Vector Calculus (H.1) Identities

20160408

Copyright (c) 2015 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

https://en.wikipedia.org/wiki/Vector_calculus_identities $\nabla \cdot (\mathbf{A} \times \mathbf{B}) = (\nabla \times \mathbf{A}) \cdot \mathbf{B} - \mathbf{A} \cdot (\nabla \times \mathbf{B})$ $\nabla \times (\mathbf{A} \times \mathbf{B}) = \mathbf{A}(\nabla \cdot \mathbf{B}) - \mathbf{B}(\nabla \cdot \mathbf{A}) + (\mathbf{B} \cdot \nabla)\mathbf{A} - (\mathbf{A} \cdot \nabla)\mathbf{B}$ $= (\nabla \cdot \mathbf{B} + \mathbf{B} \cdot \nabla) \mathbf{A} - (\nabla \cdot \mathbf{A} + \mathbf{A} \cdot \nabla) \mathbf{B}$ $= \nabla \cdot (\mathbf{B}\mathbf{A}^{\mathrm{T}}) - \nabla \cdot (\mathbf{A}\mathbf{B}^{\mathrm{T}})$ $= \nabla \cdot (\mathbf{B}\mathbf{A}^{\mathrm{T}} - \mathbf{A}\mathbf{B}^{\mathrm{T}})$

 The scalar triple product is invariant under a circular shift of its three operands (a, b, c):

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})$$

 Swapping the positions of the operators without re-ordering the operands leaves the triple product unchanged. This follows from the preceding property and the commutative property of the dot product.

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$$

Swapping any two of the three operands negates the triple product.
 This follows from the circular-shift property and the anticommutativity of the cross product.

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = -\mathbf{a} \cdot (\mathbf{c} \times \mathbf{b})$$

 $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = -\mathbf{b} \cdot (\mathbf{a} \times \mathbf{c})$
 $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = -\mathbf{c} \cdot (\mathbf{b} \times \mathbf{a})$

 The scalar triple product can also be understood as the determinant of the 3 x 3 matrix (thus also its inverse) having the three vectors either as its rows or its columns (a matrix has the same determinant as its transpose):

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}.$$

- If the scalar triple product is equal to zero, then the three vectors a, b, and c are coplanar, since the "parallelepiped" defined by them would be flat and have no volume.
- If any two vectors in the triple scalar product are equal, then its value is zero:

$$\mathbf{a} \cdot (\mathbf{a} \times \mathbf{b}) = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{a}) = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{b}) = \mathbf{a} \cdot (\mathbf{a} \times \mathbf{a}) = 0$$

Moreover,

$$[\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})]\mathbf{a} = (\mathbf{a} \times \mathbf{b}) \times (\mathbf{a} \times \mathbf{c})$$

 The simple product of two triple products (or the square of a triple product), may be expanded in terms of dot products:^[1]

$$((\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}) ((\mathbf{d} \times \mathbf{e}) \cdot \mathbf{f}) = \det \begin{bmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{d} & \mathbf{e} & \mathbf{f} \end{pmatrix} \end{bmatrix} = \det \begin{bmatrix} -\mathbf{c} \\ -\mathbf{c} \end{bmatrix}$$

https://en.wikipedia.org/wiki/Triple_product

The **vector triple product** is defined as the cross product of one vector with the cross product of the other two. The following relationship holds:

$$\mathbf{x} \times (\mathbf{b} \times \mathbf{c}) = \mathbf{b}(\mathbf{a} \cdot \mathbf{c}) - \mathbf{c}(\mathbf{a} \cdot \mathbf{b})$$

This is known as **triple product expansion**, or **Lagrange's formula**,^{[2][3]} although the latter name is also used for several other formulae. Its right hand side can be remembered by using the mnemonic "BAC — CAB", provided one keeps in mind which vectors are dotted together. A proof is provided below.

Since the cross product is anticommutative, this formula may also be written (up to permutation of the letters) as:

$$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = -\mathbf{c} \times (\mathbf{a} \times \mathbf{b}) = -(\mathbf{c} \cdot \mathbf{b})\mathbf{a} + (\mathbf{c} \cdot \mathbf{a})\mathbf{b}$$

From Lagrange's formula it follows that the vector triple product satisfies:

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) + \mathbf{c} \times (\mathbf{a} \times \mathbf{b}) = 0$$

which is the Jacobi identity for the cross product. Another useful formula follows:

$$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) - \mathbf{b} \times (\mathbf{a} \times \mathbf{c})$$

