Variable Block Adder (1C)

Copyright (c) 2024-2010 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Carry Skip Adder

Fixed block size $=\mathbf{k}$ bits

Variable block size $=x_{i}$ bits for the i-th group

$$
\left(x_{i}-1\right) t
$$

$$
(m-2) \top
$$

$$
\left(x_{j}-1\right) t
$$

t denote the time required for a carry signal to ripple across a bit T denote the time required for the signal to skip over a group of bits m denotes the optimal number of groups for an n-bit carry chain

Carry Skip Adder - fixed block size

t denote the time required for a carry signal to ripple across a bit
T denote the time required for the signal to skip over a group of bits m denotes the optimal number of groups for an n-bit carry chain

Fixed Block Size \Rightarrow delay $(P 3)=\operatorname{delay}(P 2)=\operatorname{delay}(P 1)=\operatorname{delay}(P 0)=$ Fixed Delay

Carry Skip Adder - maximum carry delay (3)

t denote the time required for a carry signal to ripple across a bit
T denote the time required for the signal to skip over a group of bits
m denotes the optimal number of groups for an n-bit carry chain

T^{\prime} normalized delay of T over t

Carry Skip Adder - maximum carry delay (3)

Carry Skip Delays

Carry Skip Adder - maximum carry delay (3)

Carry Ripple delays

Minimum skip path delay $\boldsymbol{y}_{\boldsymbol{i}}$ of the $\boldsymbol{i}^{\text {th }}$ group

Parallel Delay Paths

Maximum skip path delay $\boldsymbol{y}_{\boldsymbol{i}}$ of the $\boldsymbol{i}^{\text {th }}$ group

$\operatorname{Min}\{1+i T, 1+(m+1-i) T\}(1)$

$m=5 ;$
$\min (1+\mathrm{T}, 1+5 \mathrm{~T})$
$\min (1+2 \mathrm{~T}, 1+4 \mathrm{~T})$
$\min (1+3 T, 1+3 T)$
$\min (1+4 \mathrm{~T}, 1+2 \mathrm{~T})$
$\min (1+5 T, 1+T)$

$\operatorname{Min}\{1+\boldsymbol{i} T, 1+(m+1-i) T\}(2)$

$x_{3}=$ bit size of G3

Maximum delay $\boldsymbol{y}_{\boldsymbol{i}}$ of the $\boldsymbol{i}^{\text {th }}$ group for a given \boldsymbol{m} (1)

Maximum delay $\boldsymbol{y}_{\boldsymbol{i}}$ of the $\boldsymbol{i}^{\text {th }}$ group for a given \boldsymbol{m} (2)

$\mathrm{x}_{1} \leq \mathrm{y}_{1}=1+\mathrm{T}$		y_{2}	y_{3}	y_{4}	y_{5}	y_{6}
$\mathrm{x}_{2} \leq \mathrm{y}_{2}=1+2 \mathrm{~T}$			y_{3}	y_{4}	y_{5}	y_{6}
$x_{3} \leq y_{3}=1+3 T$				y_{4}	y_{5}	y_{6}
$\mathrm{x}_{4} \leq \mathrm{y}_{4}=1+3 \mathrm{~T}$	y_{1}	y_{2}	y_{3}			
$\mathrm{x}_{5} \leq \mathrm{y}_{5}=1+2 \mathrm{~T}$	y_{1}	y_{2}	y_{3}	y_{4}		
$\mathrm{x}_{6} \leq \mathrm{y}_{6}=1+\mathrm{T}$	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	

Procedure

(I) Let m be the smallest positive integer such that

$$
n \leq m+\frac{1}{2} m T+\frac{1}{4} m^{2} T+\left(1-(-1)^{m}\right) \frac{1}{8} T=\sum_{i=1}^{m} y_{i}
$$

- total $n=48$ bits
- $m=7$ groups
- i-th group has x_{i} bits (size)
- constant skip delay $T=T\left(x_{i}\right)=3$
(II) Let

$$
y_{i}=\min \{1+i T, 1+(m+1-i) T\}, \quad i=1, \ldots, m
$$

and construct a histogram whose i-th column has height y_{i} for example, for $\mathrm{T}=3$, and $\mathrm{n}=48$, we have $\mathrm{m}=7$
(III) It is easily verified that the area of the histogram in (II) is
$\sum_{i=1}^{m} y_{i}=m+\frac{1}{2} m T+\frac{1}{4} m^{2} T+\left(1-(-1)^{m}\right) \frac{1}{8} T \geq n$
so these are at least n unit squares in the histogram starting with the first row, shade in n of the squares, row by row Let x_{i} denote the number of shaded squares in column i of the histogram,

$$
n=\sum_{i=1}^{m} x_{i} \leq \sum_{i=1}^{m} y_{i}
$$

$i=1, \ldots, m$

Oklobdzija: High-Speed VLSI arithmetic units : adders and multipliers

Determining \boldsymbol{m} the number of groups (1)

Method 1 - using a histogram
Let m be the smallest positive integer such that

$$
\begin{array}{r}
n \leq \sum_{i=1}^{(m)} y_{i} \quad \begin{array}{l}
\mathrm{m}=2 ; \\
\text { while }\left(y_{1}+\cdots+y_{m}<n\right) \mathrm{m}=\mathrm{m}+1
\end{array} \\
y_{i}=\min \{1+i T, 1+(m+1-i) T\}, \quad i=1, \ldots, m
\end{array}
$$

