
1 Young Won Lim
4/2/21

Monad P3 : Existential Types (1D)

2 Young Won Lim
4/2/21

 Copyright (c) 2016 - 2021 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Existential Types (1D) 3 Young Won Lim
4/2/21

Based on

Haskell in 5 steps

https://wiki.haskell.org/Haskell_in_5_steps

Existential Types (1D) 4 Young Won Lim
4/2/21

Existential Quantification

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Existential Types (1D) 5 Young Won Lim
4/2/21

Existential types, or

Existentials for short,

provide a way of

squashing a group of types

into one, single type.

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Existentials

Existential Types (1D) 6 Young Won Lim
4/2/21

Existentials are part of GHC's type system extensions.

But not part of Haskell98

have to either compile with a command-line parameter of

-XExistentialQuantification,

or put at the top of your sources that use existentials.

{-# LANGUAGE ExistentialQuantification #-}

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Existentials

Existential Types (1D) 7 Young Won Lim
4/2/21

The forall keyword is to explicitly bring fresh type variables into scope

type variables

those variables that begin with a owercase letter

the compiler allows any type to fill these variables

those variables that are universally quantified

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall type variables

Existential Types (1D) 8 Young Won Lim
4/2/21

Example: A polymorphic function

map :: (a -> b) -> [a] -> [b]

a lowercase type parameter

implicitly begins with a forall keyword,

Example: Explicitly quantifying the type variables

map :: forall a b. (a -> b) -> [a] -> [b]

two type declarations for map are equivalent

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall type variables

Existential Types (1D) 9 Young Won Lim
4/2/21

Example: A polymorphic function

map :: (a -> b) -> [a] -> [b]

Example: Explicitly quantifying the type variables

map :: forall a b. (a -> b) -> [a] -> [b]

instantiating the general type of map

to a more specific type

a = Int

b = String

(Int -> String) -> [Int] -> [String]

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall type variables

Existential Types (1D) 10 Young Won Lim
4/2/21

Hiding a type variable

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Existential Types (1D) 11 Young Won Lim
4/2/21

Normally when creating a new type

using type, newtype, data, etc.,

every type variable that appears on the right-hand side

must also appear on the left-hand side.

newtype ST s a = ST (State# s -> (# State# s, a #))

Existential types are a way of escaping this rule

Existential types can be used for several different purposes.

But what they do is to hide a type variable on the right-hand side.

https://wiki.haskell.org/Existential_type

Hiding a type variable (1)

Existential Types (1D) 12 Young Won Lim
4/2/21

Normally, any type variable appearing on the right

must also appear on the left:

data Worker x y = Worker {buffer :: b, input :: x, output :: y}

This is an error, since the type b of the buffer

is not specified on the right

(b is a type variable rather than a type)

but also is not specified on the left

(there's no b in the left part).

In Haskell98, you would have to write

data Worker b x y = Worker {buffer :: b, input :: x, output :: y}

https://wiki.haskell.org/Existential_type

Hiding a type variable (2)

Existential Types (1D) 13 Young Won Lim
4/2/21

However, suppose that a Worker can use any type b

so long as it belongs to some particular class.

Then every function that uses a Worker will have a type like

foo :: (Buffer b) => Worker b Int Int

In particular, failing to write an explicit type signature (Buffer b)

will invoke the dreaded monomorphism restriction.

Using existential types, we can avoid this:

https://wiki.haskell.org/Existential_type

Hiding a type variable (3)

Existential Types (1D) 14 Young Won Lim
4/2/21

The "monomorphism restriction" is a counter-intuitive rule

in Haskell type inference.

If you forget to provide a type signature,

sometimes this rule will fill the free type variables

with specific types using "type defaulting" rules.

The resulting type signature is always

less polymorphic than you'd expect,

so often this results in the compiler throwing type errors

when you expected it to infer a perfectly sane type

for a polymorphic expression.

https://wiki.haskell.org/Existential_type

Hiding a type variable (3’)

Existential Types (1D) 15 Young Won Lim
4/2/21

A simple example is plus = (+).

Without an explicit signature for plus,

the compiler will not infer the type

(+) :: (Num a) => a -> a -> a for `plus`,

but will apply defaulting rules to specify

plus :: Integer -> Integer -> Integer.

