Eulerian Cycle (2A)

Copyright (c) 2015-2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Euler Cycle

visits every edge exactly once
the existence of Eulerian cycles
all vertices in the graph have an even degree
connected graphs with all vertices of even degree h ave an Eulerian cycles

Euler Path

visits every edge exactly once
the existence of Eulerian paths
all the vertices in the graph have an even degree
except only two vertices with an odd degree

An Eulerian path starts and ends at different vertices An Eulerian cycle starts and ends at the same vertex.

Conditions for Eulerian Cycles and Paths

An odd vertex $=$ a vertex with an odd degree An even vertex = a vertex with an even degree

Odd Degree and Even Degree

All odd degree vertices
k

All even degree vertices

Euler Cycle Example

en.wikipedia.org

ABCDEFGHIJK
a path denoted by the edge names

All even degree vertices Eulerian Cycles

Euler Cycle Example

ABCDEFGHIJK

en.wikipedia.org

Euler Path and Cycle Examples

Eulerian Path

1. BBADCDEBC
2. CDCBBADEB

Euerian Cycle 1. CDCBBADEBC

Euerian Cycle
2. CCDEBBADC
a path denoted by
the vertex names

5 choices
I Choice

BADE

BADEBBCDC

could be many Eulerian paths (not unique)

Eulerian Path

1. BBADCDEBC BADEBBCDC 2. CDCBBADEB

Euerian Cycle 1. CDCBBADEBC
could be many Eulerian cycles (not unique)

CBBABCDBEDC

loop

Eulerian Cycles of Undirected Graphs

Every vertex of this graph has an even degree. Therefore, this is an Eulerian graph. Following the edges in alphabetical order gives an Eulerian circuit/cycle.

Edge Disjoint Cycle Decomposition

All even vertices

Edge Disjoint Cycles

Eulerian Paths of Undirected Graphs

An undirected graph has an Eulerian trail if and only if exactly zero or two vertices have odd degree, and all of its vertices with nonzero degree belong to a single connected component.

Eulerian Cycles of DiGraphs

A directed graph has an Eulerian cycle if and only if every vertex has equal in degree and out degree, and all of its vertices with nonzero degree belong to a single strongly connected component.

Equivalently, a directed graph has an Eulerian cycle if and only if it can be decomposed into edge-disjoint directed cycles and all of its vertices with nonzero degree belong to a single strongly connected component.

Eulerian Paths of DiGraphs

A directed graph has an Eulerian path
if and only if at most one vertex has (out-degree) - (in-degree) $=1$, at most one vertex has (in-degree) - (out-degree) $=1$, every other vertex has equal in-degree and out-degree, and all of its vertices with nonzero degree belong to a single connected component of the underlying undirected graph.

Seven Bridges of Königsberg

The problem was to devise a walk through the city that would cross each of those bridges once and only once.

Seven and Eight Bridges Problems

7 bridges problem

E lyole X

8 bridges problem
(5)

Eulerian Path

- AEHGFDCB

Nine and Ten Bridges Problems

9 bridges problem

EHGFDCBAI
check how many odd vertices!
odd degree
10 bridges problem

.AEHGFDCBJI

8 bridges - Eulerian Path

AEHGFDCB

9 bridges - Eulerian Path

10 bridges - Eulerian Cycle

AEHGFDCBJI

Fleury's Algorithm

To find an Eulerian_path or an Eulerian_cycle:

1. make sure the graph has either $\mathbf{0}$ or $\mathbf{2}$ odd vertices
2. if there are odd vertex, start where.

If there are 2 odd vertices, start at one of the two vertices
3. follow edges one at a time.

If you have a choice between a bridge and a non-bridge, Always choose the non-bridge
4. stop when you run out of edge

Bridges

A bridge edge

Removing a single edge from a connected graph
can make it disconnected

Non-bridge edges

Loops cannot be bridges
Multiple edges cannot be bridges

Bridge examples in a graph

Bridges must be avoided, if possible

FEACB

If there exists other choice other than a bridge The bridge must not be chosen.

