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Based on

Haskell in 5 steps

https://wiki.haskell.org/Haskell_in_5_steps
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The literals 1, 2, etc. are often used to represent 

both fixed and arbitrary precision integers.

Numeric operators such as + are often defined to work 

on many different kinds of numbers.

the equality operator (== in Haskell) usually works on 

numbers and many other (but not all) types.

the overloaded behaviors are 

different for each type 

in fact sometimes undefined, or error 

type classes provide a structured way to control 

ad hoc polymorphism, or overloading.

https://www.haskell.org/tutorial/classes.html

Overloading

In the parametric polymorphism 

the type truly does not matter 

(Eq a) =>

Type class

Ad hoc polymorphism
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parametric polymorphism is useful in 

defining families of types 

by universally quantifying over all types. 

Sometimes, however, it is necessary 

to quantify over some smaller set of types, 

eg. those types whose elements can be compared for equality. 

ad hoc polymorphism

https://www.haskell.org/tutorial/classes.html

Quantification 

elem :: a -> [a] -> Bool

elem :: (Eq a) => a -> [a] -> Bool



Existential Types (1C) 6 Young Won Lim
8/12/20

type classes can be seen as providing a structured way

to quantify over a constrained set of types

 

the parametric polymorphism can be viewed 

as a kind of overloading too! 

parametric polymorphism

an overloading occurs implicitly over all types 

ad hoc polymorphism

a type class for a constrained set of types 

https://www.haskell.org/tutorial/classes.html

Type class and parametric polymorphism

elem :: a -> [a] -> Bool

elem :: (Eq a) => a -> [a] -> Bool
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Parametric polymorphism refers to 

when the type of a value contains 

one or more (unconstrained) type variables, 

so that the value may adopt any type 

that results from substituting those variables with concrete types.

https://wiki.haskell.org/Polymorphism

Parametric polymorphism (1) definition

elem :: a -> [a] -> Bool



Existential Types (1C) 8 Young Won Lim
8/12/20

In Haskell, this means any type in which a type variable, 

denoted by a name in a type 

beginning with a lowercase letter, 

appears without constraints 

(i.e. does not appear to the left of a =>). 

In Java and some similar languages, 

generics (roughly speaking) fill this role. 

https://wiki.haskell.org/Polymorphism

Parametric polymorphism (2) unconstrained type variable

elem :: a -> [a] -> Bool
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For example, the function id :: a -> a contains 

an unconstrained type variable a in its type, 

and so can be used in a context requiring 

Char -> Char or 

Integer -> Integer or 

(Bool -> Maybe Bool) -> (Bool -> Maybe Bool) or 

any of a literally infinite list of other possibilities. 

Likewise, the empty list [] :: [a] belongs to every list type, 

and the polymorphic function map :: (a -> b) -> [a] -> [b] 

may operate on any function type. 

 

https://wiki.haskell.org/Polymorphism

Parametric polymorphism (3) examples
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Note, however, that if a single type variable appears multiple times, 

it must take the same type everywhere it appears, 

so e.g. the result type of id must be the same as the argument type, 

and the input and output types of the function 

given to map must match up with the list types.

https://wiki.haskell.org/Polymorphism

Parametric polymorphism (4) multiple appearance 

 id :: a -> a

map :: (a -> b) -> [a] -> [b] 
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Since a parametrically polymorphic value does not "know" 

anything about the unconstrained type variables, 

it must behave the same regardless of its type. 

This is a somewhat limiting 

but extremely useful property 

known as parametricity

https://wiki.haskell.org/Polymorphism

Parametric polymorphism (5) parametricity

 id :: a -> a

map :: (a -> b) -> [a] -> [b] 
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Ad-hoc polymorphism refers to 

when a value is able to adopt any one of several types 

because it, or a value it uses, has been given 

a separate definition for each of those types. 

the + operator essentially does something entirely different 

when applied to floating-point values 

as compared to when applied to integers 

https://wiki.haskell.org/Polymorphism

Ad hoc polymorphism (1)

elem :: (Eq a) => a -> [a] -> Bool
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in languages like C, polymorphism is restricted to 

only built-in functions and types. 

