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Path and Trail 

https://en.wikipedia.org/wiki/Eulerian_path

A path is a trail in which all vertices  are distinct. 
(except possibly the first and last) 

A trail is a walk in which all edges are distinct. 

Vertices Edges

    Walk     may   may   (Closed/Open)

repeat repeat

    Trail     may  cannot  (Open)

          repeat repeat 

    Path     cannot  cannot   (Open)

          repeat repeat 

    Circuit may  cannot   (Closed)

     repeat repeat 

Cycle cannot cannot (Closed)

         repeat repeat 
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Simple Paths and Cycles

https://en.wikipedia.org/wiki/Eulerian_path

Most literatures require that all of the edges and vertices of a 
path be distinct from one another. 

But, some do not require this and instead use the term simple 
path to refer to a path which contains no repeated vertices.

A simple cycle may be defined as a closed walk with no 
repetitions of vertices and edges allowed, other than the 
repetition of the starting and ending vertex

There is considerable variation of terminology!!!
Make sure which set of definitions are used...



Eulerian Cycles (2A) 5 Young Won Lim
5/19/18

Simple Paths and Cycles

path cycle

simple
path

simple
cycle

trail circuit

path cycle

Most literatures some

narrow sense path & cycle wide sense path & cycle
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Paths and Cycles

v0, e1, v1, e2, ⋯ , ek , vk

v0

e
1

v1

e
2

v2

e
3

v3

ek

vk

⋯

v0, e1, v1, e2, ⋯ , ek , vk (v0 = vk)

path

cycle

v0, e1, v1, e2, ⋯ , ek , vk

v0, e1, v1, e2, ⋯ , ek , vk (v0 = vk)

path

cycle

(v0 ≠ vk)

path

cycle

cyclepath

One of a kind

Two different kinds
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Euler Cycle

https://en.wikipedia.org/wiki/Eulerian_path

Some people reserve the terms path and cycle 
to mean non-self-intersecting path and cycle. 

A (potentially) self-intersecting path is known 
as a trail or an open walk; 

and a (potentially) self-intersecting cycle, 
a circuit or a closed walk. 

This ambiguity can be avoided by using the terms 
Eulerian trail and Eulerian circuit 
when self-intersection is allowed

no repeating vertices

repeating vertices

repeating vertices

repeating vertices
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Euler Cycle

https://en.wikipedia.org/wiki/Eulerian_path

visits every edge exactly once

the existence of Eulerian cycles 

all vertices in the graph have an even degree

connected graphs with all vertices of even degree h
ave an Eulerian cycles

non-repeating edges
repeatable vertices
 

Eulerian circuit : more suitable terminology

circuit
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Euler Path

https://en.wikipedia.org/wiki/Eulerian_path

visits every edge exactly once

the existence of Eulerian paths 

all the vertices in the graph have an even degree

except only two vertices with an odd degree

An Eulerian path starts and ends at different vertices
An Eulerian cycle starts and ends at the same vertex.

non-repeating edges
repeatable vertices
 

Eulerian trail : more suitable terminology

trail
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Conditions for Eulerian Cycles and Paths

http://people.ku.edu/~jlmartin/courses/math105-F11/Lectures/chapter5-part2.pdf

An odd vertex = a vertex with an odd degree

An even vertex = a vertex with an even degree

# of odd vertices Eulerian Path Eulerian Cycle

0 No Yes 

2 Yes No

4,6,8, … No No 

1,3,5,7, … No such graph No such graph

If the graph is connected
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The number of odd vertices 

# of odd vertices Eulerian Path Eulerian Cycle

0 No Yes 

2 Yes No

No Eulerian Path No Eulerian Cycle

Eulerian Cycle  Eulerian Path

# of odd vertices 
= 0

# of odd vertices 
= 2
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Degree of a vertex

https://en.wikipedia.org/wiki/Degree_(graph_theory)

 the degree (or valency) of a vertex is 
the number of edges incident to the vertex, 
with loops counted twice. 

