
1 Young Won Lim
8/12/20

Monad P3 : Existential Types (1C)

2 Young Won Lim
8/12/20

 Copyright (c) 2016 - 2020 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Existential Types (1C) 3 Young Won Lim
8/12/20

Based on

Haskell in 5 steps

https://wiki.haskell.org/Haskell_in_5_steps

Existential Types (1C) 4 Young Won Lim
8/12/20

The literals 1, 2, etc. are often used to represent

both fixed and arbitrary precision integers.

Numeric operators such as + are often defined to work

on many different kinds of numbers.

the equality operator (== in Haskell) usually works on

numbers and many other (but not all) types.

the overloaded behaviors are

different for each type

in fact sometimes undefined, or error

type classes provide a structured way to control

ad hoc polymorphism, or overloading.

https://www.haskell.org/tutorial/classes.html

Overloading

In the parametric polymorphism

the type truly does not matter

(Eq a) =>

Type class

Ad hoc polymorphism

Existential Types (1C) 5 Young Won Lim
8/12/20

parametric polymorphism is useful in

defining families of types

by universally quantifying over all types.

Sometimes, however, it is necessary

to quantify over some smaller set of types,

eg. those types whose elements can be compared for equality.

ad hoc polymorphism

https://www.haskell.org/tutorial/classes.html

Quantification

elem :: a -> [a] -> Bool

elem :: (Eq a) => a -> [a] -> Bool

Existential Types (1C) 6 Young Won Lim
8/12/20

type classes can be seen as providing a structured way

to quantify over a constrained set of types

the parametric polymorphism can be viewed

as a kind of overloading too!

parametric polymorphism

an overloading occurs implicitly over all types

ad hoc polymorphism

a type class for a constrained set of types

https://www.haskell.org/tutorial/classes.html

Type class and parametric polymorphism

elem :: a -> [a] -> Bool

elem :: (Eq a) => a -> [a] -> Bool

Existential Types (1C) 7 Young Won Lim
8/12/20

Parametric polymorphism refers to

when the type of a value contains

one or more (unconstrained) type variables,

so that the value may adopt any type

that results from substituting those variables with concrete types.

https://wiki.haskell.org/Polymorphism

Parametric polymorphism (1) definition

elem :: a -> [a] -> Bool

Existential Types (1C) 8 Young Won Lim
8/12/20

In Haskell, this means any type in which a type variable,

denoted by a name in a type

beginning with a lowercase letter,

appears without constraints

(i.e. does not appear to the left of a =>).

In Java and some similar languages,

generics (roughly speaking) fill this role.

https://wiki.haskell.org/Polymorphism

Parametric polymorphism (2) unconstrained type variable

elem :: a -> [a] -> Bool

Existential Types (1C) 9 Young Won Lim
8/12/20

For example, the function id :: a -> a contains

an unconstrained type variable a in its type,

and so can be used in a context requiring

Char -> Char or

Integer -> Integer or

(Bool -> Maybe Bool) -> (Bool -> Maybe Bool) or

any of a literally infinite list of other possibilities.

Likewise, the empty list [] :: [a] belongs to every list type,

and the polymorphic function map :: (a -> b) -> [a] -> [b]

may operate on any function type.

https://wiki.haskell.org/Polymorphism

Parametric polymorphism (3) examples

Existential Types (1C) 10 Young Won Lim
8/12/20

Note, however, that if a single type variable appears multiple times,

it must take the same type everywhere it appears,

so e.g. the result type of id must be the same as the argument type,

and the input and output types of the function

given to map must match up with the list types.

https://wiki.haskell.org/Polymorphism

Parametric polymorphism (4) multiple appearance

 id :: a -> a

map :: (a -> b) -> [a] -> [b]

Existential Types (1C) 11 Young Won Lim
8/12/20

Since a parametrically polymorphic value does not "know"

anything about the unconstrained type variables,

it must behave the same regardless of its type.

This is a somewhat limiting

but extremely useful property

known as parametricity

https://wiki.haskell.org/Polymorphism

Parametric polymorphism (5) parametricity

 id :: a -> a

map :: (a -> b) -> [a] -> [b]

Existential Types (1C) 12 Young Won Lim
8/12/20

Ad-hoc polymorphism refers to

when a value is able to adopt any one of several types

because it, or a value it uses, has been given

a separate definition for each of those types.

the + operator essentially does something entirely different

when applied to floating-point values

as compared to when applied to integers

https://wiki.haskell.org/Polymorphism

Ad hoc polymorphism (1)

elem :: (Eq a) => a -> [a] -> Bool

Existential Types (1C) 13 Young Won Lim
8/12/20

in languages like C, polymorphism is restricted to

only built-in functions and types.