Method 2 - using a closed formula
Let m be the smallest positive integer such that

$$
n \leq m+\frac{1}{2} m T+\frac{1}{4} m^{2} T+\left(1-(-1)^{m}\right) \frac{1}{8} T
$$

Determining \boldsymbol{m} the number of groups (2)

Method 1 - using a histogram

Let m be the smallest positive integer such that

$$
n \leq \sum_{i=1}^{(m)} y_{i}
$$

m = 2;

$$
\text { while }\left(\mathrm{y}_{1}+\cdots+\mathrm{y}_{\mathrm{m}}<\mathrm{n}\right) \mathrm{m}=\mathrm{m}+1 \text {; }
$$

$$
y_{i}=\min \{1+i T, 1+(m+1-i) T\}, \quad i=1, \ldots, m
$$


```
m=2; T=3
y}=\operatorname{min}{1+\textrm{T},1+2T}=1+T=
y2}=\operatorname{min}{1+2\textrm{T},1+\textrm{T}}=1+\textrm{T}=
m=3; T=3
y}=\operatorname{min}{1+\textrm{T},1+3T}=1+T=
y2}=\operatorname{min}{1+2\textrm{T},1+2\textrm{T}}=1+2\textrm{T}=
ys}=\operatorname{min}{1+3\textrm{T},1+\textrm{T}}=1+\textrm{T}=
m=4; T=3
y}=\operatorname{min}{1+\textrm{T},1+4\textrm{T}}=1+\textrm{T}=
y2}=\operatorname{min}{1+2T,1+3T}=1+2T=
y
y4}=\operatorname{min}{1+4T,1+T}=1+T=
\[
4
\]
\[
=4
\]
\[
\begin{aligned}
& \mathrm{m}=5 ; \mathrm{T}=3 \\
& \mathrm{y}_{1}=\min \{1+\mathrm{T}, 1+5 \mathrm{~T}\}=1+\mathrm{T}=4 \\
& \mathrm{y}_{2}=\min \{1+2 \mathrm{~T}, 1+4 \mathrm{~T}\}=1+2 \mathrm{~T}=7 \\
& \mathrm{y}_{3}=\min \{1+3 \mathrm{~T}, 1+3 \mathrm{~T}\}=1+3 \mathrm{~T}=10 \\
& \mathrm{y}_{4}=\min \{1+4 \mathrm{~T}, 1+2 \mathrm{~T}\}=1+2 \mathrm{~T}=7 \\
& \mathrm{y}_{5}=\min \{1+5 \mathrm{~T}, 1+\mathrm{T}\}=1+\mathrm{T}=4 \\
& \mathrm{~m}=6 ; \mathrm{T}=3 \\
& \mathrm{y}_{1}=\min \{1+\mathrm{T}, 1+6 \mathrm{~T}\}=1+\mathrm{T}=4 \\
& \mathrm{y}_{2}=\min \{1+2 \mathrm{~T}, 1+5 \mathrm{~T}\}=1+2 \mathrm{~T}=7 \\
& \mathrm{y}_{3}=\min \{1+3 \mathrm{~T}, 1+4 \mathrm{~T}\}=1+3 \mathrm{~T}=10 \\
& \mathrm{y}_{4}=\min \{1+4 \mathrm{~T}, 1+3 \mathrm{~T}\}=1+3 \mathrm{~T}=10 \\
& \mathrm{y}_{5}=\min \{1+5 \mathrm{~T}, 1+2 \mathrm{~T}\}=1+2 \mathrm{~T}=7 \\
& \mathrm{y}_{6}=\min \{1+6 \mathrm{~T}, 1+\mathrm{T}\}=1+\mathrm{T}=4
\end{aligned}
\]
m=5; T=3
m=5; T=3
m=5; T=3
\mp@subsup{y}{1}{}=\operatorname{min}{1+\textrm{T},1+5T}=1+T=4
\mp@subsup{y}{1}{}=\operatorname{min}{1+\textrm{T},1+5T}=1+T=4
\mp@subsup{y}{1}{}=\operatorname{min}{1+\textrm{T},1+5T}=1+T=4
y2}=\operatorname{min}{1+2T,1+4T}=1+2T=
y2}=\operatorname{min}{1+2T,1+4T}=1+2T=
y2}=\operatorname{min}{1+2T,1+4T}=1+2T=
y
y
y
y4}=\operatorname{min}{1+4T,1+2T}=1+2T=
y4}=\operatorname{min}{1+4T,1+2T}=1+2T=
y4}=\operatorname{min}{1+4T,1+2T}=1+2T=
\mp@subsup{y}{5}{}=min}{1+5\textrm{T},1+\textrm{T}}=1+\textrm{T}=
\mp@subsup{y}{5}{}=min}{1+5\textrm{T},1+\textrm{T}}=1+\textrm{T}=
\mp@subsup{y}{5}{}=min}{1+5\textrm{T},1+\textrm{T}}=1+\textrm{T}=
m = 6; T = 3
m = 6; T = 3
m = 6; T = 3
y}=min{1+T,1+6T}=1+T=
y}=min{1+T,1+6T}=1+T=
y}=min{1+T,1+6T}=1+T=
y2}=\operatorname{min}{1+2T,1+5T}=1+2T=
y2}=\operatorname{min}{1+2T,1+5T}=1+2T=
y2}=\operatorname{min}{1+2T,1+5T}=1+2T=
y3}=\operatorname{min}{1+3T,1+4T}=1+3T=1
y3}=\operatorname{min}{1+3T,1+4T}=1+3T=1
y3}=\operatorname{min}{1+3T,1+4T}=1+3T=1
y4}=\operatorname{min}{1+4T,1+3T}=1+3T=1
y4}=\operatorname{min}{1+4T,1+3T}=1+3T=1
y4}=\operatorname{min}{1+4T,1+3T}=1+3T=1
y5}=\operatorname{min}{1+5T,1+2T}=1+2T=
y5}=\operatorname{min}{1+5T,1+2T}=1+2T=
y5}=\operatorname{min}{1+5T,1+2T}=1+2T=
y6}=\operatorname{min}{1+6T,1+T}=1+T=
```