Other languages like C++ allow programmers 

to provide their own overloading, 

supplying multiple definitions of a single function, 

to be disambiguated by the types of the arguments

In Haskell, this is achieved via the system of 

type classes and class instances.

 

https://wiki.haskell.org/Polymorphism

Ad hoc polymorphism (2)
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Despite the similarity of the name, 

Haskell's type classes are quite different from 

the classes of most object-oriented languages. 

They have more in common with interfaces, 

in that they specify a series of methods or values 

by their type signature, 

to be implemented by an instance declaration. 

https://wiki.haskell.org/Polymorphism

Ad hoc polymorphism (3)

class Eq a where 

  (==)           :: a -> a -> Bool

instance Eq Integer where 

  x == y =  x `integerEq` y

instance Eq Float where

  x == y =  x `floatEq` y
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So, for example, if my type can be compared for equality 

(most types can, but some, particularly function types, cannot) 

then I can give an instance declaration of the Eq class 

All I have to do is specify 

the behaviour of the == operator on my type, 

and I gain the ability to use all sorts of functions 

defined using == operator, e.g. 

checking if a value of my type is present in a list, 

or looking up a corresponding value in a list of pairs. 

https://wiki.haskell.org/Polymorphism

Ad hoc polymorphism (4)

class Eq a where 

  (==)           :: a -> a -> Bool

instance Eq Integer where 

  x == y =  x `integerEq` y

instance Eq Float where

  x == y =  x `floatEq` y
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Unlike the overloading in some languages, 

overloading in Haskell is not limited to functions 

– minBound is an example of an overloaded value, 

as a Char, it will have value '\NUL' 

as an Int it might be -2147483648 

https://wiki.haskell.org/Polymorphism

Ad hoc polymorphism (5)
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Haskell even allows class instances to be defined for types 

which are themselves polymorphic (either ad-hoc or parametrically). 

So for example, an instance can be defined of Eq 

that says "if a has an equality operation, then [a] has one". 

Then, of course, [[a]] will automatically also have an instance, 

and so complex compound types can have instances built for them 

out of the instances of their components. 

https://wiki.haskell.org/Polymorphism

Ad hoc polymorphism (6)
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data List a = Nil | Cons a (List a)

instance Eq a => Eq (List a) where

  (Cons a b) == (Cons c d) = (a == c) && (b == d)

  Nil == Nil = True

  _ == _ = False

https://stackoverflow.com/questions/30520219/how-to-define-eq-instance-of-list-without-gadts-or-datatype-contexts

Ad hoc polymorphism (7)
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You can recognise the presence of ad-hoc polymorphism 

by looking for constrained type variables: 

that is, variables that appear to the left of =>, 

like in elem :: (Eq a) => a -> [a] -> Bool. 

Note that lookup :: (Eq a) => a -> [(a,b)] -> Maybe b 

exhibits both parametric (in b) and ad-hoc (in a) polymorphism. 

https://wiki.haskell.org/Polymorphism

Ad hoc polymorphism (8)
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Parametric polymorphism ad hoc polymorphism

Type variables Type calsses

(a, b, etc) (Eq, Num, etc)

Universal Existential?

Compile time Runtime (also)

C++ templates Classical

Java generics (ordinary OO)

http://sm-haskell-users-group.github.io/pdfs/Ben%20Deane%20-%20Parametric%20Polymorphism.pdf

Parametric and ad hoc polymorphism
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data Maybe a = Nothing | Just a

data List a = Nil | Cons a (List a)

data Either a b = Left a | Right b

reverse :: [a] -> [a]

fst :: (a,b) -> a

id :: a -> a

http://sm-haskell-users-group.github.io/pdfs/Ben%20Deane%20-%20Parametric%20Polymorphism.pdf

Polymorphic data types and functions
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types that are universally quantified in some way over all types. 

polymorphic type expressions essentially describe families of types. 