Fleury's Algorithm (1)

$F E$

FEACB

Fleury's Algorithm (2)

FEACB
BA: bridge
$B D$: chosen

FEACBD
DB: bridge
DC: chosen

FEACBDC
CF: bridge
CF: chosen
no other choice

FEACBDCF
FD: bridge
FD: chosen
no other choice

Fleury's Algorithm (3)

FEACBDCFD
DB: bridge
DB: chosen
no other choice

FEACBDCFDB
BA: bridge
BA: chosen
no other choice

edge names
(F) $\overbrace{\mid-2-3-4-5-6-7-8-9-10}$
E. path.

References

[1] http://en.wikipedia.org/
[2]

Hamiltonian Cycle (3A)

Copyright (c) 2015-2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Hamiltonian Cycles

A Hamiltonian path is a path in an undirected or directed graph that visits each vertex exactly once.
(A Hamiltonian cycle is
(a Hamiltonian path that is a cycle.)
the Hamiltonian path problem is NP-complete.

Hamiltonian Cycles

The above as a twodimensional planar graph

Hamiltonian Cycles

Hamiltonian Cycles

- a complete graph with more than two vertices is Hamiltonian
- every cycle graph is Hamiltonian
- every tournament has an odd number of Hamiltonian paths
- every platonic solid, considered as a graph, is Hamiltonian
- the Cayley graph of a finite Coxeter group is Hamiltonian

Complete Graphs and Cycle Graphs

Complete Graphs

Tournament Graphs

https://en.wikipedia.org/wiki/Tournament_(graph_theory

Platonic Solid Graphs

Tetrahedron	Cube	Octahedron	Dodecahedron	Icosahedron
Four faces	Six faces	Eight faces	Twelve faces	Twenty faces
				(Animation) (Animation) (3D model)
(3D model)			(3D model)	
(3D model)				

Hamiltonian Cycles - Properties (1)

Any Hamiltonian cycle can be converted
to a Hamiltonian path by removing one of its edges,
but a Hamiltonian path can be extended to
Hamiltonian cycle only if its endpoints are adjacent.
All Hamiltonian graphs arebiconnected, but a biconnected graph need not be Hamilitonian

Biconnected Graph

a biconnected graph is a connected and "nonseparable" graph, meaning that if any one vertex were to be removed, the graph will remain connected.
a biconnected graph has no articulation vertices.
The property of being 2-connected is equivalent to biconnectivity, with the caveat that the complete graph of two vertices is sometimes regarded as biconnected but not 2-connected.

$$
\begin{aligned}
& \text { Lit } 1 \\
& \text { か Do }
\end{aligned}
$$

Biconnected Graph Examples

A biconnected graph on four vertices and four edges

A graph that is not biconnected. The removal of vertex x would disconnect the graph.

bicumets

A biconnected graph on five vertices and six edges

A graph that is not biconnected. The removal of vertex x would disconnect the graph.

Hamiltonian Cycles - Properties (2)

CAn Eulerian graph G:
a connected graph in which every vertex has even degree $\rightarrow E$. Cy Cle
An Eulerian graph G necessarily has an Euler path, a closed walk passing through each edge of G exactly once.

This Eulerian path corresponds to a Hamiltonian cycle in the line graph $\mathrm{L}(\mathrm{G})$, so the line graph of every Eulerian graph is Hamiltonian.

Line graphs may have other Hamiltonian cycles that do not correspond to Euler paths.

The line graph $L(G)$ of every Hamiltonian graph G is itself Hamiltonian, regardless of whether the graph G is Eulerian.

Line Graphs

In the mathematical disciphne of graph theon the line graph of an undirected graph (G)s another graph L(G) that represents the adjacencres between edges of G.

Given a graph G, its line graph $L(G)$ is a graph such that

- each vertex of $\mathrm{L}(\mathrm{G})$ represents an edge of G ; and
- two vertices of $L(G)$ are adjacent if and only if their corresponding edges share a common endpoint ("are incident") in G.

That is, it is the intersection graph of the edges of G , representing each edge by the set of its two endpoints.

Line Graphs Examples

$$
\begin{aligned}
& \begin{array}{ccc}
2 & 1 & 8 \\
E^{\circ} & 1 & 0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \pi \\
& \infty \\
& \infty \\
& \infty
\end{aligned}
$$

Hamiltonian Cycles - Properties (3)

A tournament (with more than two vertices) is Hamiltonian if and only if it is strongly connected.

