
Set Haskell Exercises

Young W. Lim

2018-12-15 Sat

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 1 / 103



Outline

1 Based on

2 Pardoxes and Haskell type system
Using STAL.hs
Paradox
Types and Type Classes

3 Lists
Lists
Database Applications

4 Sets
Sets
Sets using Lists
Show class methods
Data Types for Sets

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 2 / 103



Based on

"The Haskell Road to Logic, Maths, and Programming",
K. Doets and J. V. Eijck

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 3 / 103



Using STAL.hs

Sets, Types, and Lists (STaL)

module STAL

where

import List
import DB

:load STAL

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 4 / 103



Sets

Prelude> :load STAL.hs
[1 of 2] Compiling DB ( DB.hs, interpreted )
[2 of 2] Compiling STAL ( STAL.hs, interpreted )
Ok, modules loaded: STAL, DB.
*STAL>
*STAL>
*STAL>
*STAL> odds1
[1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,
45,47,49,51,53,55,57,59,61,63,65,67,69, ...

*STAL>
*STAL>
*STAL> evens2
[0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,
44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,
86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116 ...

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 5 / 103



Halting problems

no general test for checking
whether a given procedure terminates
for a particular input
the halting problem is undecidable
the existence of an algorithm for the halting problem
would lead to a paradox like the Russell paradox

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 6 / 103



Halting problem Examples (1)

an example for which no proof of termination exists
run :: Integer -> [Integer]
run n | n < 1 = error "argument not positive"

| n == 1 = [1]
| even n = n: run (div n 2)
| odd n = n: run (3*n+1)

run 5
run 5 | odd 5 = 5 : run (3*5+1)
run 16 | even 16 = 16 : run (div 16 2)
run 8 | even 8 = 8 : run (div 8 2)
run 4 | even 4 = 4 : run (div 4 2)
run 2 | even 2 = 2 : run (div 2 2)
run 1 | n == 1 = [1]
[5, 16, 8, 4, 2, 1]

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 7 / 103



Halting problem Examples (2)

an example for which no proof of termination exists
run :: Integer -> [Integer]
run n | n < 1 = error "argument not positive"

| n == 1 = [1]
| even n = n: run (div n 2)
| odd n = n: run (3*n+1)

run 6
run 6 | even 6 = 6 : run (div 6 2)
run 3 | odd 3 = 3 : run (3*3+1)
run 10 | even 10 = 9 : run (div 10 2)
run 5 | odd 5 = 5 : run (3*5+1)
run 16 | even 16 = 16 : run (div 16 2)
run 8 | even 8 = 8 : run (div 8 2)
run 4 | even 4 = 4 : run (div 4 2)
run 2 | even 2 = 2 : run (div 2 2)
run 1 | n == 1 = [1]
[5, 3, 10, 5, 16, 8, 4, 2, 1]

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 8 / 103



Halting problem Examples (3)

an example for which no proof of termination exists
run :: Integer -> [Integer]
run n | n < 1 = error "argument not positive"

| n == 1 = [1]
| even n = n: run (div n 2)
| odd n = n: run (3*n+1)

run 7
run 7 | odd 7 = 7 : run (3*7+1)
run 22 | even 22 = 22 : run (div 22 2)
run 11 | odd 11 = 11 : run (3*11+1)
run 34 | even 34 = 34 : run (div 34 2)
run 17 | odd 17 = 17 : run (3*17+1)
run 52 | even 52 = 52 : run (div 52 2)
run 26 | even 26 = 26 : run (div 26 2)
run 13 | odd 13 = 13 : run (3*13+1)
run 40 | even 40 = 40 : run (div 40 2)
run 20 | even 20 = 20 : run (div 20 2)
run 10 | even 10 = 10 : run (div 10 2)
...
[7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 9 / 103



The Russel Paradox (1)

it is not true that to every property E
there corresponds a set {x |E (x)} of all objects that have E

consider the property of not having yourself as a member
most sets are likely to have this property

the set of all even numbers is itself not an even natural number
the set of all integers is itself not an integer

call such sets ordinary

corresponding abstraction R = {x |E (x)}

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 10 / 103



The Russel Paradox (2)

R = {x |E (x)}
impossible to answer the question
whether the set R itself is ordinary or not
suppose R ∈ R , ie., R is an ordinary set

an ordinary set does not have itself as a member
R does not have itself as a member R 6∈ R

suppose R 6∈ R , ie., R is an extraordinary set

an extraordinary set has itself as a member
R has itself as a member, i.e., R ∈ R

if R were a legitimate set,
this would unavoidably lead us to a contradiction
R ∈ R ⇐⇒ R 6∈ R

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 11 / 103



The Russel Paradox (3)

only properties that are unlikely considered
give rise to problems
a restriction can be applied to the forming set
on the basis of a previously given set A
{x ∈ A|E (x)} instead of {x |E (x)}

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 12 / 103



Non-halting problems

suppose halt can be defined
suppose also the procedure funny is defined in terms of halts
funny x | halts x x = undefined

| otherwise = True

suppose funny does not halt
the first case, when x is applied to x, halts halts
funny is bound to x, then funny funny does not halt
contradiciton
suppose funny funny does halt
the second case, funny x = True halt
funny funny binds x to funny
this becomes the first case, it does not halt
contradiction

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 13 / 103



Haskell type discipline

paradoxical defintions are avoided
in functional programming by keeping track of
the types of all objects and operations
derived types : new types can be constructed from old
pairs of integers, lists of characters, lists of reals, etc.
type discipline avoids the halting paradoxes

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 14 / 103



Haskell type discipline for funny

the definition of funny calls halts
the type of halts
the 1st argument : a procedure proc
the 2nd argument : the argument of that procedure arg

the types of 2 arguments : a -> b and a
the type of the result of application of (proc arg) : b
therefore the application halts x x is mal-formed
the types of 2 arguments must be different
thus the arguments must themselves must be different

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 15 / 103



elem examples

elem:: a -> [a] -> Bool
checks whether an object is element of a list

the 1st argument : a certain type a
the 2nd argument : a list over a
in Haskell, R ∈ R does not make sense

elem ’R’ "Russsel" ...... [’R’, ’u’, ’s’, ’s’, ’e’, ’l’]
True

elem ’R’ "Cantor" ...... [’C’, ’a’, ’n’, ’t’, ’o’, ’r’]
False

elem "Russel" "Cantor"
Error: Type error in application
...

