Laurent Series and z-Transform - Geometric Series Simple Pole Examples B

20180216

Copyright (c) 2016 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Causal s	ignal	An	n > 0
	signal	0\n	n < 0
		^	
Laurent Sc	eries	f (z)	
E - Transfor	m	X (5)	

Causal $(n \ge 0)$ $(l_n = (\frac{1}{2})^n$ (1) $\mathcal{Q}_{n}: \left(\frac{1}{2}\right)^{\circ}, \left(\frac{1}{2}\right)^{\circ}, \left(\frac{1}{2}\right)^{\circ}, \cdots \left(n \ge 0\right)$ n=0 n=1 n=2 $f(z) = \left(\frac{1}{2}\right)^{o} z^{o} + \left(\frac{1}{2}\right)^{i} z^{i} + \left(\frac{1}{2}\right)^{2} z^{2} + \cdots = \frac{1}{1 - \frac{z}{2}} = \frac{2}{2 - z}$ $\chi(z) = \left(\frac{1}{2}\right)^{2} z^{2} + \left(\frac{1}{2}\right)^{1} z^{-1} + \left(\frac{1}{2}\right)^{2} z^{-2} + \cdots = \frac{1}{1 - \frac{1}{2^{2}}} = \frac{z}{z - 0.5}$ 1/2121<1 (2)70.5 $\mathcal{Q}_{n} = \left(\frac{1}{2}\right)^{n} \quad (n \ge 0)$ $\mathcal{Q}_n = \left(\frac{1}{2}\right)^n \quad (n \ge 0)$ $f(z) = \frac{1}{1-\frac{z}{2}}$ |z| < 2 $\chi(z) = \frac{|}{|-\frac{1}{2z}}$ |z| > 0.5 $=\frac{\xi^{-1}}{\xi^{-1}-0.5}=\frac{2}{2-2}$ **}.5**

2 Causal $(n \ge 0)$ $(l_n = (2)^n$ $Q_n: (2)^{\circ}, (2)^{\circ}, (2)^{\circ}, \cdots (n \ge 0)$ n=0 n=1 n=2 $f(z) = (2)^{\circ} z^{\circ} + (2)^{\circ} z^{\circ} + (2)^{\circ} z^{2} + \cdots = \frac{1}{1-2z} = \frac{0.5}{0.5-z}$ 2|2| < | [7] < 0.5 $\chi(z) = (2)^{\circ} z^{\circ} + (2)^{\circ} z^{-1} + (2)^{\circ} z^{-2} + \cdots = \frac{1}{1-z^{2}} = \frac{z}{z-2}$ $\frac{2}{|\mathcal{E}|} < |$ | $\mathcal{E}| > 2$ $\mathcal{Q}_n = (2)^n \quad (n \ge 0)$ $\mathcal{Q}_n = (2)^n \quad (n \ge 0)$ $\chi(z) = \frac{|}{|-\frac{2}{z}} \quad |z| > 2$ $f(z) = \frac{1}{1-2z}$ |z| < 0.5 $-\frac{0.0}{0.5-3}$ $=\frac{2}{2-2}$ 1.5

3 Anti-causal (n < 0) $a_n = (\frac{1}{2})^n$ $\mathcal{Q}_{n}: \left(\frac{1}{2}\right)^{-1}, \left(\frac{1}{2}\right)^{-2}, \left(\frac{1}{2}\right)^{-3}, \dots \left(n < 0\right)$ n=-1 n=-2 n=-3 $f(z) = (2)^{2} z^{-1} + (2)^{2} z^{-2} + (2)^{3} z^{-3} + \cdots = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = \frac{2}{2 - 2}$ $\frac{2}{|\mathcal{Z}|} < | \qquad |\mathcal{Z}| > 2$ $\chi(z) = (2)^{2} z^{1} + (2)^{2} z^{2} + (2)^{3} z^{3} + \cdots = \frac{2z}{|-2z|} = \frac{z}{0.5 - z}$ 2|2| < | |2| < 0.5 $\mathcal{Q}_n = \left(\frac{1}{2}\right)^n \quad (n < 0)$ $\mathcal{Q}_n = \left(\frac{1}{2}\right)^n \quad (n < 0)$ $f(z) = \frac{\frac{2}{z}}{|-\frac{2}{z}|} |z| > 2$ $\chi(s) = \frac{2s}{|-2s} \quad |s| < 0.5$ $\frac{2}{2-\frac{2}{2-\frac{2}{2}}}$

