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Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps
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put :: s -> State s a 

put newSt = state $ \_ -> ((), newSt)

Given a wanted state newState,

put generates a state processor 
● ignores whatever the state it receives, 
● updates the state to newState
● doesn't care about the result of this processor 

● all we want to do is to change the state 
● the tuple will be ((), newState) 
● () : the universal placeholder value.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Setting the State : put

state
State s a

func
s ((), s)

s0

((), newSt)

funcs0 ((), newSt)

unwrapped state processor 



State Monad Example 
(3G)

5 Young Won Lim
2/14/18

get :: State s s 

get = state $ \s -> (s, s)

get generates a state processor 
● gives back the state s0 
● as a result and as an updated state  –  (s0, s0)

● the state will remain unchanged 
● a copy of the state will be made available 

through the result returned

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Getting the State : get 

state
State s a

func
s (s, s)

s0

(s0, s0)

funcs0 (s0, s0)

unwrapped state processor 
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import Control.Monad.Trans.State

runState get 1

(1,1)

runState (return 'X') 1

('X',1)

runState get 1

(1,1)

runState (put 5) 1

((),5)

let postincrement = do { x <- get; put (x+1); return x }

runState postincrement 1

(1,2)

let predecrement = do { x <- get; put (x-1); get }

 runState predecrement 1

(0,0)

 

https://wiki.haskell.org/State_Monad

Example Codes

runState (modify (+1)) 1

((),2)

runState (gets (+1)) 1

(2,1)

evalState (gets (+1)) 1

2

execState (gets (+1)) 1

1
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put :: s -> State s a 

put s ::  State s a 

put newState = state $ \_ -> ((), newState)

-- setting a state to newState

-- regardless of the old state

-- setting the result to ()

get :: State s s 

get = state $ \s -> (s, s)

-- getting the current state s 

-- also setting the result to s 

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Setting and Getting the State

state
State s s

func
s (s, s)

get

state
State s a

func
s (a, s)

s
put
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Types and Values of put and get

state
State s s

func

get

state
State s a

func

put

state
State s s

func
s (s, s)

get

state
State s a

func
s (a, s)

s
put ss

s0 ((), ss)

s0 (s0, s0)
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put :: s -> State s a 

put s ::  State s a 

put newSt = state $ \_ -> ((), newSt)

get :: State s s 

get = state $ \s -> (s, s)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

wrapped version of put and get 

func

()

((), newSt)st

func

st

(st, st)st

put

get

State s a

State s a

 s 

newSt

newSt

st
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put :: s -> State s a 

put newSt = state $    \_ -> ((), newSt)

runState (put newSt) s0   ((), newSt)

get :: State s s 

get = state $    \s -> (s, s)

runState (get) s0 (s0, s0)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Executing the state processor  

func
((), newSt)st

func

p :: State s a

(st, st)st

s0

((), newSt)

s0

(s0, s0)

applying the function 

applying the function 
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runState (put 5) 1

    ((),5) 

put

set the result value to () and set the state value.

Comments:

   put 5 :: State Int ()

   runState (put 5) :: Int -> ((),Int)

   initial state = 1 :: Int

   final value = () :: ()

   final state = 5 :: Int

https://wiki.haskell.org/State_Monad

State Monad Examples – put 

put :: s -> State s a 

put newState = state $ \_ -> ((), newState)

func
((), newSt)st

1

((), 5)
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runState get 1

    (1,1) 

get

set the result value to the state and leave the state unchanged.

Comments:

   get :: State Int Int

   runState get :: Int -> (Int, Int)

   initial state = 1 :: Int

   final value = 1 :: Int

   final state = 1 :: Int

https://wiki.haskell.org/State_Monad

State Monad Examples – get 

get :: State s s 

get = state $ \s -> (s, s)

func
st

1

(1, 1)
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(return 5)    1 -> (5,1) -- a way of thinking

get    1 -> (1,1) -- a way of thinking

(put 5)    1 -> ((),5) -- a way of thinking

a value of type (State s a ) is 

a function from initial state s 

to final value a and final state s: (a,s). 

these are usually wrapped,  

but shown here unwrapped for simplicity. 