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 16 / 103



Identifiable objects

to check if some thing x is
an elment of a list l of some things
one has to be able to identify
things of the type of x
the objects that can be identified are
the objects of the kinds for which
equality and inequality are defined

neither texts, potentially infinite stream of characters are of this kind
nor the Haskell operation denoted as computation procedures r

no principled way to check whether two procedures
are doing the same task

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 17 / 103



Procedure equality test examples (1)

assume there is an equality test on procedures
consider a test for whether a procedure f halts on input x
halts f x = f /= g

where g y | y == x = undefined
| otherwise = f y

where is used to define an aux function g

g diverges when x is equal to y

on all other inputs g is equal to f

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 18 / 103



Procedure equality test examples (2)

halts f x = f /= g
where g y | y == x = undefined

| otherwise = f y

if g is not equal to f
that difference must come from the input x
since g diverges (undefined) on this input
on this input f must halt which is not equal to g

if g and f are equal
then f and g behaves the same to the same input x
this means f diverges on that input

this will not work

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 19 / 103



Eq class (1)

the types of object for which
the question equal or not makes sense
are grouped into a collection of types called a class Eq
== for equality of objects of types in the Eq class
/= for inequality of objects of types in the Eq class

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 20 / 103



Eq class (2)

:t elem
elem :: Eq a => a -> [a] -> Bool

:t shows the type of a defined operation
if a is a type for which equality is defined
(if a is in the Eq class)
then a -> [a] -> Bool is an appropriate type for elem
elem can be used to check
whether an integer is a member of a list of integers
whether a character is a member of strings
elem cannot be used to check
whether an operation is a member of a list of operations
whether a text is a member of a list texts

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 21 / 103



Ord class

the class of the types of things
which not only can be tested for
quality and inequality, but also
for order
in addition to == and /=,
the relation < and <= are defined
has the min function for the minimal element
and the max function for the maximal element
the class Ord is a subclass of the class Eq

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 22 / 103



Class (1)

classes are useful, because they allow objects
and operations on those objects to the instances
of several tyhpe at once
the numeral 1 can be used as an integer,
as a rational, as a real, and so on
:t 1
1 :: Num a => a

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 23 / 103



Class (2)

all of the types integer, rational, real, complex numbers
are instances of the same class, called Num

the class Num is a subclass of the class Eq
because it also has equality and inequality
for all types in the class Num certain basic operations
such as + and * are defined

operator overloading
one could the same name for different operations
depending on whether we operate on N, Z, Q . . .
and depending on the representation we choose

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 24 / 103



Lists

1 Defining infinite lists
2 Data type of lists
3 List equality
4 a type of class Ord
5 List Order
6 Head and tail
7 Last and init
8 Null
9 Nub

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 25 / 103



Defining infinite lists

ones = 1 : ones

ones
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1^C Interrupted

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 26 / 103



Data type of lists

data [a] = [] | a : [a] deriving (Eq, Ord)

in Haskell, every set has a type
[a] specifies that lists over type a
are either empty
or consist of an element of type a
put in front of a list.
the operation : combines an object
with a list of objects of the same type
to form a new list of objects of that type
:t (:)
(:) :: a -> [a] -> [a]

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 27 / 103



List Equality

lists are ordered sets
two lists are the same if

1 they are both empty
2 they start with the same element

and their tails are the same
instance Eq a => Eq [a] where

[] == [] = True
(x:xs) == (y:ys) = x==y && xs==ys
_ == _ = False

if a is an instance of class Eq, then [a] is so

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 28 / 103



a type of class Ord

a type on which the binary operation compare
is defined with a result of type Ordering

the type Ordering is the set {LT ,EQ,GT}

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 29 / 103



List Order (1)

lexicographical order
the empty list comes first
non-empty lists L1, L2

1 compare their first elements using compare
for objects of type a

2 if they are the same,
etermine the order of their remaining lists

3 if the first element of L1 comes first,
L1 comes first before L2

4 if the first element of L2 comes first,
L2 comes first before L1

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 30 / 103



List Order (2)

lexicographical order
the empty list comes first
instance Ord a => Ord [a] where

compare [] (_:_) = LT
compare [] [] = EQ
compare (_:_) [] = GT
compare (x:xs) (y:ys) = primCompAux x y (compare xs ys)

if a is an instance of class Ord, then [a] is so

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 31 / 103



List Order (3)

non-empty lists L1, L2

1 if they are the same, compare x y == EQ
etermine the order of their remaining lists compare xs ys

2 if the first element of L1 comes first, compare x y == LT
L1 comes first before L2 LT

3 if the first element of L2 comes first, compare x y == GT
L2 comes first before L1 GT

compare (x:xs) (y:ys) = primCompAux x y (compare xs ys)

primCompAux :: Ord a => a -> a -> Ordering -> Ordering
primCompAux x y o =

case compare x y of EQ -> o;
LT -> LT;
GT -> GT;

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 32 / 103



List Order (4)

instance Ord a => Ord [a] where
compare [] (_:_) = LT
compare [] [] = EQ
compare (_:_) [] = GT
compare (x:xs) (y:ys) = primCompAux x y (compare xs ys)

primCompAux :: Ord a => a -> a -> Ordering -> Ordering
primCompAux x y o =

case compare x y of EQ -> o;
LT -> LT;
GT -> GT;

primCompAux covers the case of two non-empty lists
type Odering is the set {LT ,EQ,GR}

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 33 / 103



Head and Tail

head :: [a] -> a
head (x:_) = x

tail :: [a] -> a
tail (_:xs) = xs

Prelude> head [1, 2, 3, 4]
1
Prelude> tail [1, 2, 3, 4]
[2,3,4]

