
Young Won Lim
2/14/18

State Monad Example (3G)

Young Won Lim
2/14/18

 Copyright (c) 2016 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

State Monad Example
(3G)

3 Young Won Lim
2/14/18

Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

State Monad Example
(3G)

4 Young Won Lim
2/14/18

put :: s -> State s a

put newSt = state $ _ -> ((), newSt)

Given a wanted state newState,

put generates a state processor
● ignores whatever the state it receives,
● updates the state to newState
● doesn't care about the result of this processor

● all we want to do is to change the state
● the tuple will be ((), newState)
● () : the universal placeholder value.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Setting the State : put

state
State s a

func
s ((), s)

s0

((), newSt)

funcs0 ((), newSt)

unwrapped state processor

State Monad Example
(3G)

5 Young Won Lim
2/14/18

get :: State s s

get = state $ \s -> (s, s)

get generates a state processor
● gives back the state s0
● as a result and as an updated state – (s0, s0)

● the state will remain unchanged
● a copy of the state will be made available

through the result returned

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Getting the State : get

state
State s a

func
s (s, s)

s0

(s0, s0)

funcs0 (s0, s0)

unwrapped state processor

State Monad Example
(3G)

6 Young Won Lim
2/14/18

import Control.Monad.Trans.State

runState get 1

(1,1)

runState (return 'X') 1

('X',1)

runState get 1

(1,1)

runState (put 5) 1

((),5)

let postincrement = do { x <- get; put (x+1); return x }

runState postincrement 1

(1,2)

let predecrement = do { x <- get; put (x-1); get }

 runState predecrement 1

(0,0)

https://wiki.haskell.org/State_Monad

Example Codes

runState (modify (+1)) 1

((),2)

runState (gets (+1)) 1

(2,1)

evalState (gets (+1)) 1

2

execState (gets (+1)) 1

1

State Monad Example
(3G)

7 Young Won Lim
2/14/18

put :: s -> State s a

put s :: State s a

put newState = state $ _ -> ((), newState)

-- setting a state to newState

-- regardless of the old state

-- setting the result to ()

get :: State s s

get = state $ \s -> (s, s)

-- getting the current state s

-- also setting the result to s

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Setting and Getting the State

state
State s s

func
s (s, s)

get

state
State s a

func
s (a, s)

s
put

State Monad Example
(3G)

8 Young Won Lim
2/14/18

Types and Values of put and get

state
State s s

func

get

state
State s a

func

put

state
State s s

func
s (s, s)

get

state
State s a

func
s (a, s)

s
put ss

s0 ((), ss)

s0 (s0, s0)

State Monad Example
(3G)

9 Young Won Lim
2/14/18

put :: s -> State s a

put s :: State s a

put newSt = state $ _ -> ((), newSt)

get :: State s s

get = state $ \s -> (s, s)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

wrapped version of put and get

func

()

((), newSt)st

func

st

(st, st)st

put

get

State s a

State s a

 s

newSt

newSt

st

State Monad Example
(3G)

10 Young Won Lim
2/14/18

put :: s -> State s a

put newSt = state $ _ -> ((), newSt)

runState (put newSt) s0 ((), newSt)

get :: State s s

get = state $ \s -> (s, s)

runState (get) s0 (s0, s0)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Executing the state processor

func
((), newSt)st

func

p :: State s a

(st, st)st

s0

((), newSt)

s0

(s0, s0)

applying the function

applying the function

State Monad Example
(3G)

11 Young Won Lim
2/14/18

runState (put 5) 1

 ((),5)

put

set the result value to () and set the state value.

Comments:

 put 5 :: State Int ()

 runState (put 5) :: Int -> ((),Int)

 initial state = 1 :: Int

 final value = () :: ()

 final state = 5 :: Int

https://wiki.haskell.org/State_Monad

State Monad Examples – put

put :: s -> State s a

put newState = state $ _ -> ((), newState)

func
((), newSt)st

1

((), 5)

State Monad Example
(3G)

12 Young Won Lim
2/14/18

runState get 1

 (1,1)

get

set the result value to the state and leave the state unchanged.

Comments:

 get :: State Int Int

 runState get :: Int -> (Int, Int)

 initial state = 1 :: Int

 final value = 1 :: Int

 final state = 1 :: Int

https://wiki.haskell.org/State_Monad

State Monad Examples – get

get :: State s s

get = state $ \s -> (s, s)

func
st

1

(1, 1)

State Monad Example
(3G)

13 Young Won Lim
2/14/18

(return 5) 1 -> (5,1) -- a way of thinking

get 1 -> (1,1) -- a way of thinking

(put 5) 1 -> ((),5) -- a way of thinking

a value of type (State s a) is

a function from initial state s

to final value a and final state s: (a,s).

these are usually wrapped,

but shown here unwrapped for simplicity.