The degree of a vertex v is denoted deg(v)
the maximum degree of a graph G, denoted by Δ(G)
the minimum degree of a graph, denoted by δ(G)

Δ(G) = 5 
δ(G) = 0

In a regular graph, all degrees are the same

3

3

2
1

2

5
0
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Regular Graphs

https://en.wikipedia.org/wiki/Regular_graph

a regular graph is a graph where each vertex has the 
same number of neighbors; i.e. every vertex has the 
same degree or valency. 
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Handshake Lemma

https://en.wikipedia.org/wiki/Degree_(graph_theory)

The degree sum formula states that, 
given a graph G = ( V , E ) 

The formula implies that in any graph, 
the number of vertices with odd degree is even. 

This statement (as well as the degree sum formula) is 
known as the handshaking lemma. 

3

3

2
1

2

5
0
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The number of odd vertices

Odd vertices :    Even vertices : 

The formula implies that in any graph, 
the number of vertices with odd degree is even. 

{x
1,
x

2,
⋯ , xn} {y

1,
y

2,
⋯ , yn}

S = deg(x
1
) + deg(x

2
) + ⋯ + deg(xn) T = deg( y

1
) + deg( y

2
) + ⋯ + deg( yn)

deg(xi) : even deg( yi) : odd

S : even

S+T : even

T : even = ∑ n odd numbers

S = even + even + ⋯ + even T = odd + odd + ⋯ + odd

n : even
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Hamiltonian Cycles – Properties (3)

https://en.wikipedia.org/wiki/Hamiltonian_path

A tournament (with more than two vertices) is Hamiltonian if and 
only if it is strongly connected.

The number of different Hamiltonian cycles 
in a complete undirected graph on n vertices is (n − 1)! / 2
in a complete directed graph on n vertices is (n − 1)!. 

These counts assume that cycles that are the same apart from 
their starting point are not counted separately.



Hamiltonian Cycles (3A) 24 Young Won Lim
5/18/18

Number of Hamiltonian Cycles (1)

https://en.wikipedia.org/wiki/Hamiltonian_path

E

C D

A

B

ABCDE

ABCED

ABDCE

ABDEC

ABECD

ABEDC

ACBDE

ACBED

ACDBE

ACDEB

ACEBD

ACEDB

ADBCE

ADBEC

ADCBE

ADCEB

ADEBC

ADECB

AEBCD

AEBDC

AECBD

AECDB

AEDBC

AEDCB

BACDE

BACED

BADCE

BADEC

BAECD

BAEDC

BCADE

BCAED

BCDAE

BCDEA

BCEAD

BCEDA

BDACE

BDAEC

BDCAE

BDCEA

BDEAC

BDECA

BEACD

BEADC
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BECDA

BEDAC

BEDCA

DABCE
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DBEAC

DBECA

DCABE

DCAEB

DCBAE

DCBEA

DCEAB

DCEBA
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DEACB

DEBAC

DEBCA

DECAB

DECBA

CABDE

CABED

CADBE

CADEB

CAEBD

CAEDB

CBADE

CBAED

CBDAE

CBDEA

CBEAD

CBEDA

CDABE

CDAEB

CDBAE

CDBEA

CDEAB

CDEBA

CEABD

CEADB

CEBAD

CEBDA

CEDAB

CEDBA

EABCD

EABDC

EACBD

EACDB

EADBC

EADCB

EBACD

EBADC

EBCAD

EBCDA

EBDAC

EBDCA

ECABD

ECADB

ECBAD

ECBDA

ECDAB

ECDBA

EDABC

EDACB

EDBAC

EDBCA

EDCAB

EDCBA

(5−1)!=24
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Number of Hamiltonian Cycles (2)