y6}=\operatorname{min}{1+6T,1+T}=1+T=

```
y6}=\operatorname{min}{1+6T,1+T}=1+T=
```

$$
\begin{aligned}
& \mathrm{m}=7 ; \mathrm{T}=3 \\
& \mathrm{y}_{1}=\min \{1+\mathrm{T}, 1+7 \mathrm{~T}\}=1+\mathrm{T}=4 \\
& \mathrm{y}_{2}=\min \{1+2 \mathrm{~T}, 1+6 \mathrm{~T}\}=1+2 \mathrm{~T}=7 \\
& y_{3}=\min \{1+3 \mathrm{~T}, 1+5 \mathrm{~T}\}=1+3 \mathrm{~T}=10 \\
& \mathrm{y}_{4}=\min \{1+4 \mathrm{~T}, 1+4 \mathrm{~T}\}=1+4 \mathrm{~T}=13 \\
& \mathrm{y}_{5}=\min \{1+5 \mathrm{~T}, 1+3 \mathrm{~T}\}=1+3 \mathrm{~T}=10 \\
& \mathrm{y}_{6}=\min \{1+6 \mathrm{~T}, 1+2 \mathrm{~T}\}=1+2 \mathrm{~T}=7 \\
& \mathrm{y}_{7}=\min \{1+7 \mathrm{~T}, 1+1 \mathrm{~T}\}=1+\mathrm{T}=4
\end{aligned}
$$

Determining \boldsymbol{m} the number of groups (3)

Method 1 - using a histogram

Let m be the smallest positive integer such that

$$
n \leq \sum_{i=1}^{(m)} y_{i}
$$

$$
\mathrm{m}=2
$$

$$
\text { while }\left(y_{1}+\cdots+y_{\mathbb{O}}<n\right)(m=m+1 \text {; }
$$

$$
y_{i}=\min \{1+i T, 1+(m+1-i) T\}, \quad i=1, \ldots, m
$$

Determining $\boldsymbol{x}_{\boldsymbol{i}}$ the group size of $\boldsymbol{i}^{\text {th }}$ group

construct a histogram
whose i-th column has height y_{i}
so these y_{i}^{\prime} s are at least n unit squares in the histogram, starting with the first row, shade in n of the squares, row by row
let x_{i} denote the number of shaded squares in column i of the histogram,

$$
i=1, \ldots, m
$$

$$
\begin{aligned}
& \mathrm{m}=7 ; \quad \mathrm{T}=3 \\
& \mathrm{x}_{1}=4 \leq \mathrm{y}_{1}=4 \\
& \mathrm{x}_{2}=7 \leq y_{2}=7 \\
& \mathrm{x}_{3}=8<y_{3}=10 \\
& \mathrm{x}_{4}=9<y_{4}=13 \\
& \mathrm{x}_{5}=9<y_{5}=10 \\
& \mathrm{x}_{6}=7 \leq y_{6}=7 \\
& x_{7}=4 \leq y_{7}=4
\end{aligned}
$$

Maximum propagation time P

$$
y_{i}=\min \{1+i T, 1+(m+1-i) T\}, \quad i=1, \ldots, m
$$

$$
\begin{aligned}
& y_{1}=\min \{1+1 \cdot T, 1+(m+1-1) T\}=1+T \\
& y_{m}=\min \{1+m \cdot T, 1+(m+1-m) T\}=1+T
\end{aligned}
$$

$$
y_{2}=\min \{1+2 \cdot T, 1+(m+1-2) T\}=1+2 T
$$

$$
y_{m-1}=\min \{1+(m-1) \cdot T, 1+(m+1-(m-1)) T\}=1+2 T
$$

$$
y_{3}=\min \{1+3 \cdot T, 1+(m+1-3) T\}=1+3 T
$$

$$
y_{m-2}=\min \{1+(m-2) \cdot T, 1+(m+1-(m-2)) T\}=1+3 T
$$

the scheme (i), (ii), (iii) gives the max prop time $m T$

$$
\begin{aligned}
& x_{1} \leq y_{1}=1+T \\
& x_{m} \leq y_{m}=1+T \\
& x_{2} \leq y_{2}=1+2 T \\
& x_{m-1} \leq y_{m-1}=1+2 T \\
& x_{3} \leq y_{3}=1+3 T \\
& x_{m-2} \leq y_{m-2}=1+3 T
\end{aligned}
$$