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 34 / 103



Last and Init

last :: [a] -> a
last [x] = x
last (_:xs) = last xs

init :: [a] -> [a]
init [x] = []
int (x:xs) = x : init xs

Prelude> last [1, 2, 3, 4]
4
Prelude> init [1, 2, 3, 4]
[1,2,3]

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 35 / 103



Null

null :: [a] -> Bool
null [] = True
null (_:_) = False

Prelude> null [1, 2, 3, 4]
False
Prelude> null []
True

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 36 / 103



Nub

nub : (Eq a) => [a] -> [a]
nub [] = []
nub (x:xs) = x : nub (remove x xs)

where
remove y [] = []
remove y (z:zs) | y == z = remove y zs

| otherwise = z : remove y zs

in Haskell, strings of characters are represented as lists
"abc"
[’a’, ’b’, ’c’]

nub "Mississippy"
"Mispy"

nub ["aa", "bb", "aa", "cc"]
["aa", "bb", "cc"]

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 37 / 103



Database Applications

1 Database Module
2 Comment
3 Database and List comprehension
4 Database variables
5 Database queries results

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 38 / 103



Database Module

module DB
where
type WordList = [String]
type DB = [WordList]

db :: DB
db = [ ["release", "MV1", "YR1"], -- MV1 was released in YR1

["release", "MV2", "YR2"], -- MV2 was released in YR2
["release", "MV3", "YR3"], -- MV3 was released in YR3
{- ... -}

["direct", "DRTR1", "MV1"], -- DRTR1 directed the film MV1
["direct", "DRTR2", "MV2"], -- DRTR2 directed the film MV2
["direct", "DRTR3", "MV3"], -- DRTR3 directed the film MV3
{- ... -}

["play", "ACT1", "MV1", "CHR1"], -- ACT1 played CHR1 in MV1
["play", "ACT2", "MV1", "CHR2"], -- ACT2 played CHR2 in MV2
["play", "ACT3", "MV3", "CHR3"], -- ACT3 played CHR3 in MV3
{- ... -} ]

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 39 / 103



Comment

Everything between {- followed by a space
and -} is a block comment.
{-

hello
world

-}

{- ... -}

https://wiki.haskell.org/Keywords#.7B-.2C_-.7D

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 40 / 103



Database and List Comprehension (1)

db :: DB

characters = nub [x | ["play",_,_,x] <- db] -- played x
movies = [x | ["release",x,_] <- db] -- x was released
actors = nub [x | ["play",x,_,_] <- db] -- x played
directors = nub [x | ["direct",x,_] <- db] -- x directed
dates = nub [x | ["release",_,x] <- db] -- was released in x
universe = nub(characters++actors++directors++movies++dates)

-- ["release", "MV1", "YR1"], -- MV1 was released in YR1
-- ["direct", "DRTR1", "MV1"], -- DRTR1 directed the film MV1
-- ["play", "ACT1", "MV1", "CHR1"], -- ACT1 played CHR1 in MV1

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 41 / 103



Database and List Comprehension (2)

direct = [(x,y) | ["direct", x, y] <- db] -- x directed y
act = [(x,y) | ["play", x, y, _] <- db] -- x acted in y
play = [(x,y,z) | ["play", x, y, z] <- db] -- x played z in y
release = [(x,y) | ["release", x, y] <- db] -- x was released in y

-- ["release", "MV1", "YR1"], -- MV1 was released in YR1
-- ["direct", "DRTR1", "MV1"], -- DRTR1 directed the film MV1
-- ["play", "ACT1", "MV1", "CHR1"], -- ACT1 played CHR1 in MV1

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 42 / 103



Database and Lambda abstraction

charP = \x -> elem x characters -- is x a character
actorP = \x -> elem x actors -- is x an actor
movieP = \x -> elem x movies -- is x a movie
directorP = \x -> elem x directors -- is x a director
dateP = \x -> elem x dates -- is x a date
actP = \(x,y) -> elem (x,y) act -- did x act y
releaseP = \(x,y) -> elem (x,y) release -- was x released in y
directP = \(x,y) -> elem (x,y) direct -- did x direct y
playP = \(x,y,z) -> elem (x,y,z) play -- did x played z in y

-- ["release", "MV1", "YR1"], -- MV1 was released in YR1
-- ["direct", "DRTR1", "MV1"], -- DRTR1 directed the film MV1
-- ["play", "ACT1", "MV1", "CHR1"], -- ACT1 played CHR1 in MV1

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 43 / 103



Database variables (1)

*Main> characters
["CHR1","CHR2","CHR3"]
*Main> movies
["MV1","MV2","MV3"]
*Main> actors
["ACT1","ACT2","ACT3"]
*Main> directors
["DRTR1","DRTR2","DRTR3"]
*Main> dates
["YR1","YR2","YR3"]
*Main> universe
["CHR1","CHR2","CHR3","ACT1","ACT2","ACT3","DRTR1","DRTR2",
"DRTR3","MV1","MV2","MV3","YR1","YR2","YR3"]

*Main>
*Main> direct
[("DRTR1","MV1"),("DRTR2","MV2"),("DRTR3","MV3")]
*Main> act
[("ACT1","MV1"),("ACT2","MV1"),("ACT3","MV3")]
*Main> play
[("ACT1","MV1","CHR1"),("ACT2","MV1","CHR2"),("ACT3","MV3","CHR3")]
*Main> release
[("MV1","YR1"),("MV2","YR2"),("MV3","YR3")]

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 44 / 103



Database variables (2)

*Main> fmap charP characters
[True,True,True]
*Main> fmap actorP actors
[True,True,True]
*Main> fmap movieP movies
[True,True,True]
*Main> fmap directorP directors
[True,True,True]
*Main> fmap actP act
[True,True,True]
*Main> fmap releaseP release
[True,True,True]
*Main> fmap directP direct
[True,True,True]
*Main> fmap playP play
[True,True,True]

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 45 / 103



Database Queries (1)

q1 = [ x | x <- actors, directorP x]
q2 = [ (x,y) | (x,y) <- act, directorP x]

actors = nub [x | ["play",x,_,_] <- db] -- x played
directorP = \x -> elem x directors -- is x a director
act = [(x,y) | ["play", x, y, _] <- db] -- x acted in y

q1: give me the actors that also are directors
(conjuctive queries)

q2: give me the actors that also are directors
together with the films in which they were acting