For example, (forall a) [a] is the family of types 

consisting of, for every type a, the type of lists of a. 

● lists of integers (e.g. [1,2,3]), 

● lists of characters (['a','b','c']), 

● even lists of lists of integers, etc., 

(Note, however, that [2,'b'] is not a valid example, 

since there is no single type that contains both 2 and 'b'.)

https://www.haskell.org/tutorial/goodies.html

Polymorphic Types
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Identifiers such as a above are called type variables, 

and are uncapitalized to distinguish them 

from specific types such as Int. 

since Haskell has only universally quantified types, 

there is no need to explicitly write out the symbol 

for universal quantification, 

and thus we simply write [a] in the example above. 

In other words, all type variables are implicitly universally quantified

https://www.haskell.org/tutorial/goodies.html

Type variables – universally quantified 
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Lists are a commonly used data structure in functional languages, 

and are a good tool for explaining the principles of polymorphism. 

The list [1,2,3] in Haskell is actually shorthand for 

the list 1:(2:(3:[])), 

where [] is the empty list and 

: is the infix operator 

that adds its first argument to the front 

of its second argument (a list). 

Since : is right associative, we can also write this list as 

1:2:3:[].

https://www.haskell.org/tutorial/goodies.html

List 
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length             :: [a] -> Integer

length []          =  0

length (x:xs)   =  1 + length xs

length [1,2,3] => 3

length ['a','b','c'] => 3

length [[1],[2],[3]] => 3 

an example of a polymorphic function. 

It can be applied to a list containing elements of any type, 

for example [Integer], [Char], or [[Integer]]. 

https://www.haskell.org/tutorial/goodies.html

Polymorphic function example



Existential Types (1C) 26 Young Won Lim
8/12/20

length             :: [a] -> Integer

length []          =  0

length (x:xs)   =  1 + length xs

The left-hand sides of the equations contain 

patterns such as [] and x:xs. 

In a function application these patterns are 

matched against actual parameters in a fairly intuitive way 

https://www.haskell.org/tutorial/goodies.html

Patterns in functions
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length             :: [a] -> Integer

length []          =  0

length (x:xs)   =  1 + length xs

[] only matches the empty list, 

x:xs will successfully match any list with at least one element, 

binding x to the first element and xs to the rest of the list 

If the match succeeds, 

the right-hand side is evaluated 

and returned as the result of the application. 

If it fails, the next equation is tried, 

and if all equations fail, an error results.

https://www.haskell.org/tutorial/goodies.html

Matching patterns
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Function head returns the first element of a list, 

function tail returns all but the first.

head            :: [a] -> a

head (x:xs)  =  x

tail                :: [a] -> [a]

tail (x:xs)      =  xs

Unlike length, these functions are not defined 

for all possible values of their argument. 

A runtime error occurs when these functions 

are applied to an empty list. 

https://www.haskell.org/tutorial/goodies.html

Not all possible cases – runtime errors
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With polymorphic types, we find that 

some types are in a sense strictly more general than others 

in the sense that the set of values they define is larger. 

the type [a] is more general than [Char]. 

type [Char] can be derived from [a]

by a suitable substitution for a. 

https://www.haskell.org/tutorial/goodies.html

General types
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With regard to this generalization ordering, 

Haskell's type system possesses two important properties: 

1.  every well-typed expression is guaranteed 

   to have a unique principal type (explained below), 

2. the principal type can be inferred automatically.  

In comparison to a monomorphically typed language such as C, 

the reader will find that polymorphism improves expressiveness, 

and type inference lessens the burden of types on the programmer.

https://www.haskell.org/tutorial/goodies.html

Principal type 
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An expression's or function's principal type is 

the least general type that, intuitively, 

"contains all instances of the expression". 

For example, the principal type of head is [a]->a; 

[b]->a, a->a, or even a are correct types, but too general, 

whereas something like [Integer]->Integer is too specific. 