Maximum propagation time P

m groups $\quad m T$
skip delay1

ripple delay

skip delay2

the scheme (i), (ii), (iii)
gives the max prop time $m T$

```
skip delay1 iT generating carry
ripple delay }\mp@subsup{x}{i}{}-
skip delay2 (m+1-i)T terminating carry
```

```
\(\mathrm{x}_{\mathrm{i}}-1 \leq \mathrm{i} T\)
\(x_{i}-1 \leq(m+1-i) \top\)
\(\mathrm{x}_{\mathrm{i}} \leq 1+\mathrm{i} T\)
\(x_{i} \leq 1+(m+1-i) T\)
```

$\mathrm{x}_{\mathbf{i}} \leq \min \{1+\mathbf{i} \mathbf{T}, 1+(\mathrm{m}+1-\mathrm{i}) \mathrm{T}\}$
$x_{i} \leq y_{i}$
$y_{i}=\min \{1+\mathbf{i} \mathbf{T}, 1+(m+1-\mathbf{i}) T\}$

Maximum propagation time P

$$
y_{i}=\min \{1+i T, 1+(m+1-i) T\}, \quad i=1, \ldots, m
$$

the scheme (i), (ii), (iii)
gives the max prop time $m T$

$$
\begin{aligned}
& y_{1}=\min \{1+1 \cdot T, 1+(m+1-1) T\}=1+T \\
& y_{m}=\min \{1+m \cdot T, 1+(m+1-m) T\}=1+T
\end{aligned}
$$

$$
\begin{aligned}
& x_{1} \leq y_{1}=1+T \\
& x_{m} \leq y_{m}=1+T
\end{aligned}
$$

$$
x_{1}-1 \leq 1 T \quad x_{1}-1 \leq T
$$

$$
x_{1}-1 \leq(m+1-1) T \quad x_{1}-1 \leq m T
$$

$$
x_{m}-1 \leq m T
$$

$$
x_{m}-1 \leq m T
$$

$$
x_{m}-1 \leq(m+1-m) T \quad x_{m}-1 \leq T
$$

maximum propagation time
m groups $m T$

$$
\begin{aligned}
& P_{\max }=P_{1, m} \leq m T \\
& P=P_{i, j} \leq m T
\end{aligned}
$$

Maximum propagation time P

Lemma 1 When the bits of a carry skip adder are grouped according to the scheme (i)-(iii), the maximum propagation time of a carry signal is $m T$

The carry generated at the $2^{\text {nd }}$ bit position and terminating at the $(n-1)^{\text {th }}$ bit position clearly has propagation time $m T$.

We must show that any other carry signal has propagation time smaller than or equal to $m T$
propagation time of a carry signal $\leq m T$
the maximum propagation time $=m T$
the scheme (i), (ii), (iii)
gives the max prop time $m T$
maximum propagation time
m groups $m T$

$$
P_{\max }=P_{1, m} \leq m T
$$

Procedure

(I) Let m be the smallest positive integer

$$
n \leq \sum_{i=1}^{m} y_{i} \quad i=1, \ldots, m
$$

(II) Let

$$
y_{i}=\min \{1+i T, 1+(m+1-i) T\}
$$

(III) Let $x_{i}, i=1, \ldots, m$
starting with the first row, row by row
$n=\sum_{i=1}^{m} x_{i} \leq \sum_{i=1}^{m} y_{i}$
Variable block size $=x_{i}$ bits for the i-th group
gives the max propagation time $m T$
the scheme (i), (ii), (iii)
find the smallest m

$$
n \leq \sum_{i=1}^{m} y_{i}=\sum_{i=1}^{m} \min \{1+i T, 1+(m+1-i) T\}
$$

$$
\begin{aligned}
& m=2 ; \\
& \text { while }\left(y_{1}+\cdots+y_{(1)}<n\right) m=m+1
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{m}=2 ; \quad \mathrm{m}=4 ; \quad \mathrm{m}=5 ; \quad \mathrm{m}=6 ; \quad \mathrm{m}=7 \text {; } \\
& y_{1}=1+T \quad y_{1}=1+T \quad y_{1}=1+T \quad y_{1}=1+T \quad y_{1}=1+T \\
& y_{2}=1+T \quad y_{2}=1+2 T \quad y_{2}=1+2 T \quad y_{2}=1+2 T \quad y_{2}=1+2 T \\
& \begin{array}{llll}
\mathrm{m}=3 ; & \mathrm{y}_{4}=1+\mathrm{T} & \mathrm{y}_{4}=1+2 T & y_{4}=1+3 T \\
\mathrm{y}_{1}=1+\mathrm{T} & & y_{5}=1+\mathrm{T} & \mathrm{y}_{5}=1+2 T
\end{array} y_{5}=1+3 T \\
& \begin{array}{lll}
y_{1}=1+T & y_{5}=1+T & y_{5}=1+2 T \\
y_{2}=1+2 T & & y_{5}=1+3 T \\
y_{6}=1+T & y_{6}=1+2 T
\end{array} \\
& y_{3}=1+T \\
& y_{7}=1+T
\end{aligned}
$$

