
Young Won Lim
6/22/24

OpenMP Synchronization (5A)

Young Won Lim
6/22/24

 Copyright (c) 2024 - 2016 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

OpenMP
Synchronization (5A) 3 Young Won Lim

6/22/24

Based on

https://www.openmp.org/wp-content/uploads/OpenMP-4.0-C.pdf

https://www.openmp.org/wp-content/uploads/OpenMP-4.0-C.pdf

OpenMP
Synchronization (5A) 4 Young Won Lim

6/22/24

Synchronization I

• Threads communicate through shared variables.

Uncoordinated access of these variables can lead to

undesired effects.

– E.g. two threads update (write) a shared variable in the

same step of execution, the result is dependent on the

way this variable is accessed. This is called a race

condition.

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Synchronization (1)

OpenMP
Synchronization (5A) 5 Young Won Lim

6/22/24

• To prevent race condition, the access to shared

variables must be synchronized.

• Synchronization can be time consuming.

• The barrier directive is set to synchronize all threads.

All threads wait at the barrier until all of them have

arrived.

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Synchronization (2)

OpenMP
Synchronization (5A) 6 Young Won Lim

6/22/24

Synchronization II

• Synchronization imposes order constraints and is

used to protect access to shared data

• High level synchronization:

– critical

– atomic

– barrier

– ordered

• Low level synchronization

– flush

– locks (both simple and nested)

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Synchronization (3)

OpenMP
Synchronization (5A) 7 Young Won Lim

6/22/24

Synchronization: critical

• Mutual exclusion: only one thread at a time can enter a critical

region.

{

double res;

#pragma omp parallel

{

double B;

int i, id, nthrds;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

for(i=id; i<niters; i+=nthrds){

B = some_work(i);

#pragma omp critical

consume(B,res);

}

}

} https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Critical (1)

Young Won Lim
6/22/24

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