https://en.wikipedia.org/wiki/Hamiltonian_path

E

C D

A

B

(5−1)!=24

A BCDE AB CDE

AC BDE

AD BCE

AE BCD

ABC DE

ABD CE

ABE CD

ACB DE

ACD BE

ACE BD

ADB CE

ADC BE

ADE BC

AEB CD

AEC BD

AED BC

ABCD E

ABCE D

ABDC E

ABDE C

ABEC D

ABED C

ACBD E

ACBE D

ACDB E

ACDE B

ACEB D

ACED B

ADBC E

ADBE C

ADCB E

ADCE B

ADEB C

ADEC B

AEBC D

AEBD C

AECB D

AECD B

AEDB C

AEDC B

ABCDE

ABCED

ABDCE

ABDEC

ABECD

ABEDC

ACBDE

ACBED

ACDBE

ACDEB

ACEBD

ACEDB

ADBCE

ADBEC

ADCBE

ADCEB

ADEBC

ADECB

AEBCD

AEBDC

AECBD

AECDB

AEDBC

AEDCB
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Eulerian Graph (1)

B

D E

A

C

Eulerian Cycle
ABCDECA

4

2

3

1

6

5

B

D E

A

C

4

2

3

1

6

5 3

6 2

5

4

1

G L(G)

Hamiltonian Cycle
1-2-3-4-5-6-1

The Eulerian cycle corresponds to a Hamiltonian cycle in 
the line graph L(G), so the line graph of every Eulerian
graph is Hamiltonian graph. 
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Strongly Connected Component

https://en.wikipedia.org/wiki/Hamiltonian_path

a directed graph is said to be strongly connected or 
diconnected if every vertex is reachable from every other vertex.

The strongly connected components or diconnected 
components of an arbitrary directed graph form a partition into 
subgraphs that are themselves strongly connected. 
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SCC and WCC

Discrete Mathematics, Rosen

a directed graph is strongly connected 
if there is a path from a to b and from b to a 
whenever a and b are vertices in the graph

a directed graph is weakly connected 
if there is a path between every two vertices
in the underlying undirected graph
(either way)
directions of edges are disregarded
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SC examples (1)

E

A B

D

C

Discrete Mathematics, Rosen
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SC examples (2)

E

A B

D

C

Discrete Mathematics, Rosen
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SCC and WCC examples

E

A B

D

C

Discrete Mathematics, Rosen

E

A B

D

C

 three strongly connected components

 one weakly connected components
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Graph Isomorphism

The two graphs shown below are isomorphic, 

despite their different looking drawings.

https://en.wikipedia.org/wiki/Graph_isomorphism

f(a) = 1 

f(b) = 6

f(c) = 8

f(d) = 3

f(g) = 5

f(h) = 2

f(i) = 4

f(j) = 7



Isomorphic Graph (5B) 4 Young Won Lim
5/18/18

Graph G
1
 and its Adjacency Matrix

https://en.wikipedia.org/wiki/Graph_isomorphism

0 0 0 0 1 1 1 0

0 0 0 0 1 1 0 1

0 0 0 0 1 0 1 1

0 0 0 0 0 1 1 1

1 1 1 0 0 0 0 0

1 1 0 1 0 0 0 0

1 0 1 1 0 0 0 0

0 1 1 1 0 0 0 0

a

b

c

d

g

h

i

j

a b c d g h i j
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Graph G
2
 and its Adjacency Matrix

0 00 11 1 0

1 01 00 0 0

0 00 01 1 1

0 11 00 0 0

1 10 00 0 0

0 00 11 0 1

1 11 00 0 0

0 00 10 1 1

6 83 52 4 7

01

12

03

14

15

06

07

08

1

https://en.wikipedia.org/wiki/Graph_isomorphism

edge-preserving bijection

structure-preserving bijection.
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Bijection Mapping f