Propagation Time P

find the smallest m

$$
n \leq \sum_{i=1}^{m} y_{i}=\sum_{i=1}^{m} \min \{1+i T, 1+(m+1-i) T\}
$$

$$
\begin{aligned}
& m=2 \\
& \text { while }\left(y_{1}+\cdots+y_{m}<n\right) m=m+1
\end{aligned}
$$

the scheme (i), (ii), (iii) gives the max propagation time $m T$
propagation time of a carry signal $\leq m T$ the maximum propagation time $=m T$
maximum propagation time

$$
P_{\max }=P_{1, m} \leq m T
$$

Maximum delay and optimal group size

the maximum propagation time \propto the number of groups
$D \propto m$

- not an optimal optimal division
- larger number of groups \rightarrow
- larger delays \rightarrow
- when group size m is not optimal
then there is an optimal group size $=r$
- the maximum delay with the group size m

$$
D_{m}=m T
$$

- the maximum delay with the group size r

$$
D_{r}=r T
$$

- r must be smaller than $m \quad r \leq m$

Maximum delay of a carry signal

Lemma 2 Let D denote the maximum delay of a carry signal

- n bits in a n bit carry skip adder with group sizes chosen optimally. Then
- r groups

$$
(m-1) T \leq D \leq m T
$$

Since we have exhibited a division of the carry chain into groups In such a way that the maximum delay of a carry signal is $m T$
We clearly have $D \leq m T$
the maximum delay $=D$
the optimal group size $=m$
$(m-1) T \leq D \leq m T$

Maximum delay of a carry signal

$$
(m-1) T \leq D \leq m T
$$

Assume there are rgroups
then 2 cases : even r, odd r
for each of these 2 cases

prove | | $m T-D$ |
| ---: | :--- |
| \Rightarrow | $<T+1$ |
| | $m T-D \leq T$ |
| | $(m-1) T \leq D$ |

P: the propagation delay of any carry signal path $\leq m T$
upper bound
$D: \quad$ the max of P

- $\operatorname{diff}(m T, D) \leq T$
diff $(m T, \max \mathbf{P}) \leq T$
lower bound
$(m-1) T \leq \boldsymbol{D}$

Maximum delays of carry signals ($\mathbf{r}=\mathbf{2 k}$)

$$
\begin{aligned}
\bar{D}_{[2,7]}= & \text { the maximum delay of carry signals } \leq D \\
& \text { generated in the } i \text {-th group and } \\
& \text { terminated in the } j \text {-th group } \\
& \text { such that } 2 \leq i, j \leq 7
\end{aligned}
$$

$$
\bar{D}_{[2,7]}=\max \left\{\begin{array}{cccc}
D_{2,3}, & D_{2,4}, & D_{2,5}, & D_{2,6}, \\
D_{2,7}, \\
D_{3,7}, & D_{4,7}, & D_{5,7}, & D_{6,7}
\end{array}\right\}
$$

$$
\bar{D}_{[2,7]}=\bar{D}_{[2,8-2+1]}=\bar{D}_{[s, 8-s+1]}, s=2
$$

$\bar{D}_{[s, r-s+1]}=$ the maximum delay of carry signals generated in the i-th group and terminated in the j-th group such that $s \leq i, j \leq r-s+1$

Maximum delays of carry signals ($\mathbf{r}=\mathbf{2 k}$)

Oklobdzija: High-Speed VLSI arithmetic units : adders and multipliers
$\bar{D}_{[1,8]}=$ The maximum delay of carry signals $\leq D$ generated in the i-th group or terminated in the j-th group such that $1 \leq i, j \leq 8$
$\bar{D}_{[2,7]}=$ The maximum delay of carry signals $\leq D$ generated in the i-th group or terminated in the j-th group such that $2 \leq i, j \leq 7$
$\bar{D}_{[3,6]}=$ The maximum delay of carry signals $\leq D$ generated in the i-th group or terminated in the j-th group such that $3 \leq i, j \leq 6$
$\bar{D}_{[4,5]}=$ The maximum delay of carry signals $\leq D$ generated in the i-th group or terminated in the j-th group such that $4 \leq i, j \leq 5$
$\bar{D}_{\text {all }}=$ All skip delay

$$
D=\max \left\{\bar{D}_{[1,8]}, \bar{D}_{[2,7]}, \bar{D}_{[3,6]}, \bar{D}_{[4,5]}\right\} \quad \begin{array}{r}
\text { Max delay of } \\
\text { all carry signals }
\end{array}
$$

Maximum delays of carry signals $(\mathbf{r}=\mathbf{2 k + 1})$

$$
\begin{aligned}
& \bar{D}_{[1,7]}=\text { The maximum delay of carry signals } \leq D \\
& \text { generated in the i-th group or } \\
& \text { terminated in the } j \text {-th group } \\
& \text { such that } 1 \leq i, j \leq 8 \\
& \bar{D}_{[2,6]}=\text { The maximum delay of carry signals } \leq D \\
& \text { generated in the i-th group or } \\
& \text { terminated in the j-th group } \\
& \text { such that } 2 \leq i, j \leq 7 \\
& \bar{D}_{[3,65]}=\text { The maximum delay of carry signals } \leq D \\
& \text { generated in the } i \text {-th group or } \\
& \text { terminated in the j-th group } \\
& \text { such that } 3 \leq i, j \leq 6 \\
& \bar{D}_{\text {all }}=\text { All skip delay } \\
& \widetilde{D}_{\text {all }}=\text { Comparable to all skip delay } \quad \leq D
\end{aligned}
$$

$$
D=\max \left\{\bar{D}_{[1,8]}, \bar{D}_{[2,7]}, \bar{D}_{[3,6]}, \bar{D}_{[4,5]}\right\} \quad \begin{array}{r}
\text { Max delay of } \\
\text { all carry signals }
\end{array}
$$

Oklobdzija: High-Speed VLSI arithmetic units : adders and multipliers

Maximum delays of carry signals ($\mathbf{r}=\mathbf{2 k}$)