These formulas are very useful in simplifying vector calculations in physics. A related identity regarding gradients and useful in vector calculus is Lagrange's formula of vector cross-product identity:^[4]

$$\nabla \times (\nabla \times \mathbf{f}) = \nabla (\nabla \cdot \mathbf{f}) - (\nabla \cdot \nabla) \mathbf{f}$$

$$(\alpha \times \beta) \times C = \alpha \times (\beta \times C) - \beta \times (\alpha \times C)$$

https://en.wikipedia.org/wiki/Triple_product

$$\vec{Q} \times (\vec{b} \times \vec{c})$$

$$\vec{b} \times (\vec{c} \times \vec{a})$$

$$\vec{c} \times (\vec{a} \times \vec{b})$$

$$\frac{\vec{0} \times (\vec{b} \times \vec{c})}{\vec{0} \times (\vec{b} \times \vec{c})} + \frac{\vec{b} \times (\vec{c} \times \vec{a})}{\vec{b} \times (\vec{c} \times \vec{a})} + \frac{\vec{c} \times (\vec{a} \times \vec{b})}{\vec{c} \times (\vec{a} \times \vec{b})} = 0$$

$$\frac{\vec{0} \times (\vec{b} \times \vec{c})}{\vec{0} \times (\vec{c} \times \vec{a})} + \frac{\vec{c} \times (\vec{a} \times \vec{b})}{\vec{c} \times (\vec{a} \times \vec{b})} = 0$$

$$\frac{\vec{0} \times (\vec{b} \times \vec{c})}{\vec{0} \times (\vec{c} \times \vec{a})} + \frac{\vec{c} \times (\vec{a} \times \vec{b})}{\vec{0} \times (\vec{c} \times \vec{a})} = 0$$

$$\frac{\overrightarrow{O} \times (\overrightarrow{b} \times \overrightarrow{c})}{|O|} - \frac{\overrightarrow{b} \times (\overrightarrow{C} \times \overrightarrow{a})}{|O|} = \frac{\overrightarrow{C} \times (\overrightarrow{a} \times \overrightarrow{b})}{|O|}$$

$$\frac{\overrightarrow{b} \times (\overrightarrow{b} \times \overrightarrow{c})}{|O|} - \frac{\overrightarrow{b} \times (\overrightarrow{C} \times \overrightarrow{a})}{|O|} = \frac{\overrightarrow{C} \times (\overrightarrow{a} \times \overrightarrow{b})}{|O|}$$

$$\frac{\overrightarrow{b} \times (\overrightarrow{c} \times \overrightarrow{a})}{|O|} - \frac{\overrightarrow{b} \times (\overrightarrow{c} \times \overrightarrow{a})}{|O|} = \frac{\overrightarrow{C} \times (\overrightarrow{a} \times \overrightarrow{b})}{|O|}$$

$$\frac{\overrightarrow{b} \times (\overrightarrow{c} \times \overrightarrow{a})}{|O|} - \frac{\overrightarrow{b} \times (\overrightarrow{c} \times \overrightarrow{a})}{|O|} = \frac{\overrightarrow{c} \times (\overrightarrow{a} \times \overrightarrow{b})}{|O|}$$

$$\nabla \times (\mathbf{A} \times \mathbf{B}) = \mathbf{A}(\nabla \cdot \mathbf{B}) - \mathbf{B}(\nabla \cdot \mathbf{A}) + (\mathbf{B} \cdot \nabla)\mathbf{A} - (\mathbf{A} \cdot \nabla)\mathbf{B}$$
$$= (\nabla \cdot \mathbf{B} + \mathbf{B} \cdot \nabla)\mathbf{A} - (\nabla \cdot \mathbf{A} + \mathbf{A} \cdot \nabla)\mathbf{B}$$
$$= \nabla \cdot (\mathbf{B}\mathbf{A}^{\mathrm{T}}) - \nabla \cdot (\mathbf{A}\mathbf{B}^{\mathrm{T}})$$
$$= \nabla \cdot (\mathbf{B}\mathbf{A}^{\mathrm{T}} - \mathbf{A}\mathbf{B}^{\mathrm{T}})$$

$$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) - \mathbf{b} \times (\mathbf{a} \times \mathbf{c})$$

$$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = -\mathbf{c} \times (\mathbf{a} \times \mathbf{b}) = -(\mathbf{c} \cdot \mathbf{b})\mathbf{a} + (\mathbf{c} \cdot \mathbf{a})\mathbf{b}$$

$$\nabla \times (\mathbf{A} \times \mathbf{B}) = \mathbf{A}(\nabla \cdot \mathbf{B}) - \mathbf{B}(\nabla \cdot \mathbf{A}) + (\mathbf{B} \cdot \nabla)\mathbf{A} - (\mathbf{A} \cdot \nabla)\mathbf{B}$$

$$= (\nabla \cdot \mathbf{B} + \mathbf{B} \cdot \nabla)\mathbf{A} - (\nabla \cdot \mathbf{A} + \mathbf{A} \cdot \nabla)\mathbf{B}$$