The number of different Hamiltonian cycles in a complete undirected graph on n vertices is ($n-1$)! / 2 in a complete directed graph on n vertices is $(n-1)$!.

These counts assume that cycles that are the same apart from their starting point are not counted separately.

Strongly Connected Component

a directed graph is said to be strongly connected or diconnected if every vertex is reachable from every other vertex.

The strongly connected components or diconnected components of an arbitrary directed graph form a partition into subgraphs that are themselves strongly connected.

Dual Graph

the dual graph of a plane graph G is a graph that has a vertex for each face of G.

The dual graph has an edge whenever two faces of G are separated from each other by an edge,
and a self-loop when the same face appears on both sides of an edge.
each edge e of G has a corresponding dual edge, whose endpoints are the dual vertices corresponding to the faces on either side of \mathbf{e}.

$$
\begin{aligned}
& 0 \rightarrow O V-L-G N D \\
& 1 \rightarrow 5 V-H-V D D
\end{aligned}
$$

(1)
$A \quad B \quad C \quad A+B \quad C(A+B) \sim C(A+B)$
$\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 1\end{array}$
$0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1$

A	B	C	$A+B$	$C(A+B)$	$\sim C(A+B)$
0	0	0	0	0	1
0	0	1	0	0	1
0	1	0	1	0	1
0	1	1	1	1	6
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	0	1
1	1	1	1	1	6

(5)

(2)

Dual Graph

https://en.wikipedia.org/wiki/Hamiltonian_path

References

[1] http://en.wikipedia.org/
[2]

Minimum Spanning Tree (5A)

Copyright (c) 2015-2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Minimum Spânnjing (Tree

a subset of the edges of a connected, edge-weighted (un)directed graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight.
a spanning tree whose sum of edge weights is as small as possible.

More generally, any edge-weighted undirected graph (not necessarily connected) has a minimum spanning forest, which is a union of the minimum spanning trees for its connected components.

Types of Shortest Path Problems

A planar graph and its minimum spanning tree. Each edge is labeled with its weight, which here is roughly proportional to its length.

Properties (1)

Possible multiplicity
If there are \mathbf{n} vertices in the graph,
then each spanning tree has $\mathbf{n - 1}$ edges.

Uniquenss

If each edge has a distinct weight
then there will be only one, unique minimum spanning tree.
this is true in many realistic situations
Minimum-cost subgraph
If the weights are positive, then a minimum spanning tree is in fact a minimum-cost subgraph connecting all vertices, since subgraphs containing cycles necessarily have more total weight.

Properties (2)

Cycle Property

For any cycle \mathbf{C} in the graph, if the weight of an edge e of \mathbf{C} is larger than the individual weights of all other edges of \mathbf{C}, then this edge cannot belong to a MST.

Cut property

For any cut C of the graph, if the weight of an edge \mathbf{e} in the cut-set of \mathbf{C} is strictly smaller than the weights of all other edges of the cut-set of \mathbf{C}, then this edge belongs to all MSTs of the graph.

Properties (3)

Minimum-cost edge

If the minimum cost edge \mathbf{e} of a graph is unique, then this edge is included in any MST.

Contraction

If \mathbf{T} is a tree of MST edges, then we can contract \mathbf{T} into a single vertex while maintaining the invariant that the MST of the contracted graph plus T gives the MST for the graph before contraction.

Borůvka's algorithm

Input: A graph G whose edges have distinct weights
Initialize a forest \mathbf{F} to be a set of one-vertex trees, one for each vertex of the graph.
While F has more than one component:
Find the connected components of F and label each vertex of G by its component Initialize the cheapest edge for each component to "None"

For each edge uv of \mathbf{G} :

If \mathbf{u} and \mathbf{v} have different component labels:
If $\mathbf{u v}$ is cheaper than the cheapest edge
for the component of \mathbf{u} :
Set uv as the cheapest edge for the component of \mathbf{u}
If uv is cheaper than the cheapest edge
for the component of \mathbf{v} :
Set uv as the cheapest edge for the component of \mathbf{v}
For each component whose cheapest edge
is not "None":
Add its cheapest edge to F
Output: \mathbf{F} is the minimum spanning forest of \mathbf{G}.