(4) Anti-causal (n < 0) $a_n = (2)^n$ $Q_n: (2)^{-1}, (2)^{-2}, (2)^{-3}, \cdots (n < 0)$ n=-1 n=-2 n=-3 $f(z) = \left(\frac{1}{2}\right)^{1} z^{-1} + \left(\frac{1}{2}\right)^{2} z^{-2} + \left(\frac{1}{2}\right)^{3} z^{-3} + \cdots = \frac{\frac{1}{2z}}{1 - \frac{1}{2z}} = \frac{0.5}{7 - 0.5}$ $\frac{1}{2|\mathbf{z}|} < |$ ($\mathbf{z}| > 0.5$ $\chi(z) = \left(\frac{1}{2}\right)^{1} \overline{z}^{1} + \left(\frac{1}{2}\right)^{2} \overline{z}^{2} + \left(\frac{1}{2}\right)^{3} \overline{z}^{3} + \cdots = \frac{\overline{z}}{1 - \frac{z}{2}} = \frac{\overline{z}}{2 - \overline{z}}$ <u>|ह|</u> 2 < | |ह| < 2 $\mathcal{Q}_n = (2)^n \quad (n < 0)$ $\mathcal{Q}_n = (2)^n (n < 0)$ $f(z) = \frac{1}{2z}$ (z) > 0.5 $\chi(z) = \frac{\frac{z}{2}}{|-\frac{z}{2}|} \quad |z| < 2$

6 Causal $(n \ge 1)$ $(n = (2)^{n-1}$ $\mathcal{Q}_{n}: \begin{array}{c} (2) \\ n=0 \end{array}, \begin{array}{c} (2) \\ n=1 \end{array}, \begin{array}{c} (2) \\ n=2 \end{array}$ $f(z) = (2)^{\circ} z' + (2)^{\circ} z^{2} + (2)^{\circ} z^{3} + \cdots = \frac{z}{1-2z} = \frac{0.5z}{0.5-z}$ 2|2| < | (7| < 0.5 $\chi(z) = (2)^{2} z^{3} + (2)^{1} z^{-2} + (2)^{2} z^{-3} + \cdots = \frac{\frac{1}{2}}{1 - \frac{2}{2}} = \frac{1}{2 - 2}$ $\frac{2}{|\mathcal{E}|} < |$ | $\mathcal{E}| 7 2$ $\mathcal{Q}_{n} = \left(2\right)^{n-1} \quad (n \ge 0)$ $\mathcal{Q}_n = (2)^{n-1} (n \ge 0)$ $\chi(z) = \frac{\frac{1}{z}}{1-\frac{2}{z}} \quad |z| > 2$ $f(z) = \frac{z}{1-2z}$ |z| < 0.5 $=\frac{1}{2-2}$ 1.5

Inti-causal (n<1) $l_n = \left(\frac{1}{2}\right)^{n-1}$ $\mathcal{Q}_{n}: \left(\frac{1}{2}\right)^{-1}, \left(\frac{1}{2}\right)^{-2}, \left(\frac{1}{2}\right)^{-3}, \dots \left(n \leq 0\right)$ n=o n=-| n=-1 $f(z) = (2)^{2} z^{0} + (2)^{2} z^{1} + (2)^{3} z^{2} + \cdots = \frac{1}{|-\frac{2}{3}|} = \frac{2z}{z-2}$ $\frac{2}{|\mathcal{Z}|} < | \qquad |\mathcal{Z}| > 2$ $\chi(z) = (2)^{1} z^{0} + (2)^{2} z^{1} + (2)^{3} z^{1} + \cdots = \frac{2}{1-2z} = \frac{1}{0.5-z}$ 2 2 2 1 < 1 |21 < 0.5 $\mathcal{Q}_n = \left(\frac{1}{2}\right)^{n-1}$ (n < 1) $\mathcal{Q}_n = \left(\frac{1}{2}\right)^{n-1}$ (n < 1) $f(z) = \frac{1}{1-\frac{2}{2}}$ |z| > 2 $\chi(s) = \frac{2}{|-2s|} \quad |s| < 0.5$ $\frac{27}{2-7}$