When applied to plus 3.5 2.7, GHCi will then produce

the somewhat-misleading-looking error,

No instance for (Fractional Integer) arising from the literal ‘3.5’.

https://wiki.haskell.org/Existential_type

Hiding a type variable (3’)

Existential Types (1D) 16 Young Won Lim
4/2/21

Using existential type :

data Worker x y = forall b. Buffer b => Worker {buffer :: b, input :: x, output :: y}

foo :: Worker Int Int

The type of the buffer (Buffer) now does not appear

in the Worker type at all. Worker x y

Explicit type signature :

data Worker b x y = Worker {buffer :: b, input :: x, output :: y}

foo :: (Buffer b) => Worker b Int Int

https://wiki.haskell.org/Existential_type

Hiding a type variable (4)

Existential Types (1D) 17 Young Won Lim
4/2/21

● it is now impossible for a function

to demand a Worker having a specific type of buffer.

● the type of foo can now be derived automatically

without needing an explicit type signature.

(No monomorphism restriction.)

● since code now has no idea

what type the buffer function returns,

you are more limited in what you can do to it.

data Worker x y = forall b. Buffer b => Worker {buffer :: b, input :: x, output :: y}

foo :: Worker Int Int

https://wiki.haskell.org/Existential_type

Hiding a type variable (5)

Existential Types (1D) 18 Young Won Lim
4/2/21

In general, when you use a hidden type in this way,

you will usually want that type to belong to a specific class,

or you will want to pass some functions along

that can work on that type.

Otherwise you'll have some value belonging

to a random unknown type,

and you won't be able to do anything to it!

https://wiki.haskell.org/Existential_type

Hiding a type variable (6)

Existential Types (1D) 19 Young Won Lim
4/2/21

Note: You can use existential types

to convert a more specific type

into a less specific one.

constrained type variables

There is no way to perform the reverse conversion!

https://wiki.haskell.org/Existential_type

Less specific types (1)

Existential Types (1D) 20 Young Won Lim
4/2/21

This illustrates creating a heterogeneous list,

all of whose members implement "Show",

and progressing through that list to show these items:

data Obj = forall a. (Show a) => Obj a

xs :: [Obj]

xs = [Obj 1, Obj "foo", Obj 'c']

doShow :: [Obj] -> String

doShow [] = ""

doShow ((Obj x):xs) = show x ++ doShow xs

With output: doShow xs ==> "1\"foo\"'c'"

https://wiki.haskell.org/Existential_type

Less specific types (2)

Existential Types (1D) 21 Young Won Lim
4/2/21

It is also possible to express existentials with RankNTypes

as type expressions directly (without a data declaration)

forall r. (forall a. Show a => a -> r) -> r

(the leading forall r. is optional

unless the expression is part of another expression).

the equivalent type Obj :

data Obj = forall a. (Show a) => Obj a

https://wiki.haskell.org/Existential_type

Existentials in terms of forall (1)

Existential Types (1D) 22 Young Won Lim
4/2/21

The conversions are:

fromObj :: Obj -> forall r. (forall a. Show a => a -> r) -> r

fromObj (Obj x) k = k x

toObj :: (forall r. (forall a. Show a => a -> r) -> r) -> Obj

toObj f = f Obj

https://wiki.haskell.org/Existential_type

Existentials in terms of forall (2)

Existential Types (1D) 23 Young Won Lim
4/2/21

Heterogeneous Lists

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Existential Types (1D) 24 Young Won Lim
4/2/21

Suppose we have a group of values.

they may not be all the same type,

but they are all members of some class

thus, they have a certain property

It might be useful to throw all these values into a list.

normally this is impossible because lists elements

must be of the same type

(homogeneous with respect to types).

existential types allow us to loosen this requirement

by defining a type hider or type box:

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Type hider

data ShowBox = forall s. Show s => SB s

heteroList :: [ShowBox]

heteroList = [SB (), SB 5, SB True]

Existential Types (1D) 25 Young Won Lim
4/2/21

data ShowBox = forall s. Show s => SB s -- type hider

heteroList :: [ShowBox]

heteroList = [SB (), SB 5, SB True]

[SB (), SB 5, SB True] calls the constructor

on three values of different types,

to place them all into a single list

virtually the same type for each one.