0 0 0 0 1 1 1 0

0 0 0 0 1 1 0 1

0 0 0 0 1 0 1 1

0 0 0 0 0 1 1 1

1 1 1 0 0 0 0 0

1 1 0 1 0 0 0 0

1 0 1 1 0 0 0 0

0 1 1 1 0 0 0 0

a

b

c

d

g

h

i

j

a b c d g h i j

1

6

8

3

5

2

4

7

1 6 8 3 5 2 4 7

a

b

c

d

g

h

i

j

1

2

3

4

5

6

7

8
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Converting the Adjacency Matrix

permuting the rows and columns

0 0 0 0 1 1 1 0

0 0 0 0 1 1 0 1

0 0 0 0 1 0 1 1

0 0 0 0 0 1 1 1

1 1 1 0 0 0 0 0

1 1 0 1 0 0 0 0

1 0 1 1 0 0 0 0

0 1 1 1 0 0 0 0

1

6

8

3

5

2

4

7

1 6 8 3 5 2 4 7

0 00 11 1 0

1 01 00 0 0

0 00 01 1 1

0 11 00 0 0

1 10 00 0 0

0 00 11 0 1

1 11 00 0 0

0 00 10 1 1

6 83 52 4 7

01

12

03

14

15

06

07

08

1

Adjacency Matrix of G
1

Adjacency Matrix of G
2
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Converting the Adjacency Matrix

0 0 0 0 1 1 1 0

0 0 0 0 1 1 0 1

0 0 0 0 1 0 1 1

0 0 0 0 0 1 1 1

1 1 1 0 0 0 0 0

1 1 0 1 0 0 0 0

1 0 1 1 0 0 0 0

0 1 1 1 0 0 0 0

1

6

8

3

5

2

4

7

1 6 8 3 5 2 4 7

0

0

0

0

1

1

1

0

1

6

8

3

5

2

4

7

1

1

1

0

1

0

0

0

0

2

0

0

0

0

0

1

1

1

3

1

0

1

1

0

0

0

0

4

1

1

1

0

0

0

0

0

5

0

0

0

0

1

1

0

1

6

0

1

1

1

0

0

0

0

7

0

0

0

0

1

0

1

1

8

01

1

1

2

0

3

1

4

1

5

0

6

0

7

0

8

12 0 1 0 0 1 0 0

03 1 0 1 0 0 1 0

14 0 1 0 0 0 0 1

15 0 0 0 0 1 0 1

06 1 0 0 1 0 1 0

07 0 1 0 0 1 0 1

08 0 0 1 1 0 1 0

G
1
 adjacency matrix

after maping

G
2
 adjacency matrix

after permuting 
rows and columns
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Planar Graph

https://en.wikipedia.org/wiki/Planar_graph

a planar graph is a graph that can be embedded in the 
plane, i.e., it can be drawn on the plane in such a way 
that its edges intersect only at their endpoints. 

it can be drawn in such a way that no edges cross each 
other. Such a drawing is called a plane graph or planar
embedding of the graph. (planar representation)

A plane graph can be defined as a planar graph with a 
mapping from every node to a point on a plane, and from 
every edge to a plane curve on that plane, 
such that the extreme points of each curve are the points 
mapped from its end nodes, and all curves are disjoint 
except on their extreme points.
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Planar Graph Examples

https://en.wikipedia.org/wiki/Planar_graph
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Planar Representation

Discrete Mathematics, Rosen

K
4 Q

3

No crossing No crossing

K
4

Planar Q
3 Planar 
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Non-planar Graph K
3,3

Discrete Mathematics, Rosen

v
1

v
2

v
3

v
4

v
5

v
6

v
1

v
2v

4

v
5

R
2

R
1

v
1

v
2v

4

v
5

R
1v

3

R
21

R
22

no where v
6

Non-planar 
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Homeomorphism

https://en.wikipedia.org/wiki/Planar_graph

two graphs G and G′ are homeomorphic 
if there is a graph isomorphism 
from some subdivision of G 
to some subdivision of G′. 

homeo (identity, sameness)

iso (equal)
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Subdivision and Smoothing

https://en.wikipedia.org/wiki/Planar_graph

Subdivision

Smoothing
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Homeomorphism Examples

https://en.wikipedia.org/wiki/Planar_graph

Subdivision

Subdivision

isomorphichomeomorphic
Subdivision
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Embedding on a surface

https://en.wikipedia.org/wiki/Planar_graph

subdividing a graph preserves planarity. 