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 46 / 103



Database Queries (2)

q3 = [ (x,y,z) | (x,y) <- direct, (y,z) <- release ]
q4 = [ (x,y,z) | (x,y) <- direct, (u,z) <- release, y == u ]

direct = [(x,y) | ["direct", x, y] <- db] -- x directed y
release = [(x,y) | ["release", x, y] <- db] -- x was released in y

q3: not working two y’s are unrelated

q4: give me all diredctors together with their films
and their release dates

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 47 / 103



Database Queries (3)

q5 = [ (x,y) | (x,y) <- direct, (u,"YR1") <- release, y == u ]
q6 = [ (x,y,z) | (x,y) <- direct, (u,z) <- release, y == u, z > "YR1" ]

direct = [(x,y) | ["direct", x, y] <- db] -- x directed y
release = [(x,y) | ["release", x, y] <- db] -- x was released in y

q5: give me all directors of films released in YR1,
together with these films

q6: give me all directors of films released after YR1,
together with these films and their rlease dates

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 48 / 103



Database Queries (4)

q7 = [ x | ("ACT1", x) <- act]
q8 = [ x | (x, y) <- release, y > "YR1", actP("ACT2", x)]

act = [(x,y) | ["play", x, y, _] <- db] -- x acted in y
release = [(x,y) | ["release", x, y] <- db] -- x was released in y
actP = \(x,y) -> elem (x,y) acts -- did x act y

q7: give me the films in which ACT1 acted
q8: give me all films released after YR1
in which ACT2 acted

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 49 / 103



Database Queries (5)

q9 = q1 /= []
q10 = [ x | ("DRTR1",x) <- direct ] /= []
q10’ = directorP "DRTR1"

q1 <- [ x | x <- actors, directorP x]
direct = [(x,y) | ["direct", x, y] <- db] -- x directed y
directorP = \x -> elem x directors -- is x a director

q9: are there any films in which the director was also an actor?
q10: does the database contain films directed by DRT1?

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 50 / 103



Database Queries Results

*Main> q1
[]
*Main> q2
[]
*Main> q3
[("DRTR1","MV1","YR1"),("DRTR1","MV2","YR2"),("DRTR1","MV3","YR3"),
("DRTR2","MV1","YR1"),("DRTR2","MV2","YR2"),("DRTR2","MV3","YR3"),
("DRTR3","MV1","YR1"),("DRTR3","MV2","YR2"),("DRTR3","MV3","YR3")]

*Main> q4
[("DRTR1","MV1","YR1"),("DRTR2","MV2","YR2"),("DRTR3","MV3","YR3")]
*Main> q5
[("DRTR1","MV1")]
*Main> q6
[("DRTR2","MV2","YR2"),("DRTR3","MV3","YR3")]
*Main> q7
["MV1"]
*Main> q8
[]
*Main> q9
False
*Main> q10
True
*Main> q10’
True

q9: are there any films in which the director was also an actor?
q10: does the database contain films directed by DRT1?

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 51 / 103



Defining infinite sets

List comprehension
Lazy evaluation
naturals = [0..]

evens1 = [ n | n <- naturals , even n ]
odds1 = [ n | n <- naturals , odd n ]

evens2 = [ 2*n | n <- naturals ]
odds2 = [ 2*n+1 | n <- naturals ]

small_squares1 = [ n^2 | n <- [0..999] ]
small_squares2 = [ n^2 | n <- naturals , n < 1000 ]

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 52 / 103



Delete

delete :: Eq a => a -> [a] -> [a]
delete x [] = []
delete x (y:ys) | x == y = ys

| otherwise = y : delete x ys

*Main> delete 3 [1, 2, 3, 4]
[1,2,4]
*Main>

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 53 / 103



Element

elem’ :: Eq a => a -> [a] -> Bool
elem’ x [] = False
elem’ x (y:ys) | x == y = True

| otherwise = elem’ x ys

*Main> elem’ 3 [1, 2, 3, 4]
True
*Main>

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 54 / 103



Union

union :: Eq a => [a] -> [a] -> [a]
union [] ys = ys
union (x:xs) ys = x : union xs (delete x ys)

*Main> union [1, 2, 3] [2, 3, 4, 5]
[1,2,3,4,5]
*Main>

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 55 / 103



Intersect

intersect :: Eq a => [a] -> [a] -> [a]
intersect [] s = []
intersect (x:xs) s | elem x s = x : intersect xs s

| otherwise = intersect xs s

*Main> intersect [1, 2, 3] [2, 3, 4, 5]
[2,3]
*Main>

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 56 / 103



elem and notElem

elem, notElem :: Eq a => a -> [a] -> Bool
elem = any . (==)
notElem = all . (/=)

*Main> elem2 3 [1, 2, 3, 4]
True
*Main> notElem 5 [1, 2, 3, 4]
True

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 57 / 103



addElem

addElem :: a -> [[a]] -> [[a]]
addElem x = map(x:)

*Main> addElem 3 [[1], [2,3], [4,5,6]]
[[3,1],[3,2,3],[3,4,5,6]]
*Main>

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 58 / 103



powerList

powerList :: [a] -> [[a]]
powerList [] = [[]]
powerList (x:xs) = (powerList xs) ++ (map (x:) (powerList xs))

*Main> powerList [1,2]
[[],[2],[1],[1,2]]
*Main>
(1: [2]) => [[], [2]] ++ [[1], [1,2]]
(2: [ ]) => [] ++ [2]

*Main> powerList [1,2,3]
[[],[3],[2],[2,3],[1],[1,3],[1,2],[1,2,3]]
*Main>
(1, [2,3]) => [[],[3],[2],[2,3]] ++ [[1],[1,3],[1,2],[1,2,3]]
(2, [3]) => [[],[3]] ++ [[2], [2,3]] = [[],[3],[2],[2,3]]
(3, [ ]) => [] ++ [3]

