
1,3,4,6,7,8,10,13,14
\end{gathered}
$$

Infix, Prefix, Postfix Notations

$$
\begin{gathered}
1,3,4,6,7<8<10,13,14 \\
1<3<4,6,7 \\
4<6<7 \\
10<13,14 \\
1,3,4,6,7,8,10,13,14
\end{gathered}
$$

Binary Search

Insertion

Insertion begins as a search would begin; if the key is not equal to that of the root, we search the left or right subtrees as before. Eventually, we will reach an external node and add the new key-value pair (here encoded as a record 'newNode') as its right or left child, depending on the node's key. In other words, we examine the root and recursively insert the new node to the left subtree if its key is less than that of the root, or the right subtree if its key is greater than or equal to the root.

Deletion

1. Deleting a node with no children:
simply remove the node from the tree.
2. Deleting a node with one child:
remove the node and replace it with its child.
3. Deleting a node with two children:
call the node to be deleted D .
Do not delete D.
Instead, choose either its in-order predecessor node or its in-order successor node as replacement node E.
Copy the user values of E to D If E does not have a child
simply remove E from its previous parent G.
If E has a child, say F, it is a right child.
Replace E with F at E's parent.

Deletion

Deleting a node with two children from a binary search tree. First the leftmost node in the right subtree, the in-order successor E, is identified. Its value is copied into the node D being deleted. The in-order successor can then be easily deleted because it has at most one child. The same method works symmetrically using the in-order predecessor C.

References

[1] http://en.wikipedia.org/
[2]