Other languages like C++ allow programmers

to provide their own overloading,

supplying multiple definitions of a single function,

to be disambiguated by the types of the arguments

In Haskell, this is achieved via the system of

type classes and class instances.

https://wiki.haskell.org/Polymorphism

Ad hoc polymorphism (2)

Existential Types (1C) 14 Young Won Lim
8/12/20

Despite the similarity of the name,

Haskell's type classes are quite different from

the classes of most object-oriented languages.

They have more in common with interfaces,

in that they specify a series of methods or values

by their type signature,

to be implemented by an instance declaration.

https://wiki.haskell.org/Polymorphism

Ad hoc polymorphism (3)

class Eq a where

 (==) :: a -> a -> Bool

instance Eq Integer where

 x == y = x `integerEq` y

instance Eq Float where

 x == y = x `floatEq` y

Existential Types (1C) 15 Young Won Lim
8/12/20

So, for example, if my type can be compared for equality

(most types can, but some, particularly function types, cannot)

then I can give an instance declaration of the Eq class

All I have to do is specify

the behaviour of the == operator on my type,

and I gain the ability to use all sorts of functions

defined using == operator, e.g.

checking if a value of my type is present in a list,

or looking up a corresponding value in a list of pairs.

https://wiki.haskell.org/Polymorphism

Ad hoc polymorphism (4)

class Eq a where

 (==) :: a -> a -> Bool

instance Eq Integer where

 x == y = x `integerEq` y

instance Eq Float where

 x == y = x `floatEq` y

Existential Types (1C) 16 Young Won Lim
8/12/20

Unlike the overloading in some languages,

overloading in Haskell is not limited to functions

– minBound is an example of an overloaded value,

as a Char, it will have value '\NUL'

as an Int it might be -2147483648

https://wiki.haskell.org/Polymorphism

Ad hoc polymorphism (5)

Existential Types (1C) 17 Young Won Lim
8/12/20

Haskell even allows class instances to be defined for types

which are themselves polymorphic (either ad-hoc or parametrically).

So for example, an instance can be defined of Eq

that says "if a has an equality operation, then [a] has one".

Then, of course, [[a]] will automatically also have an instance,

and so complex compound types can have instances built for them

out of the instances of their components.

https://wiki.haskell.org/Polymorphism

Ad hoc polymorphism (6)

Existential Types (1C) 18 Young Won Lim
8/12/20

data List a = Nil | Cons a (List a)

instance Eq a => Eq (List a) where

 (Cons a b) == (Cons c d) = (a == c) && (b == d)

 Nil == Nil = True

 _ == _ = False

https://stackoverflow.com/questions/30520219/how-to-define-eq-instance-of-list-without-gadts-or-datatype-contexts

Ad hoc polymorphism (7)

Existential Types (1C) 19 Young Won Lim
8/12/20

You can recognise the presence of ad-hoc polymorphism

by looking for constrained type variables:

that is, variables that appear to the left of =>,

like in elem :: (Eq a) => a -> [a] -> Bool.

Note that lookup :: (Eq a) => a -> [(a,b)] -> Maybe b

exhibits both parametric (in b) and ad-hoc (in a) polymorphism.

https://wiki.haskell.org/Polymorphism

Ad hoc polymorphism (8)

Existential Types (1C) 20 Young Won Lim
8/12/20

Parametric polymorphism ad hoc polymorphism

Type variables Type calsses

(a, b, etc) (Eq, Num, etc)

Universal Existential?

Compile time Runtime (also)

C++ templates Classical

Java generics (ordinary OO)

http://sm-haskell-users-group.github.io/pdfs/Ben%20Deane%20-%20Parametric%20Polymorphism.pdf

Parametric and ad hoc polymorphism

Existential Types (1C) 21 Young Won Lim
8/12/20

data Maybe a = Nothing | Just a

data List a = Nil | Cons a (List a)

data Either a b = Left a | Right b

reverse :: [a] -> [a]

fst :: (a,b) -> a

id :: a -> a

http://sm-haskell-users-group.github.io/pdfs/Ben%20Deane%20-%20Parametric%20Polymorphism.pdf

Polymorphic data types and functions

Existential Types (1C) 22 Young Won Lim
8/12/20

types that are universally quantified in some way over all types.

polymorphic type expressions essentially describe families of types.