Borůvka's algorithm examples (1)

Borůvka's algorithm examples (2)

https://en.wikipedia.org/wiki/Bor\�\�vka\'s_algorithm

Borůvka's algorithm examples (3)

tree no syce

Spanning... A, B, C, D, E, F, G
minimum $\cdots 6+4+n+10+5+8=$

Kruskal's algorithm

```
KRUSKAL(G):
1 A = \varnothing
2 foreach v G G.V:
3 MAKE-SET(v)
4 foreach (u,v) in G.E ordered by weight(u,v), increasing:
if FIND-SET(u) = FIND-SET(v):
6 A = A \cup{(u,v)}
UNNION(u,v)
8 return A
```


Kruskal's algorithm examples (1)

Kruskal's algorithm examples (2)

Kruskal's algorithm examples (3)

Prim's algorithm

a greedy algorithm that finds a minimum spanning tree for a weighted undirected graph.
operates by building this tree one vertex at a time, from an arbitrary starting vertex, at each step adding the cheapest possible connection from the tree to another vertex.

1. Initialize a tree with a single vertex, chosen arbitrarily from the graph.
2. Grow the tree by one edge:
of the edges that connect the tree to vertices not yet in the tree, find the minimum-weight edge, and transfer it to the tree.
3. Repeat step 2 (until all vertices are in the tree).

Prim's algorithm

1. Associate with each vertex \mathbf{v} of the graph a number $\mathbf{C}[\mathbf{v}]$ (the cheapest cost of a connection to v) and an edge $\mathrm{E}[\mathrm{v}]$ (the cheapest edge).
Initial values: $\mathrm{C}[\mathrm{v}]=+\infty, \mathrm{E}[\mathrm{v}]=$ flag for no connection
2. Initialize an empty forest \mathbf{F} and a set \mathbf{Q} of vertices that have not yet been included in F
3. Repeat the following steps until \mathbf{Q} is empty:
a. Find and remove a vertex \mathbf{v} from \mathbf{Q} having the minimum possible value of $C[v]$
b. Add v to F and, if $E[v]$ is not the special flag value, also add $\mathrm{E}[\mathrm{v}]$ to F
c. Loop over the edges vw connecting v to other vertices \mathbf{w}. For each such edge, if w still belongs to Q and vw has smaller weight than $\mathrm{C}[\mathrm{w}]$, perform the following steps:
I) Set $\mathbf{C}[w]$ to the cost of edge $\mathbf{v w}$
II) Set $\mathrm{E}[\mathrm{w}]$ to point to edge vw.

Return F

Prim's algorithm

Prim's algorithm starting at vertex A.
In the third step, edges $B D$ and $A B$ both have weight 2, so $B D$ is chosen arbitrarily.
After that step, $A B$ is no longer a candidate for addition to the tree because it links two nodes that are already in the tree.

Prim's algorithm ex

Prim's algorithm examples (2)

Prim's algorithm examples (3)

	(5) 9,15 (6) Here you have to choose between C,E and G. C is 8 away from \mathbf{B}, \mathbf{E} is 7 away from \mathbf{B}, and \mathbf{G} is 11 away from \mathbf{F}. \mathbf{E} is closer, so we mark the vertex \mathbf{E} and the edge EB. Two other edges were marked in red because both vertices that join were added to the tree.			
		null	C, G	$\begin{aligned} & A, D, F, \\ & B, E \end{aligned}$
	Only \mathbf{C} and \mathbf{G} are available. \mathbf{C} is 5 away from \mathbf{E}, and \mathbf{G} is 9 away from \mathbf{E}. Choose \mathbf{C}, and mark with the $\operatorname{arc} \mathbf{E C}$. The $\mathbf{B C}$ arc is also marked with red.	null	G	$\begin{aligned} & \text { A, D, F, } \\ & \text { B, E, C } \end{aligned}$
	\mathbf{G} is the only outstanding vertex, and it is closer to \mathbf{E} than to \mathbf{F}, so EG is added to the tree. All vertices are already marked, the minimum expansion tree is shown in green. In this case with a weight of 39 .	null	null	A, D, F, B, E, C, G

References

[1] http://en.wikipedia.org/
[2]