The existence of unique principal types is 

the hallmark feature of the Hindley-Milner type system, 

which forms the basis of the type systems of Haskell

https://www.haskell.org/tutorial/goodies.html

Unique principal types
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to explicitly bring fresh type variables into scope.

 Explicitly quantifying the type variables

map :: forall a b. (a -> b) -> [a] -> [b]

for any combination of types a and b

choose a = Int and b = String 

then it's valid to say that map has the type 

(Int -> String) -> [Int] -> [String] 

Here we are instantiating the general type of map 

to a more specific type. 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Explicitly Quantifying Type Variables 
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any introduction of a lowercase type parameter 

implicitly begins with a forall keyword, 

Example: Two equivalent type statements

id :: a -> a

id :: forall a . a -> a

We can apply additional constraints 

on the quantified type variables

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Implicit forall
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Normally when creating a new type 

using type, newtype, data, etc., 

every type variable that appears on the right-hand side 

must also appear on the left-hand side. 

newtype ST s a = ST (State# s -> (# State# s, a #))

Existential types are a way of escaping

Existential types can be used for several different purposes. 

But what they do is to hide a type variable on the right-hand side.

https://wiki.haskell.org/Existential_type

Hiding a type variable on the RHS
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Normally, any type variable appearing on the right must 

also appear on the left:

data Worker x y = Worker {buffer :: b, input :: x, output :: y}

This is an error, since the type b of the buffer 

Is not specified on the right  (b is a type variable rather than a type) 

but also is not specified on the left (there's no b in the left part). 

In Haskell98, you would have to write 

data Worker b x y = Worker {buffer :: b, input :: x, output :: y}

https://wiki.haskell.org/Existential_type

Type Variable Example – (1) error  
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However, suppose that a Worker can use any type b 

so long as it belongs to some particular class. 

Then every function that uses a Worker will have a type like

foo :: (Buffer b) => Worker b Int Int

In particular, failing to write an explicit type signature (Buffer b)

will invoke the dreaded monomorphism restriction.

Using existential types, we can avoid this: 

https://wiki.haskell.org/Existential_type

Type Variable Example – (2) explicit type signature 
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Using existential type :

data Worker x y =  forall b. Buffer b =>   Worker {buffer :: b, input :: x, output :: y}

foo :: Worker Int Int

The type of the buffer (Buffer) now does not appear 

in the Worker type at all. 

Explicit type signature :

data Worker b x y = Worker {buffer :: b, input :: x, output :: y}

foo :: (Buffer b) => Worker b Int Int

https://wiki.haskell.org/Existential_type

Type Variable Example – (3) existential type
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● it is now impossible for a function 

to demand a Worker having a specific type of buffer.

 

● the type of foo can now be derived automatically 

without needing an explicit type signature. 

(No monomorphism restriction.) 

● since code now has no idea 

what type the buffer function returns, 

you are more limited in what you can do to it. 

data Worker x y = forall b. Buffer b =>  Worker {buffer :: b, input :: x, output :: y}

foo :: Worker Int Int

https://wiki.haskell.org/Existential_type

Type Variable Example – (4) characteristics
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In general, when you use a hidden type in this way, 

you will usually want that type to belong to a specific class, 

or you will want to pass some functions along 

that can work on that type.

 

Otherwise you'll have some value belonging 

to a random unknown type, 

and you won't be able to do anything to it!

https://wiki.haskell.org/Existential_type

Hiding a type
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Note: You can use existential types 

to convert a more specific type 

into a less specific one.

constrained type variables 

There is no way to perform the reverse conversion! 