For example, (forall a) [a] is the family of types

consisting of, for every type a, the type of lists of a.

● lists of integers (e.g. [1,2,3]),

● lists of characters (['a','b','c']),

● even lists of lists of integers, etc.,

(Note, however, that [2,'b'] is not a valid example,

since there is no single type that contains both 2 and 'b'.)

https://www.haskell.org/tutorial/goodies.html

Polymorphic Types

Existential Types (1C) 23 Young Won Lim
8/12/20

Identifiers such as a above are called type variables,

and are uncapitalized to distinguish them

from specific types such as Int.

since Haskell has only universally quantified types,

there is no need to explicitly write out the symbol

for universal quantification,

and thus we simply write [a] in the example above.

In other words, all type variables are implicitly universally quantified

https://www.haskell.org/tutorial/goodies.html

Type variables – universally quantified

Existential Types (1C) 24 Young Won Lim
8/12/20

Lists are a commonly used data structure in functional languages,

and are a good tool for explaining the principles of polymorphism.

The list [1,2,3] in Haskell is actually shorthand for

the list 1:(2:(3:[])),

where [] is the empty list and

: is the infix operator

that adds its first argument to the front

of its second argument (a list).

Since : is right associative, we can also write this list as

1:2:3:[].

https://www.haskell.org/tutorial/goodies.html

List

Existential Types (1C) 25 Young Won Lim
8/12/20

length :: [a] -> Integer

length [] = 0

length (x:xs) = 1 + length xs

length [1,2,3] => 3

length ['a','b','c'] => 3

length [[1],[2],[3]] => 3

an example of a polymorphic function.

It can be applied to a list containing elements of any type,

for example [Integer], [Char], or [[Integer]].

https://www.haskell.org/tutorial/goodies.html

Polymorphic function example

Existential Types (1C) 26 Young Won Lim
8/12/20

length :: [a] -> Integer

length [] = 0

length (x:xs) = 1 + length xs

The left-hand sides of the equations contain

patterns such as [] and x:xs.

In a function application these patterns are

matched against actual parameters in a fairly intuitive way

https://www.haskell.org/tutorial/goodies.html

Patterns in functions

Existential Types (1C) 27 Young Won Lim
8/12/20

length :: [a] -> Integer

length [] = 0

length (x:xs) = 1 + length xs

[] only matches the empty list,

x:xs will successfully match any list with at least one element,

binding x to the first element and xs to the rest of the list

If the match succeeds,

the right-hand side is evaluated

and returned as the result of the application.

If it fails, the next equation is tried,

and if all equations fail, an error results.

https://www.haskell.org/tutorial/goodies.html

Matching patterns

Existential Types (1C) 28 Young Won Lim
8/12/20

Function head returns the first element of a list,

function tail returns all but the first.

head :: [a] -> a

head (x:xs) = x

tail :: [a] -> [a]

tail (x:xs) = xs

Unlike length, these functions are not defined

for all possible values of their argument.

A runtime error occurs when these functions

are applied to an empty list.

https://www.haskell.org/tutorial/goodies.html

Not all possible cases – runtime errors

Existential Types (1C) 29 Young Won Lim
8/12/20

With polymorphic types, we find that

some types are in a sense strictly more general than others

in the sense that the set of values they define is larger.

the type [a] is more general than [Char].

type [Char] can be derived from [a]

by a suitable substitution for a.

https://www.haskell.org/tutorial/goodies.html

General types

Existential Types (1C) 30 Young Won Lim
8/12/20

With regard to this generalization ordering,

Haskell's type system possesses two important properties:

1. every well-typed expression is guaranteed

 to have a unique principal type (explained below),

2. the principal type can be inferred automatically.

In comparison to a monomorphically typed language such as C,

the reader will find that polymorphism improves expressiveness,

and type inference lessens the burden of types on the programmer.

https://www.haskell.org/tutorial/goodies.html

Principal type

Existential Types (1C) 31 Young Won Lim
8/12/20

An expression's or function's principal type is

the least general type that, intuitively,

"contains all instances of the expression".

For example, the principal type of head is [a]->a;

[b]->a, a->a, or even a are correct types, but too general,

whereas something like [Integer]->Integer is too specific.