(return 5)    state( 1 -> (5,1) ) -- an actual way

get    state( 1 -> (1,1) ) -- an actual way

(put 5)    state( 1 -> ((),5) ) -- an actual way

https://wiki.haskell.org/State_Monad

Think an unwrapped state processor

Think an unwrapped 
state processor

wrapping the 
state processor



State Monad Example 
(3G)

14 Young Won Lim
2/14/18

Return leaves the state unchanged and sets the result:

-- ie: (return 5)    1 -> (5,1) -- a way of thinking

runState (return 5) 1    (5,1)

Get leaves state unchanged and sets the result to the state:

-- ie:  get    1 -> (1,1) -- a way of thinking

runState get 1    (1,1)

Put sets the result to () and sets the state:

-- ie: (put 5)    1 -> ((),5) -- a way of thinking

runState (put 5) 1    ((),5)

 

https://wiki.haskell.org/State_Monad

State Monad Examples – return, get, and put  
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modify :: (s -> s) -> State s ()

modify f = do { x <- get; put (f x) }

 

gets :: (s -> a) -> State s a

gets f = do { x <- get; return (f x) }

runState (modify (+1)) 1 (+1) 1 → 2 :: s

    ((),2) 

runState (gets (+1)) 1 (+1) 1 → 2 :: a 

    (2,1) 

evalState (gets (+1)) 1 → :: s state

    2 

execState (gets (+1)) 1 → :: a result

    1 

https://wiki.haskell.org/State_Monad

State Monad Examples – modify and gets  

x <- get; put (f x) 

x <- get; return (f x) 

● inside a monad instance 
● unwrapped implementations

of modify and gets 
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Return leaves the state unchanged and sets the result:

-- ie: (return 5)    1 -> (5,1) -- a way of thinking

return :: a -> State s a

return x s = (x,s)

Get leaves state unchanged and sets the result to the state:

-- ie:  get    1 -> (1,1) -- a way of thinking

get :: State s s

get s = (s,s)

Put sets the result to () and sets the state:

-- ie: (put 5)    1 -> ((),5) -- a way of thinking

put :: s -> State s ()

put x s = ((),x) 

https://wiki.haskell.org/State_Monad

Unwrapped Implementation – return, get, and put  

(x,s)

(s,s)

((),x)

● inside a monad instance 
● unwrapped implementations

of return, get, and put 
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a stateful computation is a function that 

takes some state and 

returns a value along with some new state. 

That function would have the following type:

    s -> (a,s)  

s is the type of the state and 

a the result of the  stateful computation. 

http://learnyouahaskell.com/for-a-few-monads-more

The Result of a Stateful Computation

s -> (a, s)

s (a, s)

a function is an executable data

when executed, a result is produced

action, execution, result 

s -> (a, s)
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inside a monad, 

when sc is a stateful computation 

then the result of the stateful computation sc 

can be assigned to x

x <- sc

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Stateful Computations Inside the State Monad

sc :: State s a 

x :: a    (the execution result of sc)

s -> (a, s)

the result type
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inside the State monad, 

get returns the current monad instance 

whose type is State s a 

x <- get

the stateful computation is performed 

over the current monad instance returned by get

the result of the stateful computation is st::s

thus x will get the st 

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

get inside the State Monad

x :: a    the execution result of get

func

st

(st, st)st

st
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inside the State monad, 

get returns the current monad instance 

whose type is State s a 

to get the current state st, do  

s <- get

s will have the value of the current state st

this is like evalState is called with the current monad instance

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Getting the current state inside the State Monad

func

st

(st, st)st

st

● get
● current monad instance
● stateful computation 
● result :: s
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put :: s -> State s a 

put newSt = state $ \_ -> ((), newSt)

get :: State s s 

get = state $ \s -> (s, s)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

put and get inside State Monad 

func
st

func
(st0, st0)st0

put
newSt

((), newSt)

get

put :: s -> () 

get :: s 

()

st0

stateful computation of put

stateful computation of get

the result type :: ()

the result type :: s
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Most monads are equipped with some "run" functions 

such as runState, execState, and so forth. 