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 59 / 103



[]

Prelude> :t [[], [[]]]
[[], [[]]] :: [[[t]]]

[] :: [[t]]
[[]] :: [[t]] --> [] :: [t]

1st [] :: [[t]]
2nd [] :: [t]

Prelude> []
[]
Prelude> [[], [[]]]
[[],[[]]]

*Main> :t []
[] :: [t]
*Main> :t [[]]
[[]] :: [[t]]
*Main> :t [[[]]]
[[[]]] :: [[[t]]]
*Main> :t empty
empty :: [S]

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 60 / 103



Void

data S = Void deriving (Eq,Show)
empty :: [S]
empty = []

*Main> [] == []
True
*Main> [] == [[]]
False
*Main> [[]] == [[]]
True
*Main> []
[]
*Main> [[]]
[[]]
*Main>

a data type S containing a single object Void
Void is used only to provide empty with a type

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 61 / 103



powerList empty

*Main> powerList empty
[[]]
*Main> powerList (powerList empty)
[[],[[]]]
*Main> powerList (powerList (powerList empty))
[[],[[[]]],[[]],[[],[[]]]]
*Main> powerList (powerList (powerList (powerList empty)))
[[],[[[],[[]]]],[[[]]],[[[]],[[],[[]]]],[[[[]]]],[[[[]]],[[],[[]]]],
[[[[]]],[[]]],[[[[]]],[[]],[[],[[]]]],[[]],[[],[[],[[]]]],[[],[[]]],
[[],[[]],[[],[[]]]],[[],[[[]]]],[[],[[[]]],[[],[[]]]],[[],[[[]]],[[]]],
[[],[[[]]],[[]],[[],[[]]]]]

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 62 / 103



data

data Bool = False | True
data Color = Red | Green | Blue
data Point a = Pt a a
Pt 2.0 3.0 :: Point Float
Pt ’a’ ’b’ :: Point Char
Pt True False :: Point Bool
data Point a = Point a a
data Tree a = Leaf a | Branch (Tree a) (Tree a)
Branch :: Tree a -> Tree a -> Tree a
Leaf :: a -> Tree a

https://www.haskell.org/tutorial/classes.html

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 63 / 103



derving

deriving automatically implements functions
for a few of Haskell’s typeclasses such as Show and Eq.
This cannot be done with arbitrary typeclasses,
but the ones for which deriving does work for are
simple enough for automatic implementation.
The Show typeclass defines functions
for how to represent data types as a String.

https://stackoverflow.com/questions/44744884/
what-does-deriving-do-mean-in-haskell

eLP

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 64 / 103



Difference Lists as functions

A difference list representation of a list xs :: [T]
is a function f :: [T] -> [T]

when given another list ys :: [T]
returns the list that f represents,
prepended to ys i.e. f ys = xs ++ ys

depending on usage patterns, difference lists
can improve performance by effectively flattening
the list building computations.

https://wiki.haskell.org/Difference_list

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 65 / 103



Difference Lists examples - usage patterns

usage patterns
(show L)
++ (show T ++ (show R))

((show LL) ++ (show LT ++ (show LR)))
++ (show T ++ (show R))

(((show LLL) ++ (show LLT ++ (show LLR))) ++ (show LT ++ (show LR)))
++ (show T ++ (show R))

(show L)
((show LL) ++ (show LT ++ (show LR)))
(((show LLL) ++ (show LLT ++ (show LLR))) ++ (show LT ++ (show LR)))

https://wiki.haskell.org/Difference_list

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 66 / 103



Difference Lists examples - flattened results

usage patterns and flattened results
(show L) ++ (show T ++ (show R))
shows L . (shows T . shows R)

((show LL) ++ (show LT ++ (show LR))) ++ (show T ++ (show R))
(shows LL . (shows LT . shows LR)) . (shows T . shows R)

(((show LLL) ++ (show LLT ++ (show LLR))) ++ (show LT ++ (show LR)))
++ (show T ++ (show R))
((shows LLL . (shows LLT . shows LLR)) . (shows LT . shows LR)) .
(shows T . shows R)

https://wiki.haskell.org/Difference_list

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 67 / 103



Difference Lists examples - efficiency

flattening results
shows L . (shows T . shows R)
(shows LL . (shows LT . shows LR)) . (shows T . shows R)
((shows LLL . (shows LLT . shows LLR)) . (shows LT . shows LR)) .
(shows T . shows R)

((shows LLL.(shows LLT.shows LLR)).(shows LT.shows LR)).(shows T.shows R)
|| |-------------------|| | || | |
||-------------------------------| |-----------------|| | |
|-----------------------------------------------------| |---------------|

still need to resolve three (.)
until the first character of the result string,
but for the subsequent characters
you do not need to resolve those dots.
In the end, resolution of all (.) may need some time
but then concatenation is performed entirely right-associative.

https://wiki.haskell.org/Difference_list

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 68 / 103



ShowS type synonym

type ShowS = String -> String

shows :: Show a => a -> ShowS

show :: Show a => a -> String

The shows functions return a function
that prepends the output String to an existing String
shows :: a -> String -> String
output string in a -> String
existing string : the second string in a -> String -> String

This allows constant-time concatenation of results
using function composition.

http://hackage.haskell.org/package/base-4.12.0.0/docs/Text-Show.html

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 69 / 103



shows function examples

type ShowS = String -> String

shows :: Show a => a -> ShowS

show :: Show a => a -> String

Input : shows 12 "-14-16" -- "12" : "-14-16"
Output: "12-14-16"
Input : shows "A" "SSS" -- "\"A\"" : "SSS"
Output: "\"A\"SSS"
Input: shows ’A’ "SSS" -- "’A’" : "SSS"
Output: "’A’SSS"

http://zvon.org/other/haskell/Outputprelude/shows_f.html

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 70 / 103



ShowS allows efficient concatenation

type ShowS = String -> String

a difference list
a string xs is represented as a ShowS
by the function (xs ++)
that prepends it to any other list
This allows efficient concatenation,
avoiding the problems of nested left-associative concatenation
(i.e. ((as ++ bs) ++cs) ++ ds).