The existence of unique principal types is

the hallmark feature of the Hindley-Milner type system,

which forms the basis of the type systems of Haskell

https://www.haskell.org/tutorial/goodies.html

Unique principal types

Existential Types (1C) 32 Young Won Lim
8/12/20

to explicitly bring fresh type variables into scope.

 Explicitly quantifying the type variables

map :: forall a b. (a -> b) -> [a] -> [b]

for any combination of types a and b

choose a = Int and b = String

then it's valid to say that map has the type

(Int -> String) -> [Int] -> [String]

Here we are instantiating the general type of map

to a more specific type.

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Explicitly Quantifying Type Variables

Existential Types (1C) 33 Young Won Lim
8/12/20

any introduction of a lowercase type parameter

implicitly begins with a forall keyword,

Example: Two equivalent type statements

id :: a -> a

id :: forall a . a -> a

We can apply additional constraints

on the quantified type variables

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Implicit forall

Existential Types (1C) 34 Young Won Lim
8/12/20

Normally when creating a new type

using type, newtype, data, etc.,

every type variable that appears on the right-hand side

must also appear on the left-hand side.

newtype ST s a = ST (State# s -> (# State# s, a #))

Existential types are a way of escaping

Existential types can be used for several different purposes.

But what they do is to hide a type variable on the right-hand side.

https://wiki.haskell.org/Existential_type

Hiding a type variable on the RHS

Existential Types (1C) 35 Young Won Lim
8/12/20

Normally, any type variable appearing on the right must

also appear on the left:

data Worker x y = Worker {buffer :: b, input :: x, output :: y}

This is an error, since the type b of the buffer

Is not specified on the right (b is a type variable rather than a type)

but also is not specified on the left (there's no b in the left part).

In Haskell98, you would have to write

data Worker b x y = Worker {buffer :: b, input :: x, output :: y}

https://wiki.haskell.org/Existential_type

Type Variable Example – (1) error

Existential Types (1C) 36 Young Won Lim
8/12/20

However, suppose that a Worker can use any type b

so long as it belongs to some particular class.

Then every function that uses a Worker will have a type like

foo :: (Buffer b) => Worker b Int Int

In particular, failing to write an explicit type signature (Buffer b)

will invoke the dreaded monomorphism restriction.

Using existential types, we can avoid this:

https://wiki.haskell.org/Existential_type

Type Variable Example – (2) explicit type signature

Existential Types (1C) 37 Young Won Lim
8/12/20

Using existential type :

data Worker x y = forall b. Buffer b => Worker {buffer :: b, input :: x, output :: y}

foo :: Worker Int Int

The type of the buffer (Buffer) now does not appear

in the Worker type at all.

Explicit type signature :

data Worker b x y = Worker {buffer :: b, input :: x, output :: y}

foo :: (Buffer b) => Worker b Int Int

https://wiki.haskell.org/Existential_type

Type Variable Example – (3) existential type

Existential Types (1C) 38 Young Won Lim
8/12/20

● it is now impossible for a function

to demand a Worker having a specific type of buffer.

● the type of foo can now be derived automatically

without needing an explicit type signature.

(No monomorphism restriction.)

● since code now has no idea

what type the buffer function returns,

you are more limited in what you can do to it.

data Worker x y = forall b. Buffer b => Worker {buffer :: b, input :: x, output :: y}

foo :: Worker Int Int

https://wiki.haskell.org/Existential_type

Type Variable Example – (4) characteristics

Existential Types (1C) 39 Young Won Lim
8/12/20

In general, when you use a hidden type in this way,

you will usually want that type to belong to a specific class,

or you will want to pass some functions along

that can work on that type.

Otherwise you'll have some value belonging

to a random unknown type,

and you won't be able to do anything to it!

https://wiki.haskell.org/Existential_type

Hiding a type

Existential Types (1C) 40 Young Won Lim
8/12/20

Note: You can use existential types

to convert a more specific type

into a less specific one.

constrained type variables

There is no way to perform the reverse conversion!

https://wiki.haskell.org/Existential_type

Conversion to less a specific type

Existential Types (1C) 41 Young Won Lim
8/12/20

This illustrates creating a heterogeneous list,

all of whose members implement "Show",

and progressing through that list to show these items:

data Obj = forall a. (Show a) => Obj a

xs :: [Obj]

xs = [Obj 1, Obj "foo", Obj 'c']

doShow :: [Obj] -> String

doShow [] = ""

doShow ((Obj x):xs) = show x ++ doShow xs

With output: doShow xs ==> "1\"foo\"'c'"

https://wiki.haskell.org/Existential_type

A heterogeneous list example

Existential Types (1C) 42 Young Won Lim
8/12/20

It is also possible to express existentials with RankNTypes

as type expressions directly (without a data declaration)

forall r. (forall a. Show a => a -> r) -> r

(the leading forall r. is optional

unless the expression is part of another expression).