But, frequent calling such functions inside the monad

shows that the functionality of the monad does not fully exploited

s0 <- get                    -- read the state of the current instance

let (a,s1) = runState p s0  -- pass the state to p, get new state

put s1                       -- save new state

a <- p -- the stateful computation p updates the state to s1

-- the result of the state returned is assigned to a

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Inside Functions and runState Functions

let p = state (\y -> (y, y+1))
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the same binding variable a 

the same state s1

s0 <- get                    

let (a,s1) = runState p s0  

put s1                       

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Redundant computation examples (1)

runState
(a, s)State s a s

p  s0 (a,   s1) 

(a,   s1) s0

a <- p

func
(s0, s0)s0

get
s0

func
s0

put
s1

((), s1)

()

the current monad instance 

p :: State s a
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a <- p -- the stateful computation p updates the state to s1

-- the result of the state returned is assigned to a

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Redundant computation examples (2)

p :: State s a

stateful computation p return the result a

func

-
(a, s)s

s0 func

a
(a, s)s

s1

a
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collectUntil f comp = do

    st <- get                              -- Get the current state

    if f st then return [ ]                -- If it satisfies predicate, return

           else do                        -- Otherwise...

               x  <- comp                 -- Perform the computation s

               xs <- collectUntil f comp   -- Perform the rest of the computation

               return (x:xs)              -- Collect the results and return them

simpleState = state (\x -> (x,x+1))

*Main> evalState (collectUntil (>10) simpleState) 0

[0,1,2,3,4,5,6,7,8,9,10]

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Inside Functions and runState Functions

func
s (a, s)

a s

simpleState :: State s a

comp :: State s a

x  :: a

xs  :: [a]   

st  :: s
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collectUntil f comp = do

    st <- get                              

    if f st then return [ ]                

           else do                        

               x  <- comp   -- stateful computation              

               xs <- collectUntil f comp   

               return (x:xs)              

simpleState = state (\x -> (x,x+1))

*Main> evalState (collectUntil (>10) simpleState) 0

[0,1,2,3,4,5,6,7,8,9,10]

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Inside Functions and runState Functions

get st←0 comp : 0 → (0, 1)  x←0

get st←1 comp : 1 → (1, 2)   x←1

get st←2 comp : 2 → (2, 3)  x←2  

get st←3 comp : 3 → (3, 4)  x←3  

get st←4 comp : 4 → (4, 5)  x←4  

get st←5 comp : 5 → (5, 6)  x←5  

get st←6 comp : 6 → (6, 7)  x←6  

get st←7 comp : 7 → (7, 8)  x←7  

get st←8 comp : 8 → (8, 9)  x←8  

get st←9 comp : 9 → (9, 10)  x←9  

get st←10 comp :      10→(10, 11)  x←10  
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https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Stateful Computation of comp  

func
(a, s)s

func

0
(a, s)s

1

func

1
(a, s)s

2

0 func

0
(a, s)s

1

func

1
(a, s)s

2

func

2
(a, s)s

3

comp
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https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Stateful Computations of put & get 

func

a
(a, s)s

s

func

a
(a, s)s

s

func

()
(a, s)s

ns

func

s
(a, s)s

s

ns

get

put
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collectUntil :: MonadState t m => (t -> Bool) -> m a -> m [a]

collectUntil :: (t -> Bool) -> State t a -> State t [a]

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Inside Functions and runState Functions
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collectUntil :: (s -> Bool) -> State s a -> State s [a]

collectUntil f s = step

  where

    step = do a <- s

              liftM (a:) continue

    continue = do s' <- get

                  if f s' then return [] else step

simpleState = state (\x -> (x,x+1))

*Main> evalState (collectUntil (>10) simpleState) 0

[0,1,2,3,4,5,6,7,8,9,10]

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Inside function examples
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liftM :: (Monad m) => (a -> b) -> m a -> m b

mapM :: (Monad m) => (a -> m b) -> [a] -> m [b]

liftM lifts a function of type a -> b to a monadic counterpart. 

mapM applies a function which yields a monadic value to a list of values, 

yielding list of results embedded in the monad.