(return 5) state(1 -> (5,1)) -- an actual way

get state(1 -> (1,1)) -- an actual way

(put 5) state(1 -> ((),5)) -- an actual way

https://wiki.haskell.org/State_Monad

Think an unwrapped state processor

Think an unwrapped
state processor

wrapping the
state processor

State Monad Example
(3G)

14 Young Won Lim
2/14/18

Return leaves the state unchanged and sets the result:

-- ie: (return 5) 1 -> (5,1) -- a way of thinking

runState (return 5) 1 (5,1)

Get leaves state unchanged and sets the result to the state:

-- ie: get 1 -> (1,1) -- a way of thinking

runState get 1 (1,1)

Put sets the result to () and sets the state:

-- ie: (put 5) 1 -> ((),5) -- a way of thinking

runState (put 5) 1 ((),5)

https://wiki.haskell.org/State_Monad

State Monad Examples – return, get, and put

State Monad Example
(3G)

15 Young Won Lim
2/14/18

modify :: (s -> s) -> State s ()

modify f = do { x <- get; put (f x) }

gets :: (s -> a) -> State s a

gets f = do { x <- get; return (f x) }

runState (modify (+1)) 1 (+1) 1 → 2 :: s

 ((),2)

runState (gets (+1)) 1 (+1) 1 → 2 :: a

 (2,1)

evalState (gets (+1)) 1 → :: s state

 2

execState (gets (+1)) 1 → :: a result

 1

https://wiki.haskell.org/State_Monad

State Monad Examples – modify and gets

x <- get; put (f x)

x <- get; return (f x)

● inside a monad instance
● unwrapped implementations

of modify and gets

State Monad Example
(3G)

16 Young Won Lim
2/14/18

Return leaves the state unchanged and sets the result:

-- ie: (return 5) 1 -> (5,1) -- a way of thinking

return :: a -> State s a

return x s = (x,s)

Get leaves state unchanged and sets the result to the state:

-- ie: get 1 -> (1,1) -- a way of thinking

get :: State s s

get s = (s,s)

Put sets the result to () and sets the state:

-- ie: (put 5) 1 -> ((),5) -- a way of thinking

put :: s -> State s ()

put x s = ((),x)

https://wiki.haskell.org/State_Monad

Unwrapped Implementation – return, get, and put

(x,s)

(s,s)

((),x)

● inside a monad instance
● unwrapped implementations

of return, get, and put

State Monad Example
(3G)

17 Young Won Lim
2/14/18

a stateful computation is a function that

takes some state and

returns a value along with some new state.

That function would have the following type:

 s -> (a,s)

s is the type of the state and

a the result of the stateful computation.

http://learnyouahaskell.com/for-a-few-monads-more

The Result of a Stateful Computation

s -> (a, s)

s (a, s)

a function is an executable data

when executed, a result is produced

action, execution, result

s -> (a, s)

State Monad Example
(3G)

18 Young Won Lim
2/14/18

inside a monad,

when sc is a stateful computation

then the result of the stateful computation sc

can be assigned to x

x <- sc

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Stateful Computations Inside the State Monad

sc :: State s a

x :: a (the execution result of sc)

s -> (a, s)

the result type

State Monad Example
(3G)

19 Young Won Lim
2/14/18

inside the State monad,

get returns the current monad instance

whose type is State s a

x <- get

the stateful computation is performed

over the current monad instance returned by get

the result of the stateful computation is st::s

thus x will get the st

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

get inside the State Monad

x :: a the execution result of get

func

st

(st, st)st

st

State Monad Example
(3G)

20 Young Won Lim
2/14/18

inside the State monad,

get returns the current monad instance

whose type is State s a

to get the current state st, do

s <- get

s will have the value of the current state st

this is like evalState is called with the current monad instance

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Getting the current state inside the State Monad

func

st

(st, st)st

st

● get
● current monad instance
● stateful computation
● result :: s

State Monad Example
(3G)

21 Young Won Lim
2/14/18

put :: s -> State s a

put newSt = state $ _ -> ((), newSt)

get :: State s s

get = state $ \s -> (s, s)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

put and get inside State Monad

func
st

func
(st0, st0)st0

put
newSt

((), newSt)

get

put :: s -> ()

get :: s

()

st0

stateful computation of put

stateful computation of get

the result type :: ()

the result type :: s

State Monad Example
(3G)

22 Young Won Lim
2/14/18

Most monads are equipped with some "run" functions

such as runState, execState, and so forth.