(8) Anti-causal (n < 1) $A_n = (2)^{n-1}$ $Q_n: (2)^{-1}, (2)^{-2}, (2)^{-3}, \cdots (n < 1)$ n=0 n=-1 n=-2 $f(z) = \left(\frac{1}{2}\right)^{1} z^{0} + \left(\frac{1}{2}\right)^{2} z^{-1} + \left(\frac{1}{2}\right)^{3} z^{-2} + \cdots = \frac{\frac{1}{2}}{1 - \frac{1}{2z}} = \frac{0.5z}{z - 0.5}$ ן > ו נצן > 0.5 $\chi(z) = \left(\frac{1}{2}\right)^{1} z^{0} + \left(\frac{1}{2}\right)^{2} z^{1} + \left(\frac{1}{2}\right)^{3} z^{2} + \cdots = \frac{\frac{1}{2}}{1 - \frac{2}{3}} = \frac{1}{2 - z}$ $\frac{|\mathcal{E}|}{2} < | \qquad |\mathcal{E}| < 2$ $\mathcal{Q}_n = (2)^{n-1}$ (n < |) $\mathcal{Q}_n = (2)^{n-1} (n < 1)$ $\chi(z) = \frac{\frac{1}{2}}{|-\frac{z}{2}|} \quad |z| < 2$ $f(z) = \frac{1}{1-\frac{1}{2}}$ (z) > 0.5 $= - \frac{|}{7 - 2}$ $-\frac{0.52}{0.5-3}$ 2

2 ↔ ½ $f(z) = \frac{2}{2-z} \qquad \chi(z) = \frac{z}{z}$ (1) $(n \ge 0)$ $(l_n = (\frac{1}{2})^n$ $(n \ge 0)$ $(l_n = (2)^n$ $f(z) = \frac{0.5}{0.5-\frac{2}{2}}$ $\chi(z) = \frac{z}{\frac{2}{2}-2}$ (2)(n < 0) $(l_n = (\frac{1}{2})^n$ $f(z) = -\frac{2}{2-z} \qquad \chi(z) = -\frac{z}{z-0.5}$ 3 $(n < 0) \quad (l_n = (2)^n$ $f(z) = -\frac{0.5}{0.5-z} \qquad \chi(z) = -\frac{z}{z-z}$ (4) $(N \ge I)$ $(I_n = (\frac{I}{2})^{n-1}$ $f(z) = \frac{2z}{2-z}$ $\chi(z) = \frac{I}{z-0.5}$ (5) $(n \ge 1)$ $(n \ge 1)^{n-1}$ 6 $f(z) = \frac{0.5z}{0.5-z} \qquad \chi(z) = \frac{1}{z-z}$ $\left(\begin{array}{c} n < l \end{array} \right) \quad \left(\begin{array}{c} l \\ 1 \end{array} \right) = \left(\frac{1}{2} \right)^{n-l} \qquad f(z) = -\frac{2z}{2-z} \qquad \chi(z) = -\frac{1}{z-0.5}$ 2 $(n < j) \quad (l_n = (2)^{n-1})$ $f(z) = -\frac{0.5z}{0.5-z} \qquad \chi(z) = -\frac{1}{z-z}$ 8 $(n \ge -1)$ $(l_n = (\frac{1}{2})^{n+1}$ (9) $f(z) = \frac{2}{(2-z)z} \qquad \chi(z) = \frac{z}{z}$ $(n \ge -1)$ $(l_n = (2)^{n+1}$ $f(z) = \frac{0.5}{(0.5-z)^2}$ $\chi(z) = \frac{z}{z-2}$ $(\mathbf{0})$ $f(z) = -\frac{2}{(2-z)z}$ $\chi(z) = -\frac{z}{z-0.5}$ (n < -1) $(l_n = (\frac{1}{2})^{n+1}$ (n < -1) $(l_n = (2)^{n+1}$ $f(z) = -\frac{0.5}{(0.5-2)^2}$ $\chi(z) = -\frac{z}{z-2}$