Kuratowski's theorem states that

    a finite graph is planar if and only if 
it contains no subgraph homeomorphic 
to K

5
 (complete graph on five vertices) or 

K
3,3

 (complete bipartite graph on six vertices, 

three of which connect to each of the other three).

In fact, a graph homeomorphic to K
5
 or K

3,3
 

is called a Kuratowski subgraph.
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Kuratowski’s Theorem 

https://en.wikipedia.org/wiki/Planar_graph

A finite graph is planar if and only if 
it does not contain a subgraph 
that is a subdivision of the complete graph K

5
 or 

the complete bipartite graph K
3,3 

(utility graph).

A subdivision of a graph results 
from inserting vertices into edges 
(changing an edge •——• to •—•—•) 
zero or more times.
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Kuratowski’s Theorem 

https://en.wikipedia.org/wiki/Planar_graph



Planar Graph (7A) 13 Young Won Lim
5/19/18

A subdivision of K
3,3
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Non-planar graph examples

Planar Non-planar Non-planar Non-planar 

contains K
3,3

contains K
3,3

contains a 
subdivision of K

3,3
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Euler’s Formula

https://en.wikipedia.org/wiki/Planar_graph

Euler's formula states that if a finite, connected, planar 
graph is drawn in the plane without any edge intersections, 
and v is the number of vertices, e is the number of edges 
and f is the number of faces (regions bounded by edges, 
including the outer, infinitely large region), then

    v − e + f = 2
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Euler’s Formula

https://en.wikipedia.org/wiki/Planar_graph

In a finite, connected, simple, planar graph, any face (except 
possibly the outer one) is bounded by at least three edges 
and every edge touches at most two faces; using Euler's 
formula, one can then show that these graphs are sparse in 
the sense that if v ≥ 3:

    e ≤ 3 v − 6
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Dual Graph

https://en.wikipedia.org/wiki/Hamiltonian_path

the dual graph of a plane graph G is a graph that 
has a vertex for each face of G. 

The dual graph has an edge whenever two 
faces of G are separated from each other by an 
edge, 

and a self-loop when the same face appears on 
both sides of an edge.

each edge e of G has a corresponding dual 
edge, whose endpoints are the dual vertices
corresponding to the faces on either side of e.
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Dual Graph

http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf

A

B

C

C

A B

~C (A + B)X

X

X

y

z

y

GND

z

Vdd

C

BA
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Stick Layout

A B C A B C

Vcc

GND

X

http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf
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Stick Graph and Logic Diagram 

A

B

C

C

A B

~C (A + B)X

y

z

A B C

Vcc

GND

X

http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf
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Stick Graph and Logic Diagram 

A B C

Vcc

uninterrupted diffusion strip

X

http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf

X

X

y

GND

z

Vdd

consistent Euler paths (PUN & PDN) 

C

BA
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Graph Traversal

https://en.wikipedia.org/wiki/Graph_traversal

graph traversal (graph search) refers to 
the process of visiting (checking and/or updating) 
each vertex in a graph. 

Such traversals are classified
by the order in which the vertices are visited. 