But, frequent calling such functions inside the monad

shows that the functionality of the monad does not fully exploited

s0 <- get -- read the state of the current instance

let (a,s1) = runState p s0 -- pass the state to p, get new state

put s1 -- save new state

a <- p -- the stateful computation p updates the state to s1

-- the result of the state returned is assigned to a

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Inside Functions and runState Functions

let p = state (\y -> (y, y+1))

State Monad Example
(3G)

23 Young Won Lim
2/14/18

the same binding variable a

the same state s1

s0 <- get

let (a,s1) = runState p s0

put s1

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Redundant computation examples (1)

runState
(a, s)State s a s

p s0 (a, s1)

(a, s1) s0

a <- p

func
(s0, s0)s0

get
s0

func
s0

put
s1

((), s1)

()

the current monad instance

p :: State s a

State Monad Example
(3G)

24 Young Won Lim
2/14/18

a <- p -- the stateful computation p updates the state to s1

-- the result of the state returned is assigned to a

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Redundant computation examples (2)

p :: State s a

stateful computation p return the result a

func

-
(a, s)s

s0 func

a
(a, s)s

s1

a

State Monad Example
(3G)

25 Young Won Lim
2/14/18

collectUntil f comp = do

 st <- get -- Get the current state

 if f st then return [] -- If it satisfies predicate, return

 else do -- Otherwise...

 x <- comp -- Perform the computation s

 xs <- collectUntil f comp -- Perform the rest of the computation

 return (x:xs) -- Collect the results and return them

simpleState = state (\x -> (x,x+1))

*Main> evalState (collectUntil (>10) simpleState) 0

[0,1,2,3,4,5,6,7,8,9,10]

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Inside Functions and runState Functions

func
s (a, s)

a s

simpleState :: State s a

comp :: State s a

x :: a

xs :: [a]

st :: s

State Monad Example
(3G)

26 Young Won Lim
2/14/18

collectUntil f comp = do

 st <- get

 if f st then return []

 else do

 x <- comp -- stateful computation

 xs <- collectUntil f comp

 return (x:xs)

simpleState = state (\x -> (x,x+1))

*Main> evalState (collectUntil (>10) simpleState) 0

[0,1,2,3,4,5,6,7,8,9,10]

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Inside Functions and runState Functions

get st←0 comp : 0 → (0, 1) x←0

get st←1 comp : 1 → (1, 2) x←1

get st←2 comp : 2 → (2, 3) x←2

get st←3 comp : 3 → (3, 4) x←3

get st←4 comp : 4 → (4, 5) x←4

get st←5 comp : 5 → (5, 6) x←5

get st←6 comp : 6 → (6, 7) x←6

get st←7 comp : 7 → (7, 8) x←7

get st←8 comp : 8 → (8, 9) x←8

get st←9 comp : 9 → (9, 10) x←9

get st←10 comp : 10→(10, 11) x←10

State Monad Example
(3G)

27 Young Won Lim
2/14/18

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Stateful Computation of comp

func
(a, s)s

func

0
(a, s)s

1

func

1
(a, s)s

2

0 func

0
(a, s)s

1

func

1
(a, s)s

2

func

2
(a, s)s

3

comp

State Monad Example
(3G)

28 Young Won Lim
2/14/18

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Stateful Computations of put & get

func

a
(a, s)s

s

func

a
(a, s)s

s

func

()
(a, s)s

ns

func

s
(a, s)s

s

ns

get

put

State Monad Example
(3G)

29 Young Won Lim
2/14/18

collectUntil :: MonadState t m => (t -> Bool) -> m a -> m [a]

collectUntil :: (t -> Bool) -> State t a -> State t [a]

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Inside Functions and runState Functions

State Monad Example
(3G)

30 Young Won Lim
2/14/18

collectUntil :: (s -> Bool) -> State s a -> State s [a]

collectUntil f s = step

 where

 step = do a <- s

 liftM (a:) continue

 continue = do s' <- get

 if f s' then return [] else step

simpleState = state (\x -> (x,x+1))

*Main> evalState (collectUntil (>10) simpleState) 0

[0,1,2,3,4,5,6,7,8,9,10]

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Inside function examples

State Monad Example
(3G)

31 Young Won Lim
2/14/18

liftM :: (Monad m) => (a -> b) -> m a -> m b

mapM :: (Monad m) => (a -> m b) -> [a] -> m [b]

liftM lifts a function of type a -> b to a monadic counterpart.

mapM applies a function which yields a monadic value to a list of values,

yielding list of results embedded in the monad.