(i)
$$(n \ge 0)$$
 $(h_n = (\frac{1}{2})^n$ $f(x) = \frac{2}{2-2}$ $\chi(x) = \frac{2}{2-85}$
(2) $(n \ge 0)$ $(h_n = (2)^n$ $f(x) = \frac{0.5}{6.5-2}$ $\chi(x) = \frac{2}{2-85}$
(3) $(n \ge 1)$ $(h_n = (\frac{1}{2})^{n-1}$ $f(x) = \frac{22}{2-2}$ $\chi(x) = \frac{1}{2-85}$
(4) $(n \ge 1)$ $(h_n = (\frac{1}{2})^{n-1}$ $f(x) = \frac{-2}{2-2}$ $\chi(x) = \frac{1}{2-85}$
(5) $(n \ge 1)$ $(h_n = (2)^{n-1}$ $f(x) = -\frac{2}{2-2}$ $\chi(x) = -\frac{1}{2-85}$
(6) $(n \ge 1)$ $(h_n = (2)^n$ $f(x) = -\frac{2}{2-2}$ $\chi(x) = -\frac{2}{2-8}$
(7) $(n < 0)$ $(h_n = (2)^n$ $f(x) = -\frac{2}{2-2}$ $\chi(x) = -\frac{2}{2-85}$
(9) $(n < 0)$ $(h_n = (\frac{1}{2})^n$ $f(x) = -\frac{25}{2-8}$ $\chi(x) = -\frac{2}{2-85}$
(9) $(n < 1)$ $(h_n = (\frac{1}{2})^{n-1}$ $f(x) = -\frac{25}{2-8}$ $\chi(x) = -\frac{1}{2-85}$
(9) $(n < 1)$ $(h_n = (\frac{1}{2})^{n-1}$ $f(x) = -\frac{25}{2-8}$ $\chi(x) = -\frac{1}{2-85}$
(9) $(n < 1)$ $(h_n = (\frac{1}{2})^{n-1}$ $f(x) = -\frac{25}{2-8}$ $\chi(x) = -\frac{1}{2-85}$
(9) $(n < 1)$ $(h_n = (\frac{1}{2})^{n-1}$ $f(x) = -\frac{25}{2-8}$ $\chi(x) = -\frac{1}{2-85}$

$$(1) (n \ge 0) \quad \mathcal{A}_{n} = \left(\frac{1}{2}\right)^{n} \qquad f(z) = \frac{2}{2 - z} \qquad \chi(z) = \frac{2}{z - 0.5}$$

$$(2) (n \ge 0) \quad \mathcal{A}_{n} = (2)^{n} \qquad f(z) = \frac{0.3}{0.5 - z} \qquad \chi(z) = \frac{2}{z - 2}$$

$$(n \ge 0) \quad \mathcal{A}_{n} = (2)^{n} \qquad f(z) = \frac{0.3}{0.5 - z} \qquad \chi(z) = \frac{2}{z - 2}$$