Tree traversal is a special case of graph traversal.
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General Graph Search Algorithm 

https://courses.cs.washington.edu/courses/cse326/08wi/a/lectures/lecture13.pdf

Search( start, isGoal, criteria)
insert(Start, Open);
repeat
if (empty(Open)) then return fail;
select node from Open using Criteria;
mark node as visited;
if (isGoal(node)) then return node;
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DFS

https://courses.cs.washington.edu/courses/cse326/08wi/a/lectures/lecture13.pdf

Open – Stack
Criteria – pop 

DFS( Start, isGoal)
push(Start, Open);
repeat

if (empty(Open)) then return fail;
node := pop(Open);
Mark node as visited;
if (isGoal(node)) then return node;
for each child of node do

if (child not already visited) then 
push(child, Open);
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BFS

https://courses.cs.washington.edu/courses/cse326/08wi/a/lectures/lecture13.pdf

Open – Stack
Criteria – dequeue 

BFS( Start, isGoal)
enqueue(Start, Open);
repeat

if (empty(Open)) then return fail;
node := dequeue(Open);
mark node as visited; 
if (isGoal(node)) then return node;
for each child of node do

if (child not already visited) then 
enqueue(child, Open);
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Algorithm Search

https://ocw.mit.edu/courses/sloan-school-of-management/15-082j-network-optimization-fall-2010/lecture-notes/MIT15_082JF10_lec03.pdf

Initialize as follows: 
unmark all nodes in N;
mark node s;
pred(s) = 0;   {that is, it has no predecessor}
LIST = {s} 

while LIST ≠ ø do
select a node i in LIST;
if node i is incident to an admissible arc (i,j) then

mark node j;
pred(j) := i;
add node j to the end of LIST;

else
delete node i from LIST 
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Algorithm Search

https://ocw.mit.edu/courses/sloan-school-of-management/15-082j-network-optimization-fall-2010/lecture-notes/MIT15_082JF10_lec03.pdf

Initialize as follows: 
unmark all nodes in N;
mark node s;
pred(s) = 0;   {that is, it has no predecessor}
LIST = {s} 

while LIST ≠ ø do
select a node i in LIST;
if node i is incident to an admissible arc (i,j) then

mark node j;
pred(j) := i;
add node j to the end of LIST;

else
delete node i from LIST 

DFS : select the last node i in LIST;
BFS : select the first node i in LIST;
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Algorithm Search

https://ocw.mit.edu/courses/sloan-school-of-management/15-082j-network-optimization-fall-2010/lecture-notes/MIT15_082JF10_lec03.pdf

Initialize as follows: 
unmark all nodes in N;
mark node s;
pred(s) = 0;   {that is, it has no predecessor}
LIST = {s} 

while LIST ≠ ø do
select a node i in LIST;
if node i is incident to an admissible arc (i,j) then

mark node j;
pred(j) := i;
add node j to the end of LIST;

else
delete node i from LIST 

DFS : select the last node i in LIST;

BFS : select the first node i in LIST;
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Algorithm Search

https://ocw.mit.edu/courses/sloan-school-of-management/15-082j-network-optimization-fall-2010/lecture-notes/MIT15_082JF10_lec03.pdf

pred(j) is a node that precedes j on some path from s; 

A node is either marked or unmarked.  
Initially only node s is marked.  
If a node is marked, it is reachable from node s.
An arc (i,j) A  is ∈ admissible
if node i is marked and j is not.

j

i

k
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DFS  

OPEN

x

1 2 3

3 2 1 x

CLOSED

https://en.wikiversity.org/wiki/Artificial_intelligence/Lecture_aid



Graph Search (6A) 12 Young Won Lim
5/18/18

BFS 

y

ba

ba

OPEN

y

CLOSED

https://en.wikiversity.org/wiki/Artificial_intelligence/Lecture_aid
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Expand Function

DFS (Depth First Search) BFS (Breadth First Search)