> liftM (map toUpper) getLine

Hallo

"HALLO"

> :t mapM return "monad"

mapM return "monad" :: (Monad m) => m [Char]

https://stackoverflow.com/questions/5856709/what-is-the-difference-between-liftm-and-mapm-in-haskell

liftM

State Monad Example
(3G)

32 Young Won Lim
2/14/18

module StateGame where

import Control.Monad.State

-- Example use of State monad

-- Passes a string of dictionary {a,b,c}

-- Game is to produce a number from the string.

-- By default the game is off, a C toggles the

-- game on and off. A 'a' gives +1 and a b gives -1.

-- E.g

-- 'ab' = 0

-- 'ca' = 1

-- 'cabca' = 0

-- State = game is on or off & current score

-- = (Bool, Int)

https://wiki.haskell.org/State_Monad

Some Examples (1)

State Monad Example
(3G)

33 Young Won Lim
2/14/18

type GameValue = Int

type GameState = (Bool, Int)

playGame :: String -> State GameState GameValue

playGame [] = do

 (_, score) <- get

 return score

https://wiki.haskell.org/State_Monad

Some Examples (2)

State Monad Example
(3G)

34 Young Won Lim
2/14/18

playGame (x:xs) = do

 (on, score) <- get

 case x of

 'a' | on -> put (on, score + 1)

 'b' | on -> put (on, score - 1)

 'c' -> put (not on, score)

 _ -> put (on, score)

 playGame xs

startState = (False, 0)

main = print $ evalState (playGame "abcaaacbbcabbab") startState

https://wiki.haskell.org/State_Monad

Some Examples (3)

State Monad Example
(3G)

35 Young Won Lim
2/14/18

to generate Int dice - result : a number between 1 and 6

throw results from a pseudo-random generator of type StdGen.

the type of the state processors will be

State StdGen Int

StdGen -> (Int, StdGen)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Dice Examples

State Monad Example
(3G)

36 Young Won Lim
2/14/18

the StdGen type : an instance of RandomGen

randomR :: (Random a, RandomGen g) => (a, a) -> g -> (a, g)

assume a is Int (a, a) : range

and g is StdGen a seed

the type of randomR

randomR (1, 6) :: StdGen -> (Int, StdGen)

already have a state processing function

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

randomR

A seed of the type StdGen

A new seed is generated

by newStdGen

(Int, StdGen)

(a random value, a new seed)

State Monad Example
(3G)

37 Young Won Lim
2/14/18

If you choose to take a seed,

it should be of type StdGen, and you can use randomR

to generate a number from it.

Use newStdGen to create a new seed

(this will have to be done in IO).

> import System.Random

> g <- newStdGen

> randomR (1, 10) g

(1,1012529354 2147442707)

The result of randomR is a tuple

(a random value, a new seed)

https://stackoverflow.com/questions/8416365/generate-a-random-integer-in-a-range-in-haskell

randomR

A seed of the type StdGen

A new seed is generated

by newStdGen

State Monad Example
(3G)

38 Young Won Lim
2/14/18

Otherwise, you can use randomRIO

to get a random number directly in the IO monad,

with all the StdGen stuff taken care of for you:

> import System.Random

> randomRIO (1, 10)

6

https://stackoverflow.com/questions/8416365/generate-a-random-integer-in-a-range-in-haskell

randomR

State Monad Example
(3G)

39 Young Won Lim
2/14/18

randomR (1, 6) :: StdGen -> (Int, StdGen)

rollDie :: State StdGen Int

rollDie = state $ randomR (1, 6)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

randomR

State Monad Example
(3G)

40 Young Won Lim
2/14/18

import Control.Monad.Trans.State

import System.Random

-- The StdGen type we are using is an instance of RandomGen.

randomR :: (Random a, RandomGen g) => (a, a) -> g -> (a, g)

randomR (1, 6) :: StdGen -> (Int, StdGen)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

randomR

State Monad Example
(3G)

41 Young Won Lim
2/14/18

rollDie :: State StdGen Int

rollDie = state $ randomR (1, 6)

rollDie :: State StdGen Int

rollDie = do generator <- get

 let (value, newGenerator) = randomR (1,6) generator

 put newGenerator

 return value

GHCi> evalState rollDie (mkStdGen 0)

6

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

randomR

State Monad Example
(3G)

42 Young Won Lim
2/14/18

rollDice :: State StdGen (Int, Int)

rollDice = liftA2 (,) rollDie rollDie

GHCi> evalState rollDice (mkStdGen 666)

 (6,1)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

randomR

Young Won Lim
2/14/18

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