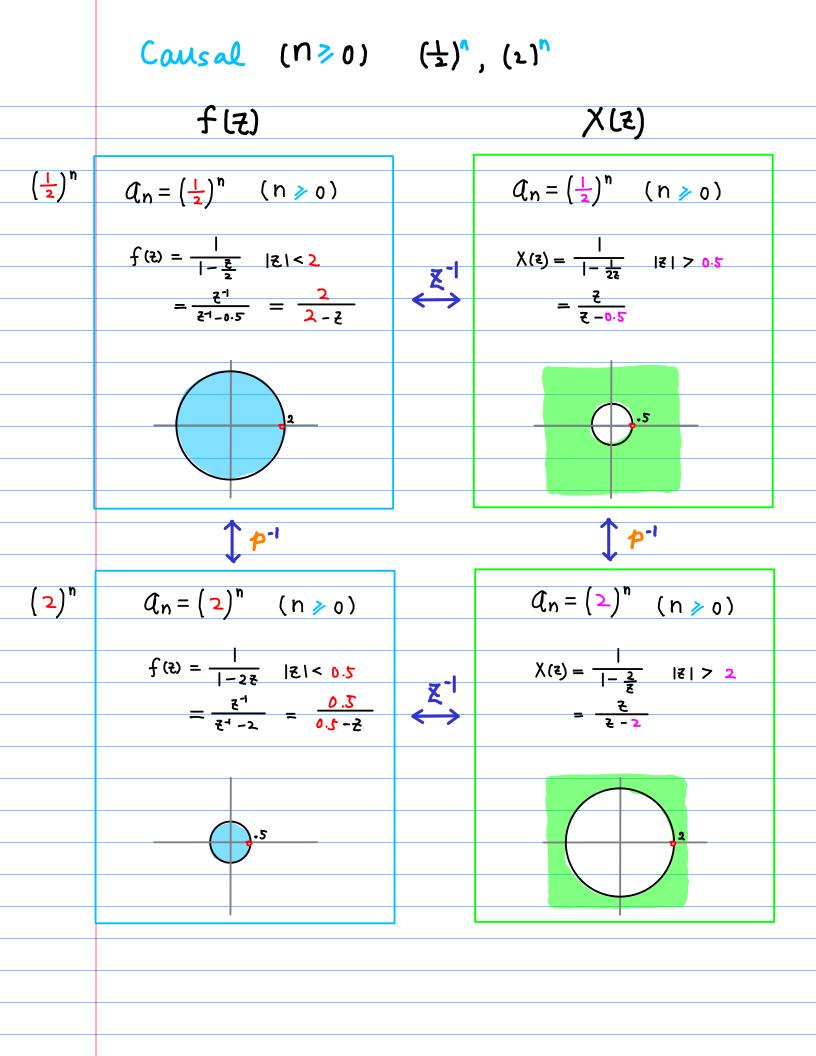
$$(n \ge -1) \quad \mathcal{A}_{n} = \left(\frac{1}{2}\right)^{n+1} \qquad f(z) = \frac{2}{(2 - 2)z} \qquad \chi(z) = \frac{z}{z - 2}$$

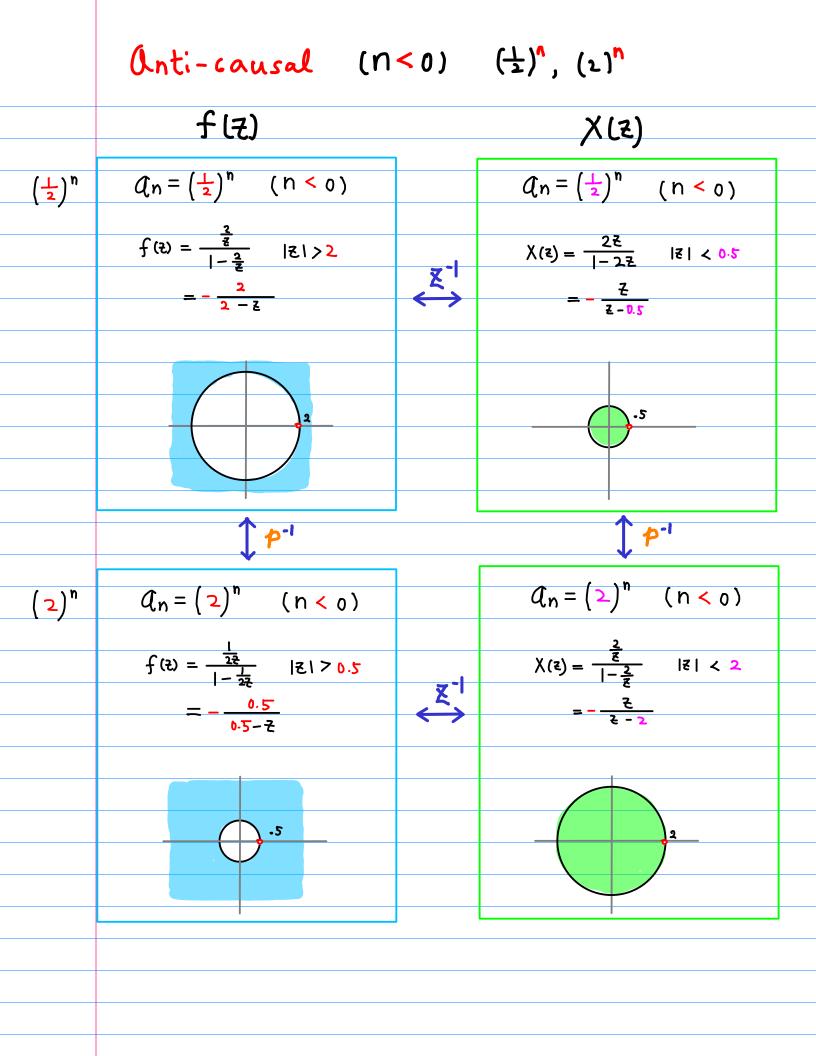
$$(3) \quad (n \ge -1) \quad \mathcal{A}_{n} = (2)^{n+1} \qquad f(z) = -\frac{2}{2 - z} \qquad \chi(z) = -\frac{z}{z - 2}$$