Use the forall in the constructor

SB :: forall s. Show s => s -> ShowBox.

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Heterogeneous list example (1)

Existential Types (1D) 26 Young Won Lim
4/2/21

data ShowBox = forall s. Show s => SB s

heteroList :: [ShowBox]

heteroList = [SB (), SB 5, SB True]

When passing heteroList type parameters to a function

we cannot take out the values inside the SB

because their type might Bool. Int, Char, …

But each of the elements can be

converted to a string via show.

In fact, that's the only thing we know about them.

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Heterogeneous list example (2)

Existential Types (1D) 27 Young Won Lim
4/2/21

 instance Show ShowBox where

 show (SB s) = show s

 f :: [ShowBox] -> IO ()

 f xs = mapM_ print xs

 main = f heteroList

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Heterogeneous list example (3)

Existential Types (1D) 28 Young Won Lim
4/2/21

Example: Using our heterogeneous list

 instance Show ShowBox where

show (SB s) = show s -- (*) see the comment in the text below

f :: [ShowBox] -> IO ()

f xs = mapM_ print xs

main = f heteroList

Example: Types of the functions involved

print :: Show s => s -> IO () -- print x = putStrLn (show x)

mapM_ :: (a -> m b) -> [a] -> m ()

mapM_ print :: Show s => [s] -> IO ()

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Heterogeneous list example (4)

Existential Types (1D) 29 Young Won Lim
4/2/21

The core idea is that mapM maps

an "action" (ie function of type a -> m b) over a list and

gives you all the results as m [b]

mapM_ does the same thing,

but never collects the results, returning a m ().

If you care about the results

of your a -> m b function, use mapM.

If you only care about the effect,

but not the resulting value,

 use mapM_, because it can be more efficient

https://stackoverflow.com/questions/27609062/what-is-the-difference-between-mapm-and-mapm-in-haskell/27609146

mapM, mapM_, and map (1)

Existential Types (1D) 30 Young Won Lim
4/2/21

Always use mapM_ with functions of the type a -> m (),

like print or putStrLn.

these functions return () to signify that only the effect matters.

If you used mapM, you'd get a list of () (ie [(), (), ()]),

which would be completely useless

but waste some memory.

If you use mapM_, you would just get a (),

but it would still print everything.

https://stackoverflow.com/questions/27609062/what-is-the-difference-between-mapm-and-mapm-in-haskell/27609146

mapM, mapM_, and map (2)

Existential Types (1D) 31 Young Won Lim
4/2/21

Normal map is something different:

it takes a normal function (a -> b)

instead of one using a monad (a -> m b).

This means that it cannot have any sort of effect

besides returning the changed list.

You would use it if you want to transform a list

using a normal function.

map_ doesn't exist because, since you don't have any effects,

you always care about the results of using map.

https://stackoverflow.com/questions/27609062/what-is-the-difference-between-mapm-and-mapm-in-haskell/27609146

mapM, mapM_, and map (3)

Existential Types (1D) 32 Young Won Lim
4/2/21

Quantified types

as products and sums

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Existential Types (1D) 33 Young Won Lim
4/2/21

A universally quantified type may be interpreted

as an infinite product of types.

a polymorphic function can be understood

as a product, or a tuple, of individual functions,

one per every possible type a.

To construct a value of such type, we have

to provide all the components of the tuple at once.

-- one formula generating an infinity of functions

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Quantified Types as Products and Sums

Existential Types (1D) 34 Young Won Lim
4/2/21

Example: Identity function

 id :: forall a. a -> a

 id a = a

a polymorphic function can be understood

as a product, or a tuple, of individual functions,

one per every possible type a.

Int -> Int, Double -> Double, ...

Char -> Char, [Char] -> [Char], …

…

…

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Quantified Types as Products and Sums

Existential Types (1D) 35 Young Won Lim
4/2/21

To construct a value of such type, we have

to provide all the components of the tuple at once.

in case of numeric types, one numeric constant

may be used to initialize many types at once.

Example: Polymorphic value

 x :: forall a. Num a => a

 x = 0

x may be conceptualized as a tuple consisting

of an Int value, a Double value, etc.