concatenate by a function composition
make a String by passing an empty list:

https://stackoverflow.com/questions/9197913/what-is-the-shows-trick-in-haskell

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 71 / 103



ShowS efficient concatenation examples

concatenate by a function composition
make a String by passing t an empty list:
hello = ("hello" ++)
world = ("world" ++)

helloworld = hello . world -- ("helloworld" ++)
helloworld’ = helloworld "" -- "helloworld"

https://stackoverflow.com/questions/9197913/what-is-the-shows-trick-in-haskell

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 72 / 103



show implementation

It’s called ShowS because ShowS is used
in the implementation of the standard Show typeclass
to show efficiently large, deeply-nested structures

show can be also be implemented by showsPrec,
which has the type:
showsPrec :: (Show a) => Int -> a -> ShowS

handles operator precedence
returns a ShowS value
The standard instances implement this
instead of show for efficiency; showsPrec 0 a ""

https://stackoverflow.com/questions/9197913/what-is-the-shows-trick-in-haskell

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 73 / 103



showsPrec

showsPrec :: Int -> a -> ShowS

Int : the operator precedence of the enclosing context
(a number from 0 to 11).
Function application has precedence 10.
a : the value to be converted to a String
ShowS

Convert a value to a readable String.
showsPrec should satisfy the law
showsPrec d x r ++ s == showsPrec d x (r ++ s)

http://hackage.haskell.org/package/base-4.12.0.0/docs/Text-Show.html

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 74 / 103



Precedence and fixities

+--------+------------------+------------------+------------------+
| Prec- | Left associative | Non-associative | Right associative|
| edence | operators | operators | operators |
+--------+------------------+------------------+------------------+
| 9 | !! | | . |
| 8 | | | ^,^^,** |
| 7 | *,/,div,mod,rem, | | |
| | quot | | |
| 6 | +,- | | |
| 5 | | | :,++ |
| 4 | | ==,/=,<,<=,>,>=, | |
| | | elem,notElem | |
| 3 | | | && |
| 2 | | | || |
| 1 | >>,>>= | | |
| 0 | | | $,$!,seq |
+--------+------------------+------------------+------------------+

http://hackage.haskell.org/package/base-4.12.0.0/docs/Text-Show.html

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 75 / 103



Show class

class Show a where
{-# MINIMAL showsPrec | show #-}
showsPrec :: Int -> a -> ShowS
show :: a -> String

showList :: [a] -> ShowS
showsPrec _ x s = show x ++ s
show x = shows x ""
showList ls s = showList__ shows ls s

http://hackage.haskell.org/package/base-4.12.0.0/docs/Text-Show.html

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 76 / 103



Show instances

instance Show Char where
showsPrec _ ’\’’ = showString "’\\’’"
showsPrec _ c = showChar ’\’’ . showLitChar c . showChar ’\’’

showList cs = showChar ’"’ . showLitString cs . showChar ’"’

instance Show Int where
showsPrec = showSignedInt

http://hackage.haskell.org/package/base-4.12.0.0/docs/Text-Show.html

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 77 / 103



showsPrec exmples (1)

data T = P :# P | T P -- 1) P :# P (data P, operator :#, data P)
deriving Show -- 2) T P

infix 6 :# -- :# infix operator with priority 6

data P = P -- type P, data P

instance Show P where -- type P
showsPrec p P = shows p -- p : priority integer, data P

https://stackoverflow.com/questions/27471937/
showsprec-and-operator-precedences/27473420

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 78 / 103



showsPrec exmples (2)

data T = P :# P | T P -- type T
deriving Show -- values 1) P :# P 2) T P

data P = P -- type P, value P

use the data keyword to define a new data type
value constructors specify the different values
that this type can have
both the type name and the value constructors
have to be capital cased

https://stackoverflow.com/questions/27471937/
showsprec-and-operator-precedences/27473420

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 79 / 103



showsPrec exmples (3)

the type T can have a value of P :# P or T P

the type P can have a value of P

type ShowS = String -> String
showsPrec : Int -> a -> ShowS
showsPrec p P = shows p -- p : priority integer

(P :# P) :: T type
(T P) :: T type

data P = P -- type P, value P

https://stackoverflow.com/questions/27471937/
showsprec-and-operator-precedences/27473420

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 80 / 103



showsPrec exmples (4)

with infix 6 :#,
the Show T instance calls showsPrec 7
on the arguments to :#, and also it
shows parentheses only at precedences > 6:

*Main> showsPrec 6 (P :# P) ""
"7 :# 7"

:# (priority 6), showsPrec (recision 7), no need parenthesis

*Main> showsPrec 7 (P :# P) ""
"(7 :# 7)"

:# (priority 7, showsPrec (recision 7), parenthesis

https://stackoverflow.com/questions/27471937/
showsprec-and-operator-precedences/27473420

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 81 / 103



showsPrec exmples (5)

And for the ordinary constructor T,
he generated instance calls showsPrec 11 on the argument and
shows parens at precedences > 10:

*Main> showsPrec 10 (T P) ""
"T 11"
*Main> showsPrec 11 (T P) ""
"(T 11)"

https://stackoverflow.com/questions/27471937/
showsprec-and-operator-precedences/27473420

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 82 / 103



ShowString

showString :: String -> ShowS

utility function converting a String to a show function
that simply prepends the string unchanged.

Prelude> showString "AAA" ""
"AAA"
Prelude> showString "AAA" "BBB"
"AAABBB"

http://hackage.haskell.org/package/base-4.12.0.0/docs/Text-Show.html

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 83 / 103



ShowChar

showChar :: Char -> ShowS

utility function converting a Char to a show function
that simply prepends the character unchanged.