$$(3) \quad (n < 0) \quad \mathcal{A}_{n} = (2)^{n} \qquad f(z) = -\frac{2}{2 - z} \qquad \chi(z) = -\frac{z}{z - 2}$$

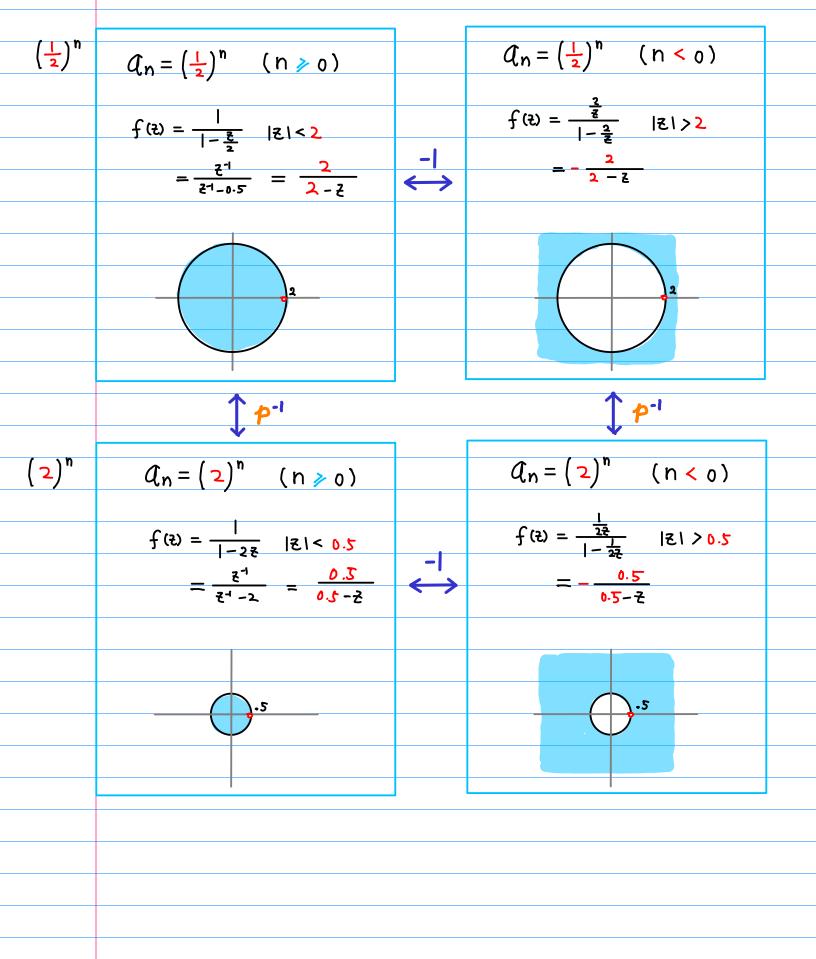
$$(4) \quad (n < 0) \quad \mathcal{A}_{n} = (2)^{n} \qquad f(z) = -\frac{2}{2 - z} \qquad \chi(z) = -\frac{z}{z - 2}$$

$$(5) \quad hift to the left \leftarrow z = \frac{z}{2 - z} \qquad \chi(z) = -\frac{z}{z - 2}$$