https://wiki.haskell.org/Existential_type

Conversion to less a specific type
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This illustrates creating a heterogeneous list, 

all of whose members implement "Show", 

and progressing through that list to show these items:

data Obj = forall a. (Show a) => Obj a

xs :: [Obj]

xs = [Obj 1, Obj "foo", Obj 'c']

doShow :: [Obj] -> String

doShow [] = ""

doShow ((Obj x):xs) = show x ++ doShow xs

With output: doShow xs ==> "1\"foo\"'c'" 

https://wiki.haskell.org/Existential_type

A heterogeneous list example
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It is also possible to express existentials with RankNTypes

as type expressions directly (without a data declaration) 

forall r. (forall a. Show a => a -> r) -> r

(the leading forall r. is optional 

unless the expression is part of another expression). 

the equivalent type Obj :

data Obj = forall a. (Show a) => Obj a

https://wiki.haskell.org/Existential_type

Existentials in terms of forall (1)
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The conversions are:

fromObj ::  Obj -> forall r. (forall a. Show a => a -> r) -> r

fromObj (Obj x) k = k x

toObj :: (forall r. (forall a. Show a => a -> r) -> r)  ->  Obj

toObj f = f Obj

https://wiki.haskell.org/Existential_type

Existentials in terms of forall (2)
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Existential types, or 'existentials' for short, 

are a way of 'squashing' a group of types into one, single type.

Existentials are part of GHC's type system extensions. 

They aren't part of Haskell98, and as such you'll have 

to either compile any code that contains them 

with an extra command-line parameter of -XExistentialQuantification, 

or put {-# LANGUAGE ExistentialQuantification #-} 

at the top of your sources that use existentials. 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Existentials
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Example: A polymorphic function

map :: (a -> b) -> [a] -> [b]

Example: Explicitly quantifying the type variables

map :: forall a b. (a -> b) -> [a] -> [b]

instantiating the general type of map to a more specific type

a = Int and b = String     

(Int -> String) -> [Int] -> [String] 

Example: Two equivalent type statements

id :: a -> a

id :: forall a . a -> a

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall
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Suppose we have a group of values. 

We don't know if they are all the same type, 

but we do know they are all members of some class 

(and, by extension, that all the values have a certain property). 

It might be useful to throw all these values into a list. 

We can't do this normally because lists elements 

must be of the same type (homogeneous with respect to types). 

However, existential types allow us 

to loosen this requirement by defining a type hider or type box: 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall
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Example: Constructing a heterogeneous list

data ShowBox = forall s. Show s => SB s

heteroList :: [ShowBox]

heteroList = [SB (), SB 5, SB True]

calling the constructor on three values of different types,

[SB (), SB 5, SB True], to place them all into a single list 

so we must somehow have the same type for each one. 

Use the forall in the constructor 

SB :: forall s. Show s => s -> ShowBox. 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall
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Example: Constructing a heterogeneous list

data ShowBox = forall s. Show s => SB s

heteroList :: [ShowBox]

heteroList = [SB (), SB 5, SB True]

If we were now writing a function 

to which we intend to pass heteroList, 

we couldn't apply a function such as not to the values inside the SB 

because their type might not be Bool. 

But we do know something about each of the elements: 

they can be converted to a string via show. 

In fact, that's pretty much the only thing we know about them. 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall
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Example: Using our heterogeneous list

 instance Show ShowBox where

show (SB s) = show s        -- (*) see the comment in the text below

f :: [ShowBox] -> IO ()

f xs = mapM_ print xs

main = f heteroList

Example: Types of the functions involved

print :: Show s => s -> IO () -- print x = putStrLn (show x)

mapM_ :: (a -> m b) -> [a] -> m ()

mapM_ print :: Show s => [s] -> IO ()

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall
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One way to think about forall is 

to consider types as a set of possible values. 

Bool is the set {True, False, } ⊥} 

(remember that bottom, , is a member of every type!), ⊥, is a member of every type!), 

Integer is the set of integers (and bottom), 

String is the set of all possible strings (and bottom), and so on. 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall
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forall serves as a way to assert a commonality or intersection 

of the specified types (i.e. sets of values). 

forall a. a is the intersection of all types. 