 $= \nabla \cdot (\mathbf{B}\mathbf{A}^{\mathrm{T}}) - \nabla \cdot (\mathbf{A}\mathbf{B}^{\mathrm{T}})$

 $= \nabla \cdot (\mathbf{B}\mathbf{A}^{\mathrm{T}} - \mathbf{A}\mathbf{B}^{\mathrm{T}})$

$$\nabla \times (\mathbf{A} \times \mathbf{B}) = \nabla \times (\mathbf{A} \times \mathbf{B}) + \nabla \times (\mathbf{A} \times \mathbf{B})$$

$$\nabla \times (A \times B) = A (\nabla \cdot B) - B (\nabla \cdot A)$$
$$= (B \cdot \nabla) A - B (\nabla \cdot A)$$

$$\nabla \times (A \times B) = A(\nabla \cdot B) - B(\nabla \cdot A)$$

$$(B \cdot \nabla) A - (A \cdot \nabla) B$$

$$\nabla \times (\mathbf{A} \times \mathbf{B}) = \mathbf{A} (\nabla \cdot \mathbf{B}) - \mathbf{B} (\nabla \cdot \mathbf{A}) + (\mathbf{B} \cdot \nabla) \mathbf{A} - (\mathbf{A} \cdot \nabla) \mathbf{B}$$

$$\begin{array}{rcl}
\mathbf{B} \cdot \nabla &= \langle \mathbf{B}_{x}, \mathbf{B}_{b}, \mathbf{B}_{z} \rangle \langle \mathbf{\delta}_{x}, \mathbf{\delta}_{x}, \mathbf{\delta}_{x}, \mathbf{\delta}_{z} \rangle \\
&= \mathbf{B}_{x} \frac{\partial}{\partial x} + \mathbf{B}_{y} \frac{\partial}{\partial y} + \mathbf{B}_{z} \frac{\partial}{\partial z}
\end{array}$$

$$\frac{1}{\sqrt{3x}} + \frac{\partial \beta_x}{\partial y} + \frac{\partial \beta_z}{\partial z}$$

$$(B \cdot \nabla) f = \langle B_x, B_y, B_z \rangle \cdot \langle \partial_x, \partial_y, \partial_z \rangle f$$

$$= B_x \frac{\partial f}{\partial x} + B_y \frac{\partial f}{\partial y} + B_z \frac{\partial f}{\partial z}$$

$$= B \cdot (\nabla f) \qquad f_B$$
Grad

$$\int_{\mathcal{C}} f(x,y,\xi) = \alpha \cdot f_{x}(xy,\xi) + b \cdot f_{y}(x,y,\xi) + c \cdot f_{z}(x,y,\xi)$$

$$= \langle f_{x}, f_{y}, f_{z} \rangle \bullet \langle \alpha, b, c \rangle$$

$$= \beta_x \frac{\partial}{\partial x} + \beta_y \frac{\partial}{\partial y} + \beta_z \frac{\partial}{\partial z}$$

$$\frac{2^{13x}}{2^{2}} + \frac{2^{3}}{2^{5}} + \frac{2^{3}}{2^{2}}$$

$$\nabla = \frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \neq \frac{\partial}{\partial z} \neq$$

$$= \beta_{x} \frac{\partial}{\partial x} + \beta_{y} \frac{\partial}{\partial y} + \beta_{z} \frac{\partial}{\partial z}$$

Scalar
$$\nabla \cdot \mathbf{B} = \left(\frac{\partial \mathbf{B}}{\partial \mathbf{x}} \mathbf{i} + \frac{\partial \mathbf{B}}{\partial \mathbf{y}} \mathbf{j} + \frac{\partial \mathbf{B}}{\partial \mathbf{z}} \mathbf{k} \right) \cdot \left(\mathbf{B}_{\mathbf{x}} \mathbf{i} + \mathbf{B}_{\mathbf{y}} \mathbf{j} + \mathbf{B}_{\mathbf{z}} \mathbf{k} \right)$$

$$= \frac{\partial \beta x}{\partial x} + \frac{\partial \beta y}{\partial y} + \frac{\partial \beta z}{\partial z}$$

Scalar
$$\nabla \cdot \mathbf{B} = \frac{\partial \mathbf{B}x}{\partial x} + \frac{\partial \mathbf{B}x}{\partial y} + \frac{\partial \mathbf{B}z}{\partial z}$$

$$B \cdot \nabla \neq \nabla \cdot B$$

dot del