Relationship between Power Spectrum and Autocorrelation Function

Young W Lim

October 15, 2019

Copyright (c) 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

• = • • = •

Based on Probability, Random Variables and Random Signal Principles, P.Z. Peebles, Jr. and B. Shi

Outline

Young W Lim

2

AutoCorrelation Function *N* Gaussian random variables

Definition

$$\frac{1}{2\pi}\int_{-\infty}^{\infty}S_{XX}(\omega)e^{+j\omega t}d\omega=A[R_{XX}(t,t+\tau)]$$

$$S_{XX}(\omega) = \lim_{T \to \infty} E\left[\frac{1}{2T} \int_{-T}^{+T} X(t_1) e^{+j\omega t_1} dt_1 \int_{-T}^{+T} X(t_2) e^{-j\omega t_2} dt_2\right]$$

$$= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{+T} \int_{-T}^{+T} E[X(t_1)X(t_2)] e^{-j\omega(t_2-t_1)} dt_2 dt_1$$

э

ъ

Image: A mathematical states and a mathem

Definition

$$S_{XX}(\omega) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T - T}^{+T} E[X(t_1)X(t_2)] e^{-j\omega(t_2 - t_1)} dt_2 dt_1$$
$$E[X(t_1)X(t_2)] = R_{XX}(t_1, t_2)$$
$$S_{XX}(\omega) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T - T}^{+T} R_{XX}(t_1, t_2) e^{-j\omega(t_2 - t_1)} dt_2 dt_1$$

э

Inverse Transform (1) *N* Gaussian random variables

Definition

$$S_{XX}(\omega) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{+T} \int_{-T}^{+T} R_{XX}(t_1, t_2) e^{-j\omega(t_2 - t_1)} dt_2 dt_1$$

$$\frac{1}{2\pi}\int\limits_{-\infty}S_{XX}(\omega)e^{+j\omega t}d\omega$$

$$=\frac{1}{2\pi}\int_{-\infty}^{+\infty}\left\{\lim_{T\to\infty}\frac{1}{2T}\int_{-T-T}^{+T+T}R_{XX}(t_1,t_2)e^{-j\omega(t_2-t_1)}dt_2dt_1\right\}e^{+j\omega\tau}d\omega$$

$$=\lim_{T\to\infty}\frac{1}{2T}\int^{+T+T}\int R_{XX}(t_1,t_2)\left\{\frac{1}{2\pi}\int^{+\infty}e^{+j\omega(\tau-t_1-t_2)}d\omega\right\}dt_2dt_1$$

Inverse Transform (2) *N* Gaussian random variables

Definition

$$\int_{-\infty}^{+\infty} e^{+j\omega(\tau-t_1-t_2)} d\omega = 2\pi\delta(t_1-t_2-\tau)$$

$$\lim_{T\to\infty}\frac{1}{2T}\int_{-T-T}^{+T}\int_{-T}^{T}R_{XX}(t_1,t_2)\left\{\frac{1}{2\pi}\int_{-\infty}^{+\infty}e^{+j\omega(\tau-t_1-t_2)}d\omega\right\}dt_2dt_1$$

$$\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{+T} \int_{-T}^{+T} \{R_{XX}(t_1, t_2)\delta(t_1 - t_2 - \tau)\} dt_2 dt_1$$

・ロト・日本・日本・日本・日本・日本

・ロト・日本・日本・日本・日本・日本