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Quantified Types as Products and Sums

Existential Types (1D) 36 Young Won Lim
4/2/21

Similarly, an existentially quantified type may be interpreted

as an infinite sum.

Example: Existential type

 data ShowBox = forall s. Show s => SB s

may be conceptualized as a sum:

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Quantified Types as Products and Sums

Existential Types (1D) 37 Young Won Lim
4/2/21

Example: Existential type

 data ShowBox = forall s. Show s => SB s

Example: Sum type

 data ShowBox = SBUnit | SBInt Int | SBBool Bool | SBIntList [Int] | ...

to construct a value of this type,

we only have to pick one of the constructors.

A polymorphic constructor SB

combines all those constructors into one.

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Quantified Types as Products and Sums

Existential Types (1D) 38 Young Won Lim
4/2/21

Quantification as a primitive

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Existential Types (1D) 39 Young Won Lim
4/2/21

newtype Parser a = Parser { parse :: String -> Maybe (a,String) }

1) A type named Parser.

2) A term level constructor of Parser’s named Parser.

The type of this (constructor) function is

Parser :: (String -> Maybe (a, String)) -> Parser a

You give it a function of the type

(String -> Maybe (a, String))

 and it wraps it inside a Parser

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

Newtype creates a function (1)

Existential Types (1D) 40 Young Won Lim
4/2/21

newtype Parser a = Parser { parse :: String -> Maybe (a,String) }

3) A function named parse to remove the Parser wrapper and

get your function back. The type of this function is:

parse :: Parser a -> String -> Maybe (a, String)

A term level constructor named Parser

Parser :: (String -> Maybe (a, String)) -> Parser a

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

Newtype creates a function (2)

Existential Types (1D) 41 Young Won Lim
4/2/21

Prelude> newtype

Parser a = Parser { parse :: String -> Maybe (a,String) }

Prelude> :t Parser

Parser :: (String -> Maybe (a, String)) -> Parser a

Prelude> :t parse

parse :: Parser a -> String -> Maybe (a, String)

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

Newtype creates a function (3)

Existential Types (1D) 42 Young Won Lim
4/2/21

newtype Parser a = Parser { parse :: String -> Maybe (a,String) }

the term level constructor (Parser)

the function to remove the wrapper (parse)

Both can have arbitrary names

No need to match the type name.

It's common to write:

newtype Parser a = Parser { unParser :: String -> Maybe (a,String) }

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

Newtype creates a function (4)

Existential Types (1D) 43 Young Won Lim
4/2/21

newtype Parser a = Parser { unParser :: String -> Maybe (a,String) }

this name makes it clear unParser removes

the wrapper around the parsing function.

unParser :: Parser a -> String -> Maybe (a, String)

however, it is recommended that the type and constructor

have the same name when using newtypes.

(Parser, Parser)

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

Newtype creates a function (5)

Existential Types (1D) 44 Young Won Lim
4/2/21

newtype Parser a = Parser { parser :: String -> Maybe (a,String) }

1) Parser is declared as a type with a type parameter a

2) can instantiate Parser by providing a parser function

p = Parser (\s -> Nothing)

3) a function name parser defined and

 it is capable of running Parser’s.

unwrap the function

then apply the function

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

Newtype creates a function (6)

Existential Types (1D) 45 Young Won Lim
4/2/21

newtype Parser a = Parser { parser :: String -> Maybe (a,String) }

parser :: Parser a -> String -> Maybe (a, String)

parser (Parser (\s -> Nothing)) "my input"

(\s -> Nothing)) "my input"

Nothing

You are unwrapping the function using parse and

then calling the unwrapped function with "myInput".

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

Newtype creates a function (7)

Existential Types (1D) 46 Young Won Lim
4/2/21

First, let’s have a look at a parser newtype without record syntax:

newtype Parser' a = Parser' (String -> Maybe (a,String))

it stores a function String -> Maybe (a,String).

To run this parser, we will need to make a new function:

runParser' :: Parser' a -> String -> Maybe (a,String)

runParser' (Parser' f) i = f i

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

Newtype creates a function (8)

Existential Types (1D) 47 Young Won Lim
4/2/21

runParser' :: Parser' a -> String -> Maybe (a,String)

runParser' (Parser' f) i = f i

runParser' (Parser' $ \s -> Nothing) "my input".