the equivalent type Obj :

data Obj = forall a. (Show a) => Obj a

https://wiki.haskell.org/Existential_type

Existentials in terms of forall (1)

Existential Types (1C) 43 Young Won Lim
8/12/20

The conversions are:

fromObj :: Obj -> forall r. (forall a. Show a => a -> r) -> r

fromObj (Obj x) k = k x

toObj :: (forall r. (forall a. Show a => a -> r) -> r) -> Obj

toObj f = f Obj

https://wiki.haskell.org/Existential_type

Existentials in terms of forall (2)

Existential Types (1C) 44 Young Won Lim
8/12/20

Existential types, or 'existentials' for short,

are a way of 'squashing' a group of types into one, single type.

Existentials are part of GHC's type system extensions.

They aren't part of Haskell98, and as such you'll have

to either compile any code that contains them

with an extra command-line parameter of -XExistentialQuantification,

or put {-# LANGUAGE ExistentialQuantification #-}

at the top of your sources that use existentials.

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Existentials

Existential Types (1C) 45 Young Won Lim
8/12/20

Example: A polymorphic function

map :: (a -> b) -> [a] -> [b]

Example: Explicitly quantifying the type variables

map :: forall a b. (a -> b) -> [a] -> [b]

instantiating the general type of map to a more specific type

a = Int and b = String

(Int -> String) -> [Int] -> [String]

Example: Two equivalent type statements

id :: a -> a

id :: forall a . a -> a

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall

Existential Types (1C) 46 Young Won Lim
8/12/20

Suppose we have a group of values.

We don't know if they are all the same type,

but we do know they are all members of some class

(and, by extension, that all the values have a certain property).

It might be useful to throw all these values into a list.

We can't do this normally because lists elements

must be of the same type (homogeneous with respect to types).

However, existential types allow us

to loosen this requirement by defining a type hider or type box:

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall

Existential Types (1C) 47 Young Won Lim
8/12/20

Example: Constructing a heterogeneous list

data ShowBox = forall s. Show s => SB s

heteroList :: [ShowBox]

heteroList = [SB (), SB 5, SB True]

calling the constructor on three values of different types,

[SB (), SB 5, SB True], to place them all into a single list

so we must somehow have the same type for each one.

Use the forall in the constructor

SB :: forall s. Show s => s -> ShowBox.

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall

Existential Types (1C) 48 Young Won Lim
8/12/20

Example: Constructing a heterogeneous list

data ShowBox = forall s. Show s => SB s

heteroList :: [ShowBox]

heteroList = [SB (), SB 5, SB True]

If we were now writing a function

to which we intend to pass heteroList,

we couldn't apply a function such as not to the values inside the SB

because their type might not be Bool.

But we do know something about each of the elements:

they can be converted to a string via show.

In fact, that's pretty much the only thing we know about them.

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall

Existential Types (1C) 49 Young Won Lim
8/12/20

Example: Using our heterogeneous list

 instance Show ShowBox where

show (SB s) = show s -- (*) see the comment in the text below

f :: [ShowBox] -> IO ()

f xs = mapM_ print xs

main = f heteroList

Example: Types of the functions involved

print :: Show s => s -> IO () -- print x = putStrLn (show x)

mapM_ :: (a -> m b) -> [a] -> m ()

mapM_ print :: Show s => [s] -> IO ()

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall

Existential Types (1C) 50 Young Won Lim
8/12/20

One way to think about forall is

to consider types as a set of possible values.

Bool is the set {True, False, } ⊥}

(remember that bottom, , is a member of every type!), ⊥, is a member of every type!),

Integer is the set of integers (and bottom),

String is the set of all possible strings (and bottom), and so on.

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall

Existential Types (1C) 51 Young Won Lim
8/12/20

forall serves as a way to assert a commonality or intersection

of the specified types (i.e. sets of values).

forall a. a is the intersection of all types.

This subset turns out to be the set { }⊥} ,

since it is an implicit value in every type.

that is, [the type whose only available value is bottom]

However, since every Haskell type includes bottom, { }⊥} ,

this quantification in fact stipulates all Haskell types.