Stack Queue

https://en.wikiversity.org/wiki/Artificial_intelligence/Lecture_aid
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DFS Pseudocode 

https://en.wikipedia.org/wiki/Graph_traversal

1 procedure DFS(G, v):
2     label v as explored
3     for all edges e in G.incidentEdges(v) do
4         if edge e is unexplored then
5             w ← G.adjacentVertex(v, e)
6             if vertex w is unexplored then
7                 label e as a discovered edge
8                 recursively call DFS(G, w)
9 else
10               label e as a back edge
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Depth First Search Example

https://en.wikipedia.org/wiki/Graph_traversal

a

d h

ie

fb

gc
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Depth First Search Example

https://en.wikipedia.org/wiki/Graph_traversal
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Depth First Search Example

https://en.wikipedia.org/wiki/Graph_traversal
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DFS 

https://en.wikipedia.org/wiki/Graph_traversal

A depth-first search (DFS) 
is an algorithm for traversing a finite graph. 

DFS visits the child vertices 
before visiting the sibling vertices; 

that is, it traverses the depth of any particular path 
before exploring its breadth. 

A stack (often the program's call stack via recursion) is 
generally used when implementing the algorithm.
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DFS Backtrack

https://en.wikipedia.org/wiki/Graph_traversal

The algorithm begins with a chosen "root" vertex; 

it then iteratively transitions from the current vertex to an 
adjacent, unvisited vertex, until it can no longer find an 
unexplored vertex to transition to from its current location.

The algorithm then backtracks along previously visited 
vertices, until it finds a vertex connected to yet more 
uncharted territory.

It will then proceed down the new path as it had before, 
backtracking as it encounters dead-ends, and ending only 
when the algorithm has backtracked past the original "root" 
vertex from the very first step.
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Breadth First Search Example

https://en.wikipedia.org/wiki/Graph_traversal
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Breadth First Search Example

https://en.wikipedia.org/wiki/Graph_traversal
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Breadth First Search Example

https://en.wikipedia.org/wiki/Graph_traversal
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BFS

https://en.wikipedia.org/wiki/Graph_traversal

A breadth-first search (BFS) is another technique for 
traversing a finite graph. 

BFS visits the neighbor vertices before visiting the child 
vertices

a queue is used in the search process

This algorithm is often used to find the shortest path from 
one vertex to another.
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BFS Pseudocode

https://en.wikipedia.org/wiki/Graph_traversal

1 procedure BFS(G, v):
2     create a queue Q
3     enqueue v onto Q
4     mark v
5     while Q is not empty:
6         t ← Q.dequeue()
7         if t is what we are looking for:
8             return t
9         for all edges e in G.adjacentEdges(t) do
12            o ← G.adjacentVertex(t, e)
13     if o is not marked:
14                mark o
15                enqueue o onto Q
16     return null
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Binary Search Tree 

https://en.wikipedia.org/wiki/Binary_search_tree

Bnary search trees (BST),
ordered binary trees
sorted binary trees

are a particular type of container: 
data structures that store "items" 
(such as numbers, names etc.) in memory. 

They allow fast lookup, addition and removal of items
can be used to implement either dynamic sets of items
lookup tables that allow finding an item by its key 
(e.g., finding the phone number of a person by name).
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Binary Search Tree 

https://en.wikipedia.org/wiki/Binary_search_tree

keep their keys in sorted order
lookup operations can use the principle of binary search

when looking for a key in a tree 
or looking for a place to insert a new key, 
they traverse the tree from root to leaf, 
making comparisons to keys stored in the nodes
Deciding to continue in the left or right subtrees, 
on the basis of the comparison. 

allowing to skip searching half of the tree
each operation (lookup, insertion or deletion) 
takes time proportional to log n

much better than the linear time
but slower than the corresponding operations on hash 
tables.
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Infix, Prefix, Postfix Notations

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

3 < 8 < 10

1 < 3 < 6 10 < 14

4 < 6 < 7 13 < 14

1, 3, 4, 6, 7, 8, 10, 13, 14
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Infix, Prefix, Postfix Notations
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Infix, Prefix, Postfix Notations

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html
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Infix, Prefix, Postfix Notations