Prelude> showString ’A’ ""
"A"
Prelude> showString ’A’ "BBB"
"ABBB"

http://hackage.haskell.org/package/base-4.12.0.0/docs/Text-Show.html

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 84 / 103



SetEq (1)

newtype Set a = Set [a]

instance (Eq a) => Eq (Set a) where
set1 == set2 = subSet set1 set2 && subSet set2 set1

instance (Show a) => Show (Set a) where
showsPrec _ (Set s) str = showSet s str

showSet [] str = showString "{}" str
showSet (x:xs) str = showChar ’{’ (shows x (showl xs str))

where showl [] str = showChar ’}’ str
showl (x:xs) str = showChar ’,’ (shows x (showl xs str))

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 85 / 103



SetEq (2)

emptySet :: Set a
emptySet = Set []

isEmpty :: Set a -> Bool
isEmpty (Set []) = True
isEmpty _ = False

inSet :: (Eq a) => a -> Set a -> Bool
inSet x (Set s) = elem x s

subSet :: (Eq a) => Set a -> Set a -> Bool
subSet (Set []) _ = True
subSet (Set (x:xs)) set = (inSet x set) && subSet (Set xs) set

insertSet :: (Eq a) => a -> Set a -> Set a
insertSet x (Set ys) | inSet x (Set ys) = Set ys

| otherwise = Set (x:ys)

deleteSet :: Eq a => a -> Set a -> Set a
deleteSet x (Set xs) = Set (delete x xs)

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 86 / 103



SetEq (3)

list2set :: Eq a => [a] -> Set a
list2set [] = Set []
list2set (x:xs) = insertSet x (list2set xs)

powerSet :: Eq a => Set a -> Set (Set a)
powerSet (Set xs) = Set (map (\xs -> (Set xs)) (powerList xs))

powerList :: [a] -> [[a]]
powerList [] = [[]]
powerList (x:xs) = (powerList xs) ++ (map (x:) (powerList xs))

takeSet :: Eq a => Int -> Set a -> Set a
takeSet n (Set xs) = Set (take n xs)

infixl 9 !!!
(!!!) :: Eq a => Set a -> Int -> a
(Set xs) !!! n = xs !! n

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 87 / 103



showSet

showSet [] str = showString "{}" str
showSet (x:xs) str = showChar ’{’ (shows x (showl xs str))

where showl [] str = showChar ’}’ str
showl (x:xs) str = showChar ’,’ (shows x (showl xs str))

*Main> showSet [1,2,3] "AAA"
"{1,2,3}AAA"
*Main> showSet [1,2,3] ""
"{1,2,3}"
*Main> showSet [1,[2,2],3] ""
*Main> showSet [1,2,2,3] ""
"{1,2,2,3}"

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 88 / 103



subSet

newtype Set a = Set [a]

inSet :: (Eq a) => a -> Set a -> Bool
inSet x (Set s) = elem x s

subSet :: (Eq a) => Set a -> Set a -> Bool
subSet (Set []) _ = True
subSet (Set (x:xs)) set = (inSet x set) && subSet (Set xs) set

*Main> subSet (Set [1]) (Set [1,2,3])
True
*Main> subSet (Set [1,2]) (Set [1,2,3])
True
*Main> inSet 1 (Set [1,2,3])
True
*Main> inSet 4 (Set [1,2,3])
False
*Main> subSet (Set [1,4]) (Set [1,2,3])
False

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 89 / 103



emptySet, isEmpty

emptySet :: Set a
emptySet = Set []

isEmpty :: Set a -> Bool
isEmpty (Set []) = True
isEmpty _ = False

*Main> (Set [])
{}
*Main> :t (Set [])
(Set []) :: Set a
*Main> emptySet
{}
*Main> :t emptySet
emptySet :: Set a
*Main> isEmpty emptySet
True
*Main> isEmpty (Set [])
True
*Main>

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 90 / 103



insertSet, deleteSet, list2set

insertSet :: (Eq a) => a -> Set a -> Set a
insertSet x (Set ys) | inSet x (Set ys) = Set ys

| otherwise = Set (x:ys)

deleteSet :: Eq a => a -> Set a -> Set a
deleteSet x (Set xs) = Set (delete x xs)

list2set :: Eq a => [a] -> Set a
list2set [] = Set []
list2set (x:xs) = insertSet x (list2set xs)

*Main Data.List> insertSet 1 (Set [2,3])
{1,2,3}
*Main Data.List> deleteSet 2 (Set [2,3])
{3}
*Main Data.List> deleteSet 1 (Set [2,3])
{2,3}
*Main Data.List> list2set [1, 2, 3]
{1,2,3}
*Main Data.List> list2set []
{}

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 91 / 103



powerSet, powerList

powerSet :: Eq a => Set a -> Set (Set a)
powerSet (Set xs) = Set (map (\xs -> (Set xs)) (powerList xs))

powerList :: [a] -> [[a]]
powerList [] = [[]]
powerList (x:xs) = (powerList xs) ++ (map (x:) (powerList xs))

*Main> powerList [1,2,3]
[[],[3],[2],[2,3],[1],[1,3],[1,2],[1,2,3]]
*Main> powerSet (Set [1,2,3])
{{},{3},{2},{2,3},{1},{1,3},{1,2},{1,2,3}}

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 92 / 103



take

take n, applied to a list xs, returns the prefix of xs of length n, or xs
itself if n > length xs:
take 5 "Hello World!" == "Hello"
take 3 [1,2,3,4,5] == [1,2,3]
take 3 [1,2] == [1,2]
take 3 [] == []
take (-1) [1,2] == []
take 0 [1,2] == []

Ohttps://www.haskell.org/hoogle/?hoogle=take

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 93 / 103



taskSet

takeSet :: Eq a => Int -> Set a -> Set a
takeSet n (Set xs) = Set (take n xs)

*Main> take 3 [1,2,3,4,5]
[1,2,3]
*Main> takeSet 3 (Set [1,2,3,4,5])
{1,2,3}
*Main>

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 94 / 103



!!

accepts a list and an integer and returns the item in the list at integer
position. The numbering starts with 0.
(!!) :: [a] -> Int -> a

Prelude> [11, 22, 33, 44] !! 0
11
Prelude> [11, 22, 33, 44] !! 1
22
Prelude> [11, 22, 33, 44] !! 2
33
Prelude> [11, 22, 33, 44] !! 3
44
Prelude> [11, 22, 33, 44] !! 4
*** Exception: Prelude.!!: index too large