But now note that, since Haskell functions are curried,

we can simply remove the reference to the input i to get:

runParser'' :: Parser' -> (String -> Maybe (a,String))

runParser'' (Parser' f’) = f’

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

Newtype creates a function (9)

Existential Types (1D) 48 Young Won Lim
4/2/21

runParser'' :: Parser' -> (String -> Maybe (a,String))

runParser'' (Parser' f’) = f’

This function is exactly equivalent to runParser',

but you could think about it differently:

instead of applying the parser function to the value explicitly,

it simply takes a parser and fetches the parser function from it;

(Parser' f’) → f’

however, thanks to currying, runParser''

can still be used with two arguments.

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

Newtype creates a function (10)

Existential Types (1D) 49 Young Won Lim
4/2/21

newtype Parser a = Parser { parse :: String -> Maybe (a,String) }

newtype Parser' a = Parser' (String -> Maybe (a,String))

difference : record syntax with only one field

this record syntax automatically defines a function

parse :: Parser a -> (String -> Maybe (a,String)),

which extracts the String -> Maybe (a,String) function

from the Parser a.

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

Newtype creates a function (11)

Existential Types (1D) 50 Young Won Lim
4/2/21

newtype Parser a = Parser { parse :: String -> Maybe (a,String) }

parse can be used with two arguments thanks to currying,

and this simply has the effect of running the function stored

within the Parser a.

equivalent definition to the following code:

newtype Parser a = Parser (String -> Maybe (a,String))

parse :: Parser a -> (String -> Maybe (a,String))

parse (Parser p) = p

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

Newtype creates a function (12)

Existential Types (1D) 51 Young Won Lim
4/2/21

 data Person = Person { firstName :: String ,

 lastName :: String ,

 age :: Int ,

 height :: Float ,

 phoneNo :: String ,

 flavor :: String

 } deriving (Show)

 ghci> :t flavor

 flavor :: Person -> String

 ghci> :t firstName

 firstName :: Person -> String

http://learnyouahaskell.com/making-our-own-types-and-typeclasses

Access functions in a record type (1)

return types of
access functions

Person ::
the input type of
access functions

Existential Types (1D) 52 Young Won Lim
4/2/21

 data Car = Car String String Int deriving (Show)

 ghci> Car "Ford" "Mustang" 1967

 Car "Ford" "Mustang" 1967

 data Car = Car {company :: String,

 model :: String,

 year :: Int} deriving (Show)

 ghci> Car {company="Ford", model="Mustang", year=1967}

 Car {company = "Ford", model = "Mustang", year = 1967}

http://learnyouahaskell.com/making-our-own-types-and-typeclasses

Access functions in a record type (2)

Existential Types (1D) 53 Young Won Lim
4/2/21

Universal quantification is useful

for defining data types that aren't already defined.

Suppose there was no such thing as pairs built into haskell.

Quantification could be used to define them.

{-# LANGUAGE ExistentialQuantification, RankNTypes #-}

newtype Pair a b = Pair (forall c. (a -> b -> c) -> c)

makePair :: a -> b -> Pair a b

makePair a b = Pair $ \f -> f a b

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Pair type example (1)

Pair $ \f -> f a b :: Pair a b

f :: a -> b -> c

f a b :: c

f is not yet defined

c can be any type (forall c)

defining data type c

that aren’t already defined

Existential Types (1D) 54 Young Won Lim
4/2/21

newtype Pair a b = Pair (forall c. (a -> b -> c) -> c)

makePair :: a -> b -> Pair a b

makePair a b = Pair $ \f -> f a b

using a record type with a single field

λ> newtype Pair a b = Pair {runPair :: forall c. (a -> b -> c) -> c}

runPair is an access function

takes an input of the type Pair a b

returns an output of the type forall c. (a -> b -> c) -> c

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Pair type example (2)

f

a

b
c

f a b

Pair $ \f -> f a b :: Pair a b

a

b makePair Pair a b

P
a

ir

Existential Types (1D) 55 Young Won Lim
4/2/21

In GHCI

λ> :set -XExistentialQuantification

λ> :set -XrankNTypes

λ> newtype Pair a b = Pair {runPair :: forall c. (a -> b -> c) -> c}

λ> makePair a b = Pair $ \f -> f a b

λ> pair = makePair "a" 'b'