> liftM (map toUpper) getLine

Hallo

"HALLO"

> :t mapM return "monad"

mapM return "monad" :: (Monad m) => m [Char]

https://stackoverflow.com/questions/5856709/what-is-the-difference-between-liftm-and-mapm-in-haskell

liftM 
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module StateGame where

 

import Control.Monad.State

 

-- Example use of State monad

-- Passes a string of dictionary {a,b,c}

-- Game is to produce a number from the string.

-- By default the game is off, a C toggles the

-- game on and off. A 'a' gives +1 and a b gives -1.

-- E.g 

-- 'ab'    = 0

-- 'ca'    = 1

-- 'cabca' = 0

-- State = game is on or off & current score

--       = (Bool, Int)

https://wiki.haskell.org/State_Monad

Some Examples (1)
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type GameValue = Int

type GameState = (Bool, Int)

 

playGame :: String -> State GameState GameValue

playGame []     = do

    (_, score) <- get

    return score

 

https://wiki.haskell.org/State_Monad

Some Examples (2)
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playGame (x:xs) = do

    (on, score) <- get

    case x of

         'a' | on -> put (on, score + 1)

         'b' | on -> put (on, score - 1)

         'c'      -> put (not on, score)

         _        -> put (on, score)

    playGame xs

 

startState = (False, 0)

 

main = print $ evalState (playGame "abcaaacbbcabbab") startState

https://wiki.haskell.org/State_Monad

Some Examples (3)
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to generate Int dice -  result : a number between 1 and 6 

throw results from a pseudo-random generator of type StdGen. 

the type of the state processors will be 

State StdGen Int

StdGen -> (Int, StdGen)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Dice Examples
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the StdGen type : an instance of RandomGen

randomR :: (Random a, RandomGen g) => (a, a) -> g -> (a, g)

assume a is Int (a, a) : range 

and g is StdGen a seed 

the type of randomR 

randomR (1, 6) :: StdGen -> (Int, StdGen)

already have a state processing function

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

randomR

A seed of the type StdGen 

A new seed is generated 

by newStdGen

(Int, StdGen)

(a random value, a new seed)
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If you choose to take a seed, 

it should be of type StdGen, and you can use randomR 

to generate a number from it. 

Use newStdGen to create a new seed 

(this will have to be done in IO).

> import System.Random

> g <- newStdGen

> randomR (1, 10) g

(1,1012529354 2147442707)

The result of randomR is a tuple 

(a random value, a new seed)

https://stackoverflow.com/questions/8416365/generate-a-random-integer-in-a-range-in-haskell

randomR

A seed of the type StdGen 

A new seed is generated 

by newStdGen
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Otherwise, you can use randomRIO 

to get a random number directly in the IO monad, 

with all the StdGen stuff taken care of for you:

> import System.Random

> randomRIO (1, 10)

6

https://stackoverflow.com/questions/8416365/generate-a-random-integer-in-a-range-in-haskell

randomR
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randomR (1, 6) :: StdGen -> (Int, StdGen)

rollDie :: State StdGen Int

rollDie = state $ randomR (1, 6)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

randomR
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import Control.Monad.Trans.State

import System.Random

-- The StdGen type we are using is an instance of RandomGen.

randomR :: (Random a, RandomGen g) => (a, a) -> g -> (a, g)

randomR (1, 6) :: StdGen -> (Int, StdGen)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

randomR
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rollDie :: State StdGen Int

rollDie = state $ randomR (1, 6)

rollDie :: State StdGen Int

rollDie = do generator <- get

             let (value, newGenerator) = randomR (1,6) generator

             put newGenerator

             return value

GHCi> evalState rollDie (mkStdGen 0)

6

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

randomR
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rollDice :: State StdGen (Int, Int)

rollDice = liftA2 (,) rollDie rollDie

GHCi> evalState rollDice (mkStdGen 666)

 (6,1)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

randomR
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