But the only permissible operations on it are

those available to [a type whose only available value is bottom]

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall a. a

Existential Types (1C) 52 Young Won Lim
8/12/20

The list, [forall a. a], is the type of a list

whose elements all have the type forall a. a, i.e.

a list of bottoms.

The list, [forall a. Show a => a], is the type of a list

whose elements all have the type forall a. Show a => a.

The Show class constraint requires the possible types

to also be a member of the class, Show.

 However, is still the only value common to all these types, ⊥, is a member of every type!),

so this too is a list of bottoms.

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall a. a

Existential Types (1C) 53 Young Won Lim
8/12/20

The list, [forall a. Num a => a], requires each element

to be a member of the class, Num.

Consequently, the possible values include

numeric literals, which have the specific type,

forall a. Num a => a, as well as bottom.

forall a. [a] is the type of the list whose elements

all have the same type a.

Since we cannot presume any particular type at all,

this too is a list of bottoms.

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall a. a

Existential Types (1C) 54 Young Won Lim
8/12/20

We see that most intersections over types just lead to bottoms

because types generally don't have any values in common and

so presumptions cannot be made about a union of their values.

a heterogeneous list using a 'type hider'.

This 'type hider' functions as a wrapper type

which guarantees certain facilities

by implying a predicate or constraint on the permissible types.

the purpose of forall is to impose type constraint

on the permissible types within a type declaration

and thereby guaranteeing certain facilities with such types.

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall

Existential Types (1C) 55 Young Won Lim
8/12/20

Example: An existential datatype

 data T = forall a. MkT a

Example: This defines a polymorphic constructor,

or a family of constructors for T

MkT :: forall a. (a -> T)

Example: Pattern matching on our existential constructor

 foo (MkT x) = ... -- what is the type of x?

Example: Constructing the hetereogeneous list

 heteroList = [MkT 5, MkT (), MkT True, MkT map]

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall

Existential Types (1C) 56 Young Won Lim
8/12/20

Example: A new existential data type, with a class constraint

 data T' = forall a. Show a => MkT' a

Example: Using our new heterogenous setup

 heteroList' = [MkT' 5, MkT' (), MkT' True, MkT' "Sartre"]

 main = mapM_ (\(MkT' x) -> print x) heteroList'

 {- prints:

 5

 ()

 True

 "Sartre"

 -}

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall

Existential Types (1C) 57 Young Won Lim
8/12/20

Example: The runST function

runST :: forall a. (forall s. ST s a) -> a

Example: Bad ST code

 let v = runST (newSTRef True)

 in runST (readSTRef v)

Example: Briefer bad ST code

... runST (newSTRef True) ...

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall

Existential Types (1C) 58 Young Won Lim
8/12/20

Example: The compiler's typechecking stage

newSTRef True :: forall s. ST s (STRef s Bool)

runST :: forall a. (forall s. ST s a) -> a

together, (forall s. ST s (STRef s Bool)) -> STRef s Bool

Example: A type mismatch!

together, (forall s'. ST s' (STRef s' Bool)) -> STRef s Bool

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall

Existential Types (1C) 59 Young Won Lim
8/12/20

Example: Identity function

 id :: forall a. a -> a

 id a = a

Example: Polymorphic value

 x :: forall a. Num a => a

 x = 0

Example: Existential type

 data ShowBox = forall s. Show s => SB s

Example: Sum type

 data ShowBox = SBUnit | SBInt Int | SBBool Bool | SBIntList [Int] | ...

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall

Existential Types (1C) 60 Young Won Lim
8/12/20

{-# LANGUAGE ExistentialQuantification, RankNTypes #-}

newtype Pair a b = Pair (forall c. (a -> b -> c) -> c)

makePair :: a -> b -> Pair a b

makePair a b = Pair $ \f -> f a b

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall

Existential Types (1C) 61 Young Won Lim
8/12/20

λ> :set -XExistentialQuantification

 λ> :set -XRankNTypes

 λ> newtype Pair a b = Pair {runPair :: forall c. (a -> b -> c) -> c}

 λ> makePair a b = Pair $ \f -> f a b

 λ> pair = makePair "a" 'b'

 λ> :t pair

 pair :: Pair [Char] Char

 λ> runPair pair (\x y -> x)

 "a"

 λ> runPair pair (\x y -> y)

 'b'

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall

Existential Types (1C) 62 Young Won Lim
8/12/20

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62