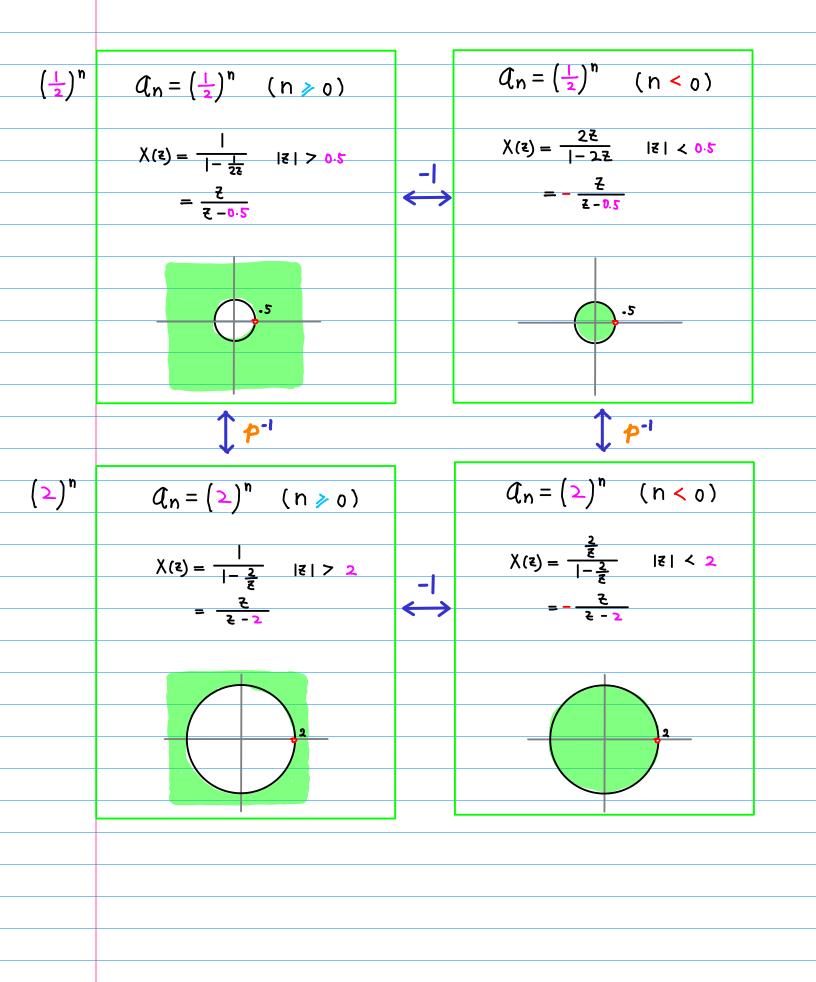

$$(4) \quad (n < 0) \quad \mathcal{A}_{n} = (2)^{n} \qquad f(z) = -\frac{2}{0.5 - z} \qquad \chi(z) = -\frac{z}{z - 2}$$