Maximum delays of carry signals $(\mathbf{r}=\mathbf{2 k + 1})$

$$
\begin{aligned}
D & =\max _{s=1}^{\operatorname{maor}(r / 2)} \bar{D}_{[s, r-s+1]} \\
& =\max _{s=1}^{k} \bar{D}_{[s, 2 k+2-s]} \\
& =\max _{s=1}^{3} \bar{D}_{[s, 8-s]}
\end{aligned}
$$

Max delay of all carry signals

$$
\begin{gathered}
\bar{D}_{[1, r]} \leq D \\
\bar{D}_{[2, r-1]} \leq D \\
\vdots \\
\bar{D}_{[k, k+1]} \leq \\
\vdots
\end{gathered}
$$

$$
\widetilde{D}_{\text {all }} \leq D
$$

$$
(m-1) T \leq D
$$

Lower bound of D

Example delays of carry signals $(\mathbf{r}=\mathbf{2 k})(\mathbf{1})$

Example delays of carry signals $(\mathbf{r}=\mathbf{2 k})(2)$

Optimal division into groups (1-1)

Theorem 1

The scheme 2(i) - 2(iii) given above for dividing the bits of a carry skip adder into groups is optimal for $2 \leq T \leq 7$
dividing the bits into groups by the scheme 2(i) - 2(iii) gives m groups

$$
\begin{aligned}
& \text { propagation time of a carry signal } \leq m T \\
& \text { the maximum propagation time }=m T
\end{aligned}
$$

(I) Let m be the smallest positive integer such that

$$
n \leq m+\frac{1}{2} m T+\frac{1}{4} m^{2} T+\left(1-(-1)^{m}\right) \frac{1}{8} T
$$

(II) Let $\quad y_{i}=\min \{1+i T, 1+(m+1-i) T\}$,

$$
i=1, \ldots, m
$$

and construct a histogram whose i-th column has height y_{i}
(III) the area of the histogram in (II) is

$$
m+\frac{1}{2} m T+\frac{1}{4} m^{2} T+\left(1-(-1)^{m}\right) \frac{1}{8} T \geq n
$$

so these are at least n unit squares
in the histogram starting with the first row, shade in n of the squares, row by row Let x_{i} denote the number of shaded squares in column i of the histogram,
$i=1, \ldots, m$
the maximum delay $=D$
the optimal group size $=m$
$(m-1) T \leq D \leq m T$

Optimal division into groups (1-2)

Assume

- the scheme by 2(i) - 2(iii) (m groups) is not optimal
- let D be the maximum delay corresponding to an optimal division of the bits into groups
- there are r groups in the optimal division.

Since a carry in signal to the least significant bit group can skip over each group
we have $r T \leq D \leq m T$ so $r \leq m$

```
if m}\mathrm{ is not optimal, but r is
then mT\geqrT (smaller delay rT)
thus m\geqr (smaller r exists)
```

m groups

- not optimal division
$-\boldsymbol{D}=$ maximum delay
- mT skip delay
r groups
- optimal division
- rT skip delay
skip delay
$r T \leq D \leq m T$
$r \leq m$

D = max delay is assumed
To be greater than all skip
delay $\boldsymbol{r T}$ of the optimal division

Optimal division into groups (1-2)

If the optimal division gives m groups

$$
\begin{gathered}
D \leq m T \\
(m-1) T \leq D
\end{gathered}
$$

- when optimal group size $=m$
the maximum delay $D_{m} \leq m T$
- when optimal group size $=m$
the maximum delay $D_{m} \leq m T$

Normally, by 2(i) - 2(iii) (m groups) is optimal and its maximum delay D is less than all skip delay $m T$

$$
D \leq m T
$$

To prove this, first, negate that

- m is not by the optimal division, but r is
- D is greater than all skip delay of the optimal division
- \quad when optimal group size $=(m-1)$ the maximum delay $D_{m-1} \leq(m-1) T$

$$
D=\text { maximum delay }
$$

$$
r T \leq D \leq m T
$$

$$
r \leq m \quad \longrightarrow \quad r<(m-1)
$$

Optimal division into groups (1-2)

```
rT\leqD\leqmT so r\leqm
```

Optimal division : r groups
$D^{\prime} \leq$ all skip delay rT (r groups)
$D=$ maximum delay
Non-optimal division : m groups
$D \leq$ all skip delay $m T$ (m groups)
too many partitions $m \quad r \leq m$

$$
r T \leq D \leq m T
$$

$$
r \leq m \quad \square \quad r<(m-1)
$$

Assume max delay D is greater

than all skip delay rT of the optimal division
if m is not optimal, but r is
then $m T \geq r T$ (smaller delay $r T$)
thus $m \geq r$ (smaller r exists)
D is max delay for m groups
D^{\prime} is max delay for r groups
then $D^{\prime} \leq r T \leq D \leq m T$

Oklobdzija: High-Speed VLSI arithmetic units : adders and multipliers

Optimal division into groups (2)

we have $r T \leq D \leq m T$ so $r \leq m$

$$
\begin{aligned}
& \text { If } r=m \\
& \text { then } D=m T \longmapsto D=r T \quad r T=D \\
& \text { If } r=m-1,(r<m) \\
& D \geq(m-1) T \quad D \geq(m-1) T=r T \quad r T \leq D \\
& \text { if } \begin{aligned}
r<m-1,(r<m) \\
D \geq(m-1) T
\end{aligned} \quad \begin{array}{l}
r=m-2, m-3, m-3, \ldots
\end{array} \quad \begin{array}{l}
\\
D \geq(m-1) T>r T
\end{array}
\end{aligned}
$$