This subset turns out to be the set { }⊥} , 

since it is an implicit value in every type. 

that is, [the type whose only available value is bottom] 

However, since every Haskell type includes bottom, { }⊥} , 

this quantification in fact stipulates all Haskell types. 

But the only permissible operations on it are 

those available to [a type whose only available value is bottom] 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall a. a  
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The list, [forall a. a], is the type of a list 

whose elements all have the type forall a. a, i.e. 

a list of bottoms.

The list, [forall a. Show a => a], is the type of a list 

whose elements all have the type forall a. Show a => a. 

The Show class constraint requires the possible types 

to also be a member of the class, Show. 

   However,  is still the only value common to all these types, ⊥, is a member of every type!), 

so this too is a list of bottoms.

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall a. a  
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The list, [forall a. Num a => a], requires each element 

to be a member of the class, Num. 

Consequently, the possible values include 

numeric literals, which have the specific type, 

forall a. Num a => a, as well as bottom.

forall a. [a] is the type of the list whose elements 

all have the same type a. 

Since we cannot presume any particular type at all, 

this too is a list of bottoms.

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall a. a  
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We see that most intersections over types just lead to bottoms 

because types generally don't have any values in common and 

so presumptions cannot be made about a union of their values.

a heterogeneous list using a 'type hider'. 

This 'type hider' functions as a wrapper type 

which guarantees certain facilities 

by implying a predicate or constraint on the permissible types. 

the purpose of forall is to impose type constraint 

on the permissible types within a type declaration 

and thereby guaranteeing certain facilities with such types. 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall
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Example: An existential datatype

 data T = forall a. MkT a

Example: This defines a polymorphic constructor, 

or a family of constructors for T

MkT :: forall a. (a -> T)

Example: Pattern matching on our existential constructor

 foo (MkT x) = ... -- what is the type of x?

Example: Constructing the hetereogeneous list

 heteroList = [MkT 5, MkT (), MkT True, MkT map]

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types
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Example: A new existential data type, with a class constraint

 data T' = forall a. Show a => MkT' a

Example: Using our new heterogenous setup

 heteroList' = [MkT' 5, MkT' (), MkT' True, MkT' "Sartre"]

 main = mapM_ (\(MkT' x) -> print x) heteroList'

 {- prints:

 5

 ()

 True

 "Sartre"

 -}

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types
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Example: The runST function

runST :: forall a. (forall s. ST s a) -> a

Example: Bad ST code

 let v = runST (newSTRef True)

 in runST (readSTRef v)

Example: Briefer bad ST code

... runST (newSTRef True) ...

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types
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Example: The compiler's typechecking stage

newSTRef True :: forall s. ST s (STRef s Bool)

runST :: forall a. (forall s. ST s a) -> a

together, (forall s. ST s (STRef s Bool)) -> STRef s Bool

Example: A type mismatch!

together, (forall s'. ST s' (STRef s' Bool)) -> STRef s Bool

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types
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Example: Identity function

 id :: forall a. a -> a

 id a = a

Example: Polymorphic value

 x :: forall a. Num a => a

 x = 0 

Example: Existential type

 data ShowBox = forall s. Show s => SB s

Example: Sum type

 data ShowBox = SBUnit | SBInt Int | SBBool Bool | SBIntList [Int] | ...

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types
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{-# LANGUAGE ExistentialQuantification, RankNTypes #-}

newtype Pair a b = Pair (forall c. (a -> b -> c) -> c)

makePair :: a -> b -> Pair a b

makePair a b = Pair $ \f -> f a b

 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types
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λ> :set -XExistentialQuantification

 λ> :set -XRankNTypes

 λ> newtype Pair a b = Pair {runPair :: forall c. (a -> b -> c) -> c}

 λ> makePair a b = Pair $ \f -> f a b

 λ> pair = makePair "a" 'b' 

 

 λ> :t pair

 pair :: Pair [Char] Char

 

 λ> runPair pair (\x y -> x)

 "a"

 

 λ> runPair pair (\x y -> y)

 'b'

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types
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