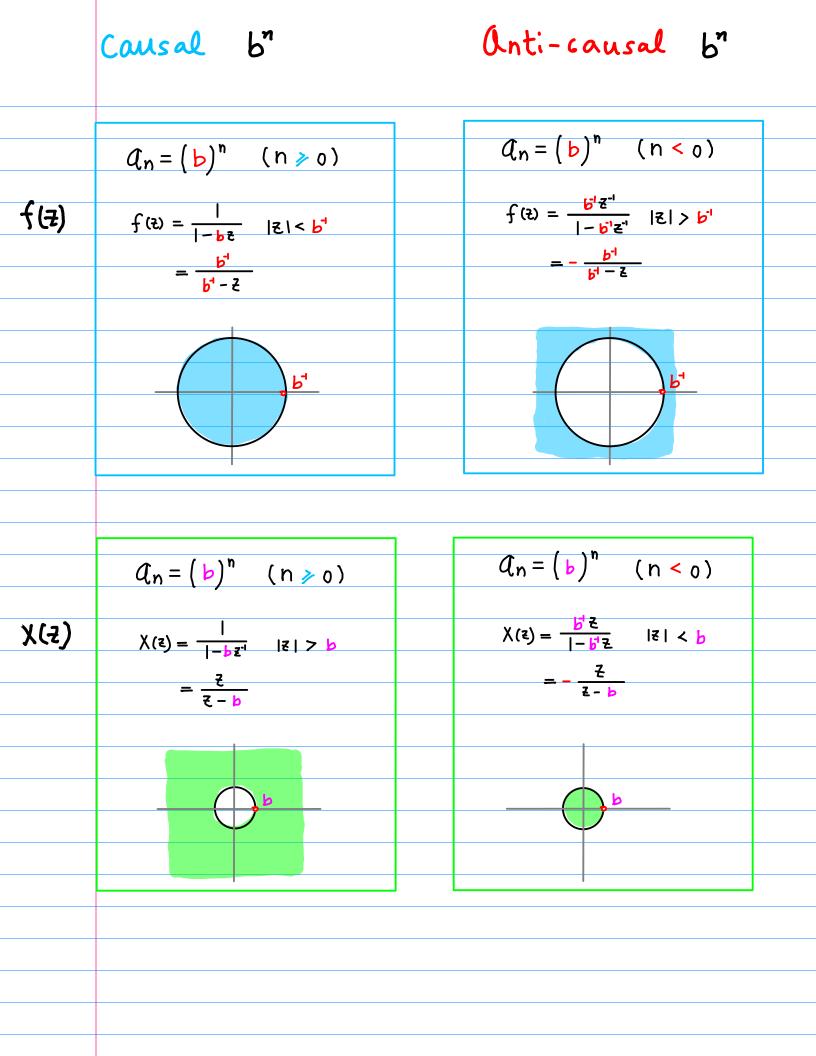

$$(5) \quad hift to the left \leftarrow z = \frac{z}{2 - z} \qquad \chi(z) = -\frac{z}{z - 2}$$

$$(1) \quad (n < -1) \quad \mathcal{A}_{n} = (2)^{n+1} \qquad f(z) = -\frac{2}{(0 - 2)z} \qquad \chi(z) = -\frac{z}{z - 2}$$


$$(2) \quad (n < -1) \quad \mathcal{A}_{n} = (2)^{n+1} \qquad f(z) = -\frac{2}{(0 - 2)z} \qquad \chi(z) = -\frac{z}{z - 2}$$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	n= -4	n=-3	N=-2	Ŋ=√	n=0	n=1	n=2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	³ ط	Ъ²	Ъ	b°	b'	b	Ь		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$b^{n+1} = -2, -3, -4, \cdots$				b^{n+1} $n = -1, 0, 1, \cdots$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1 .	1 .	1		1
$b^{n} n = -1, -2, -3, \cdots$ $b^{n} n = 0, 1, 2, \cdots$ $n = -3 n = -2 n = 1 n = 0 n = 1 n = 2 n = 3$ $b^{-3} b^{-2} b^{-1} b^{-0} b^{-1} b^{-2} b^{-3}$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(b'	b	b	b°	b	b	6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						~			
b^3 b^2 b^1 b^0 b^1 b^2 b^3		Pu	N=-1,-	∿- , -}, …		Ь"	n =0,	··· ر2, (
b^3 b^2 b^1 b^0 b^1 b^2 b^3		n=-3	n=-2	h=-í	n=0	n=l	N- 2	n-3	
		•• -							13
b^{n-1} $n = 0, -1, -2, \cdots$ b^{n-1} $n = 1, 2, 3, \cdots$				D	0		D	4	D
D = (1, 2, 3)		(7-1 m-			٣	·' n-	1 2	
		Ľ	2 11=	0, 7, -2,			() =		





f(Z) Causal (n>o) (Inti-causal (n<o)

X(Z) Causal (n > 0)