Optimal division into groups (3)

we have $r T \leq D \leq m T$ so $r \leq m$

If $r=m$ then $D=m T$ and the theorem holds by lemma 1

When the bits of a carry skip adder are grouped according to the scheme (i)-(iii), the maximum propagation time of a carry signal is $m T$
$(m-1) T \leq D \leq m T$

Lemma 1 When the bits of a carry skip adder are grouped according to the scheme (i)-(iii), the maximum propagation time of a carry signal is $m T$

Theorem 1 The scheme 2(i) - 2(iii) given above for dividing the bits of a carry skip adder into groups is optimal for $2 \leq T \leq 7$
(5)

$$
\begin{aligned}
& r=2 k \\
& m T-D \leq T+\frac{-8(T / n)+4}{\sqrt{4(T / n)+8\left(T / n^{2}\right)}+\sqrt{4(T / n)+4 / n^{2}}} \\
& r=2 k+1 \quad X=4 \\
& m T-D \leq T+\frac{(T-2)^{2} / n}{\sqrt{4(T / n)+4\left(T / n^{2}\right)}+\sqrt{4(T / n)+(T / n)^{2}+4 / n^{2}}}
\end{aligned}
$$

m groups - not optimal division
r groups - optimal division
$D=$ maximum delay
$r T \leq D \leq m T$
$r \leq m$

Optimal division into groups (3)

If $r=m-1,(r<m)$
m and r have different parities and
it follows from (5)
that $m T-D \leq T$ for $2 \leq T \leq 7$
so that $D \geq(m-1) T$
since $r=m-1$,
$D \geq(m-1) T=r T \quad r T \leq D$

This means that a signal which
skips over each of the r groups ($r T$)
has delay less than the maximum D.
$r T \leq D \leq m T$
m is not optimal division
r is optimal division

Lemma 1 When the bits of a carry skip adder are grouped according to the scheme (i)-(iii), the maximum propagation time of a carry signal is $m T$

Theorem 1 The scheme 2(i) - 2(iii) given above for dividing the bits of a carry skip adder into groups is optimal for $2 \leq T \leq 7$

$$
\begin{aligned}
& \text { (5) } \begin{array}{l}
r=2 k \quad X=4-T^{2} \\
m T-D \leq T+\frac{-8(T / n)+4}{\sqrt{4(T / n)+8\left(T / n^{2}\right)}+\sqrt{4(T / n)+4 / n^{2}}} \\
r=2 k+1 \quad X=4 \\
m T-D \leq T+\frac{(T-2)^{2} / n}{\sqrt{4(T / n)+4\left(T / n^{2}\right)}+\sqrt{4(T / n)+(T / n)^{2}+4 / n^{2}}} \\
m \text { groups - not optimal division } \\
r \text { groups - optimal division } \\
D=\text { maximum delay } \\
r T \leq D \leq m T \\
r \leq m
\end{array}
\end{aligned}
$$

Optimal division into groups (4)

Similarly,
if $r<m-1,(r<m)$
$(m-1) T \leq D$
since $r<m-1$,
$r T<(m-1) T \leq D$
so that a signal which skips over each group has delay $r T<D$.
$r T<D \leq m T$
m is not optimal division
r is optimal division

Optimal division into groups (5)

$$
\begin{aligned}
& m \text { groups - not optimal division } \\
& r \text { groups - optimal division } \\
& D=\text { maximum delay } \\
& r T \leq D \leq m T \\
& r \leq m \\
& \\
& \text { if } m \text { is not optimal, } \underline{\text { but } r} \text { is } \\
& (((r+1)+1)+1) \ldots \longrightarrow m \\
& \text { contradiction! } r \text { must be } m
\end{aligned}
$$

Optimal division into groups (5)

It follows that a signal with delay D
must start in a group i,
ripple to the end of group i,
then skip over $s<r$ groups and
either terminate, or ripple through the first few bits of a group $j>i$.
m groups - not optimal division r groups - optimal division
r groups

$D=$ maximum delay
$r T \leq D \leq m T$
$r \leq m$

Optimal division into groups (6-1)

Let x_{i} and x_{j} denote
the lengths of the i-th and j-th groups respectively.

Assume that i is chosen as small as possible and j as large as possible. (longer path)

Oklobdzija: High-Speed VLSI arithmetic units : adders and multipliers

Optimal division into groups (6-2)

m groups
A signal originating in group i, rippling to the end of this group i and then skipping over the next s group has delay $\left(x_{i}-1\right)+s T$

$$
\begin{aligned}
D & \leq\left(x_{i}-1\right)+s T \\
& <\left(x_{i}-1\right)+r T \\
& <\left(x_{i}-1\right)+m T .
\end{aligned}
$$

if m is not optimal, but r is

$$
\begin{aligned}
& s<r<m \\
& s \leq(r-1)<(m-1) \\
& s \leq(r-1) \leq(m-2)
\end{aligned}
$$

$$
\begin{aligned}
& D \leq\left(x_{i}-1\right)+s T \\
& \begin{array}{l}
\leq\left(x_{i}-1\right)+(r-1) T \\
\left.\leq\left(x_{i}-1\right)+(m-2) T . \quad _\begin{array}{l}
s<r \text { groups }
\end{array} \quad \Rightarrow \quad s \leq m \text { groups } \quad \Rightarrow r-1\right) \\
r \leq(m-1)
\end{array}
\end{aligned}
$$