λ> :t pair

 pair :: Pair [Char] Char

λ> runPair pair (\x y -> x) -- unwrap (a -> b -> c) -> c then apply

 "a"

λ> runPair pair (\x y -> y) -- unwrap (a -> b -> c) -> c then apply

 'b'

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Pair type example (3)

f

a

b
c

f a b

Pair $ \f -> f a b :: Pair a b

makePair "a" 'b'

Pair $ \f -> f "a" 'b' :: Pair a b

a

b makePair Pair a b

P
a

ir

“a”

‘b’

f “a” ‘b’
“a”

‘b’

Existential Types (1D) 56 Young Won Lim
4/2/21

λ> newtype Pair a b = Pair {runPair :: forall c. (a -> b -> c) -> c}

λ> makePair a b = Pair $ \f -> f a b

λ> pair = makePair "a" 'b'

Pair $ \f -> f "a" 'b'

\f : function itself f :: a -> b -> c

f "a" 'b' : the result of applying the function

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Pair type example (4)

f

a

b
c

f a b

Pair $ \f -> f a b :: Pair a b

makePair "a" 'b'

Pair $ \f -> f "a" 'b' :: Pair a b

a

b makePair Pair a b

P
a

ir

“a”

‘b’

f “a” ‘b’
“a”

‘b’

Existential Types (1D) 57 Young Won Lim
4/2/21

newtype Pair a b = Pair {runPair :: forall c. (a -> b -> c) -> c}

runPair :: Pair a b -> forall c. (a -> b -> c) -> c

makePair a b = Pair $ \f -> f a b

runPair makePair a b = \f -> f a b -- unwrapping

makePair "a" 'b' = Pair $ \f -> f "a" 'b'

runPair makePair "a" 'b' = \f -> f "a" 'b'

pair = makePair :: Pair [Char] Char

runPair pair (\x y -> x) = (\x y -> x) "a" 'b'

runPair pair (\x y -> y) = (\x y -> y) "a" 'b'

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Pair type example (5)

f

a

b
c

f a b

Pair $ \f -> f a b :: Pair a b

makePair "a" 'b'

Pair $ \f -> f "a" 'b' :: Pair a b

a

b makePair Pair a b

P
a

ir

“a”

‘b’

f “a” ‘b’
“a”

‘b’

Existential Types (1D) 58 Young Won Lim
4/2/21

runPair pair (\x y -> x) = (\x y -> x) "a" 'b'

runPair pair (\x y -> y) = (\x y -> y) "a" 'b'

runPair makePair "a" 'b' (\x y -> x)

(\x y -> x) "a" 'b'

 "a"

runPair makePair "a" 'b' (\x y -> y)

(\x y -> y) "a" 'b'

 'b'

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Pair type example (6)

Existential Types (1D) 59 Young Won Lim
4/2/21

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Pair type example (6)

f

a

b
c

c

Pair $ \f -> f a b :: Pair a b

pair (\x y -> y)

makePair "a" 'b' (\x y -> y)

a

b makePair Pair a b“a”

‘b’

“a”

‘b’
“a”

‘b’

“a”

(\x y -> y)

f

a

b
c

c

Pair $ \f -> f a b :: Pair a b

pair (\x y -> x)

makePair "a" 'b' (\x y -> x)

a

b makePair Pair a b“a”

‘b’

“a”

‘b’
“a”

“a”

“a”

(\x y -> x)

Existential Types (1D) 60 Young Won Lim
4/2/21

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

Existential Types (1D) 61 Young Won Lim
4/2/21

Existential types, or 'existentials' for short, provide a way of

'squashing' a group of types into one, single type.

Existentials are part of GHC's type system extensions.

They aren't part of Haskell98, and as such you'll have

to either compile any code that contains them

with an extra command-line parameter of

-XExistentialQuantification,

or put at the top of your sources that use existentials.

{-# LANGUAGE ExistentialQuantification #-}

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Existentials

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