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html
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Infix, Prefix, Postfix Notations

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html
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Infix, Prefix, Postfix Notations
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Binary Search

https://en.wikipedia.org/wiki/Binary_search_algorithm
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Insertion 

https://en.wikipedia.org/wiki/Morphism

Insertion begins as a search would begin; if the key is not equal to that of the 
root, we search the left or right subtrees as before. Eventually, we will reach 
an external node and add the new key-value pair (here encoded as a record 
'newNode') as its right or left child, depending on the node's key. In other 
words, we examine the root and recursively insert the new node to the left 
subtree if its key is less than that of the root, or the right subtree if its key is 
greater than or equal to the root.
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Deletion

https://en.wikipedia.org/wiki/Morphism

1. Deleting a node with no children: 
simply remove the node from the tree.

2. Deleting a node with one child: 
remove the node and replace it with its child.

3. Deleting a node with two children: 
call the node to be deleted D. 
Do not delete D. 
Instead, choose either its in-order predecessor node 
or its in-order successor node as replacement node E. 
Copy the user values of E to D
If E does not have a child 

simply remove E from its previous parent G. 
If E has a child, say F, it is a right child. 

Replace E with F at E's parent.
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Deletion

https://en.wikipedia.org/wiki/Morphism
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Binary Search Tree 

https://en.wikipedia.org/wiki/Binary_search_tree

Bnary search trees (BST),
ordered binary trees
sorted binary trees

are a particular type of container: 
data structures that store "items" 
(such as numbers, names etc.) in memory. 

They allow fast lookup, addition and removal of items
can be used to implement either dynamic sets of items
lookup tables that allow finding an item by its key 
(e.g., finding the phone number of a person by name).
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Binary Search Tree 

https://en.wikipedia.org/wiki/Binary_search_tree

keep their keys in sorted order
lookup operations can use the principle of binary search

when looking for a key in a tree 
or looking for a place to insert a new key, 
they traverse the tree from root to leaf, 
making comparisons to keys stored in the nodes
Deciding to continue in the left or right subtrees, 
on the basis of the comparison. 

allowing to skip searching half of the tree
each operation (lookup, insertion or deletion) 
takes time proportional to log n

much better than the linear time
but slower than the corresponding operations on hash 
tables.
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Infix, Prefix, Postfix Notations

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

3 < 8 < 10

1 < 3 < 6 10 < 14

4 < 6 < 7 13 < 14
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Infix, Prefix, Postfix Notations

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

1,3, 4,6,7 < 8 < 10,13,14

1 < 3 < 4, 6,7 10 < 13,14
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Infix, Prefix, Postfix Notations

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

1,3, 4,6,7 < 8 < 10,13,14

1 < 3 < 4, 6,7 10 < 13,14

4 < 6 < 7 13 < 14
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Binary Search

https://en.wikipedia.org/wiki/Binary_search_algorithm
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Insertion 

https://en.wikipedia.org/wiki/Morphism

Insertion begins as a search would begin; if the key is not equal to that of the 
root, we search the left or right subtrees as before. Eventually, we will reach 
an external node and add the new key-value pair (here encoded as a record 
'newNode') as its right or left child, depending on the node's key. In other 
words, we examine the root and recursively insert the new node to the left 
subtree if its key is less than that of the root, or the right subtree if its key is 
greater than or equal to the root.
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Deletion

https://en.wikipedia.org/wiki/Morphism

1. Deleting a node with no children: 
simply remove the node from the tree.

2. Deleting a node with one child: 
remove the node and replace it with its child.

3. Deleting a node with two children: 
call the node to be deleted D. 
Do not delete D. 
Instead, choose either its in-order predecessor node 
or its in-order successor node as replacement node E. 
Copy the user values of E to D
If E does not have a child 

simply remove E from its previous parent G. 
If E has a child, say F, it is a right child. 

Replace E with F at E's parent.
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