Optimal division into groups (6-3)

$$
\begin{aligned}
D & \leq\left(x_{i}-1\right)+s T \\
& \leq\left(x_{i}-1\right)+(r-1) T \\
& \leq\left(x_{i}-1\right)+(m-2) T
\end{aligned}
$$

$$
\begin{aligned}
(m-1) T \leq & D \\
& D \leq\left(x_{i}-1\right)+(m-2) T
\end{aligned}
$$

$$
\begin{aligned}
& (m-1) T \leq D \leq\left(x_{i}-1\right)+(m-2) T \\
& (m-1) T \leq\left(x_{i}-1\right)+(m-2) T
\end{aligned}
$$

Since $D \geq(m-1) T$ this implies that $x_{i} \geq T+1$

$$
T \leq\left(x_{i}-1\right)
$$

$$
T+1 \leq x_{i}
$$

Optimal division into groups (7)

Divide group i into two groups such that the group containing the msb has size T.

Since the i-th group is the first group in which a signal having maximum delay can originate,
this subdivision does not increase the delay of any carry signal of maximum delay

However, it increases the number of groups by 1

$$
\begin{array}{rlrl}
D & \leq\left(x_{i}-1\right)+s T & (m-1) T<D \\
& \leq\left(x_{i}-1\right)+(r-1) T & & D<\left(x_{i}-1\right)+(m-2) T \\
& \leq\left(x_{i}-1\right)+(m-2) T . & x_{i} \geq(T+1)
\end{array}
$$

Optimal division into groups (8-1)

Suppose now that a carry signal
originates in a group i, ripples to its end,
skips over $s \leq r-2$ groups and
finally ripples through the first few bits of a group j and terminates.

We then have

$$
\begin{aligned}
D & \leq\left(x_{i}-1\right)+s T+\left(x_{j}-1\right) \\
& \leq x_{i}+x_{j}-2+(m-3) T
\end{aligned}
$$

So that either $x_{i} \geq T+1$ or $x_{j} \geq T+1$

```
s<rgroups
s<rgroups
s\leq(r-1) groups }s\leq(r-2)\mathrm{ groups
r<m groups }\quadr<m\mathrm{ groups
r\leq(m-1) groups r\leq(m-2) groups
```

Oklobdzija: High-Speed VLSI arithmetic units : adders and multipliers

Optimal division into groups (8-2)

$$
\begin{aligned}
& s<r<m \\
& s \leq(r-1)<(m-1) \\
& s \leq(r-1) \leq(m-2) \\
& s \leq(r-2) \leq(m-3) \\
& \leq\left(x_{i}-1\right)+s T+\left(x_{j}-1\right) \\
& \leq x_{i}+x_{j}-2+(r-2) T \\
& \leq x_{i}+x_{j}-2+(m-3) T
\end{aligned}
$$

So that either $x_{i} \geq T+1$ or $x_{j} \geq T+1$

Optimal division into groups (9)

So that either $x_{i} \geq T+1$ or $x_{j} \geq T+1$
This means that we can subdivide one of the groups i, j
without increasing D not both of them

Continuing in this way, we can always increase the number r of group in an optimal division of a carry chain by 1
without increasing D if $r<m$

This means that we can arrive at an optimal division of the carry chain into m groups.

Optimal division into groups (9)

$$
x_{i} \geq(T+1)>(T+2) \cdots
$$

r groups

if m is not optimal, but r is

contradiction! m must be r

Optimal division into groups (9)

$$
x_{j} \geq(T+1)>(T+2) \cdots
$$

Optimal division into groups (9)

if m is not optimal, but r is $(((r+1)+1)+1) \ldots m$ contradiction! m must be r
$x_{j} \geq(T+1)>(T+2) \cdots$
r groups

if m is not optimal, but r is $(((r+1)+1)+1) \ldots m$ contradiction! m must be r

Optimal division into groups (9)

Assume

- the scheme by 2(i) - 2(iii) (m groups) is not optimal
Normally, by 2(i) - 2(iii) (m groups) is optimal and its maximum delay D is less than all skip delay $m T$

$$
D \leq m T
$$

To prove this, first, negate that

- m is not by the optimal division, but r is
- D is greater than all skip delay of the optimal division
corresponding to an optimal division
- there are r groups in the optimal division.
$(\ldots((r+1)+1)+1) \ldots+1) \rightarrow m:$ optimal
if m is not optimal, but r is

$$
(((r+1)+1)+1) \ldots \quad \longrightarrow m
$$

contradiction! m must be r

Optimal division into groups (11)

We must then have $D \geq m T$ which, together with Lemma 2,
Implies $D=m T$

This completes the proof of the theorem
m groups - not optimal division
r groups - optimal division
$D=$ maximum delay
$r T \leq D \leq m T$
$r \leq m$

Lemma 2

Let D denote the maximum delay of a carry signal in a n bit carry skip adder with group sizes chosen optimally.

$$
(m-1) T \leq D \leq m T
$$

Theorem 1

The scheme 2(i) - 2(iii) given above
for dividing the bits of a carry skip adder into groups is optimal for $2 \leq T \leq 7$

