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Based on

https://www.openmp.org/wp-content/uploads/OpenMP-4.0-C.pdf

https://www.openmp.org/wp-content/uploads/OpenMP-4.0-C.pdf
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Synchronization I

• Threads communicate through shared variables.

Uncoordinated access of these variables can lead to

undesired effects.

– E.g. two threads update (write) a shared variable in the

same step of execution, the result is dependent on the

way this variable is accessed. This is called a race

condition.

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Synchronization (1)
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• To prevent race condition, the access to shared

variables must be synchronized.

• Synchronization can be time consuming.

• The barrier directive is set to synchronize all threads.

All threads wait at the barrier until all of them have

arrived.

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Synchronization (2)
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Synchronization II

• Synchronization imposes order constraints and is

used to protect access to shared data

• High level synchronization:

– critical

– atomic

– barrier

– ordered

• Low level synchronization

– flush

– locks (both simple and nested)

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf
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Synchronization: critical

• Mutual exclusion: only one thread at a time can enter a critical 

region.

{

double res;

#pragma omp parallel

{

double B;

int i, id, nthrds;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

for(i=id; i<niters; i+=nthrds){

B = some_work(i);

#pragma omp critical

consume(B,res);

}

}

} https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Critical (1)
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