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 95 / 103



!!!

infixl 9 !!!
(!!!) :: Eq a => Set a -> Int -> a
(Set xs) !!! n = xs !! n

*Main> (Set [11, 22, 33, 44]) !!! 0
11
*Main> (Set [11, 22, 33, 44]) !!! 1
22
*Main> (Set [11, 22, 33, 44]) !!! 2
33
*Main> (Set [11, 22, 33, 44]) !!! 3
44
*Main> (Set [11, 22, 33, 44]) !!! 4
*** Exception: Prelude.!!: index too large

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 96 / 103



Hierarchy (1)

module Hierarchy where

import SetEq

data S = Void deriving (Eq,Show)
-- empty,v0,v1,v2,v3,v4,v5 :: Set S

empty = Set []
v0 = empty
v1 = powerSet v0
v2 = powerSet v1
v3 = powerSet v2
v4 = powerSet v3
v5 = powerSet v4

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 97 / 103



Hierarchy (2)

*Main> v0
{}
*Main> v1
{{}}
*Main> v2
{{},{{}}}
*Main> v3
{{},{{{}}},{{}},{{},{{}}}}
*Main> v4
{{},{{{},{{}}}},{{{}}},{{{}},{{},{{}}}},{{{{}}}},{{{{}}},{{},{{}}}},
{{{{}}},{{}}},{{{{}}},{{}},{{},{{}}}},{{}},{{},{{},{{}}}},{{},{{}}},
{{},{{}},{{},{{}}}},{{},{{{}}}},{{},{{{}}},{{},{{}}}},{{},{{{}}},{{}}},
{{},{{{}}},{{}},{{},{{}}}}}
*Main> v5
{{},{{{},{{{}}},{{}},{{},{{}}}}},{{{},{{{}}},{{}}}},{{{},{{{}}},{{}}},
{{},{{{}}},{{}},{{},{{}}}}},{{{},{{{}}},{{},{{}}}}},{{{},{{{}}},{{},
{{}}}},{{},{{{}}},{{}},{{},{{}}}}},{{{},{{{}}},{{},{{}}}},{{},{{{}}},
{{}}}},{{{},{{{}}},{{},{{}}}},{{},{{{}}},{{}}},{{},{{{}}},{{}},{{},{{}}}}},
{{{},{{{}}}}},{{{},{{{}}}},{{},{{{}}}, ... ... ... {{},{{}}}},{{{{}}},{{}}},
{{{{}}},{{}},{{},{{}}}},{{}},{{},{{},{{}}}},{{},{{}}},{{},{{}},{{},{{}}}},
{{},{{{}}}},{{},{{{}}},{{},{{}}}},{{},{{{}}},{{}}},{{},{{{}}},{{}},{{},{{}}}}}}

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 98 / 103



Hierarchy (3)

*Main> v5 !!! 0
{}
*Main> v5 !!! 1
{{{},{{{}}},{{}},{{},{{}}}}}
*Main> v5 !!! 2
{{{},{{{}}},{{}}}}
*Main> v5 !!! 3
{{{},{{{}}},{{}}},{{},{{{}}},{{}},{{},{{}}}}}
*Main> v5 !!! 4
{{{},{{{}}},{{},{{}}}}}
*Main> v5 !!! 5
{{{},{{{}}},{{},{{}}}},{{},{{{}}},{{}},{{},{{}}}}}
*Main> v5 !!! 6
{{{},{{{}}},{{},{{}}}},{{},{{{}}},{{}}}}
*Main> v5 !!! 7
{{{},{{{}}},{{},{{}}}},{{},{{{}}},{{}}},{{},{{{}}},{{}},{{},{{}}}}}
*Main> v5 !!! 8
{{{},{{{}}}}}
*Main> v5 !!! 9
{{{},{{{}}}},{{},{{{}}},{{}},{{},{{}}}}}
*Main> v5 !!! 10
{{{},{{{}}}},{{},{{{}}},{{}}}}
*Main>

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 99 / 103



Hierarchy (4)

clen :: Set a -> Int
clen (Set xs) = length xs

*Main> clen v0
0
*Main> clen v1
1
*Main> clen v2
2
*Main> clen v3
4
*Main> clen v4
16
*Main> clen v5
65536

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 100 / 103



Hierarchy (5)

display :: Int -> String -> IO ()
display n str = putStrLn (display’ n 0 str)

where
display’ _ _ [] = []
display’ n m (x:xs) | n == m = ’\n’ : display’ n 0 (x:xs)

| otherwise = x : display’ n (m+1) xs

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 101 / 103



Hierarchy (6)

*Main> display 3 "Hello, world!"
Hel
lo,
wo

rld
!
*Main> display 3 "123123123123123123"
123
123
123
123
123
123
*Main> display 3 "123456789012"
123
456
789
012

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 102 / 103



Hierarchy (7)

display’ _ _ [] = []
display’ n m (x:xs) | n == m = ’\n’ : display’ n 0 (x:xs)

| otherwise = x : display’ n (m+1) xs |

*Main> display’ 7 3 "abcdefgh"
"abcd\nefgh"
*Main> display’ 7 2 "abcdefgh"
"abcde\nfgh"
*Main> display’ 7 1 "abcdefgh"
"abcdef\ngh"
*Main> display’ 7 0 "abcdefgh"
"abcdefg\nh"
*Main> display’ 3 0 "abcdefgh"
"abc\ndef\ngh"
*Main> display’ 3 1 "abcdefgh"
"ab\ncde\nfgh"
*Main> display’ 3 2 "abcdefgh"
"a\nbcd\nefg\nh"
*Main> display’ 3 3 "abcdefgh"
"\nabc\ndef\ngh"
*Main> display’ 3 4 "abcdefgh"
"abcdefgh"

Young W. Lim Set Haskell Exercises 2018-12-15 Sat 103 / 103


	Based on
	Pardoxes and Haskell type system
	Using STAL.hs
	Paradox
	Types and Type Classes

	Lists
	Lists
	Database Applications

	Sets
	Sets
	Sets using Lists
	Show class methods
	Data Types for Sets


