
Laurent Series and z-Transform
- Geometric Series
Time Shift A
TITLE STITLE

20180912 Wed

Copyright (c) 2016 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Anti-Causal Signal
$$a(n) => -f(z), -X(z)$$

 $(n < 0)$ $(|z| > P)$ $(|z| < P^{-1})$
 $\delta_n = (\frac{1}{2})^n$ $(n < 0)$
 $f_2(z) = (\frac{1}{2})^1 z^4 + (\frac{1}{2})^2 z^2 + (\frac{1}{2})^3 z^3 + \dots = \frac{(\frac{2}{3})}{1 - (\frac{2}{3})}$
 $X_3(z) = (\frac{1}{2})^1 z^4 + (\frac{1}{2})^2 z^2 + (\frac{1}{2})^3 z^3 + \dots = \frac{(2z)}{1 - (2z)}$
 $\delta_n = (\frac{1}{2})^n$ $(n < 0)$
 $f_1(z) = \frac{(\frac{2}{3})}{1 - (\frac{2}{3})} \longrightarrow \frac{2}{z - 2} = -f(z) (|z| > 2)$
 $X_3(z) = -\frac{(2z)}{1 - (\frac{2}{3})} \longrightarrow \frac{2}{05 - z} = -X(z) (|z| < 0.5)$
 $\delta_n' = -(\frac{1}{2})^n$ $(n < 0)$
 $f(z) = \frac{2}{2 - z} \longrightarrow -\frac{(\frac{2}{3})}{1 - (\frac{2}{3})} (|z| < 2)$
 $X(z) = \frac{z}{z - z} \longrightarrow -\frac{(2z)}{1 - (2z)} (|z| < 0.5)$

Inverse
$$Z$$
 $\xi \leftarrow \xi^{-1}$, $\operatorname{Roc}(\xi) \leftarrow \operatorname{Roc}(\xi^{-1})$

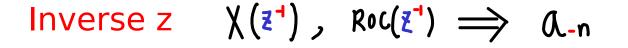
$$\begin{array}{c} causad \\ f(z) = \frac{2}{2-z} & (|z| < 2) \\ X(z) = \frac{2}{z-z} & (|z| > 0.5) \end{array} \quad f(z^{-1}) = \frac{2}{z-z} & (|z| > 0.5) \\ X(z^{-1}) = \frac{2}{z-z} & (|z| > 0.5) \end{array} \quad X(z^{-1}) = \frac{2}{z-z} & (|z| < 2) \end{array}$$

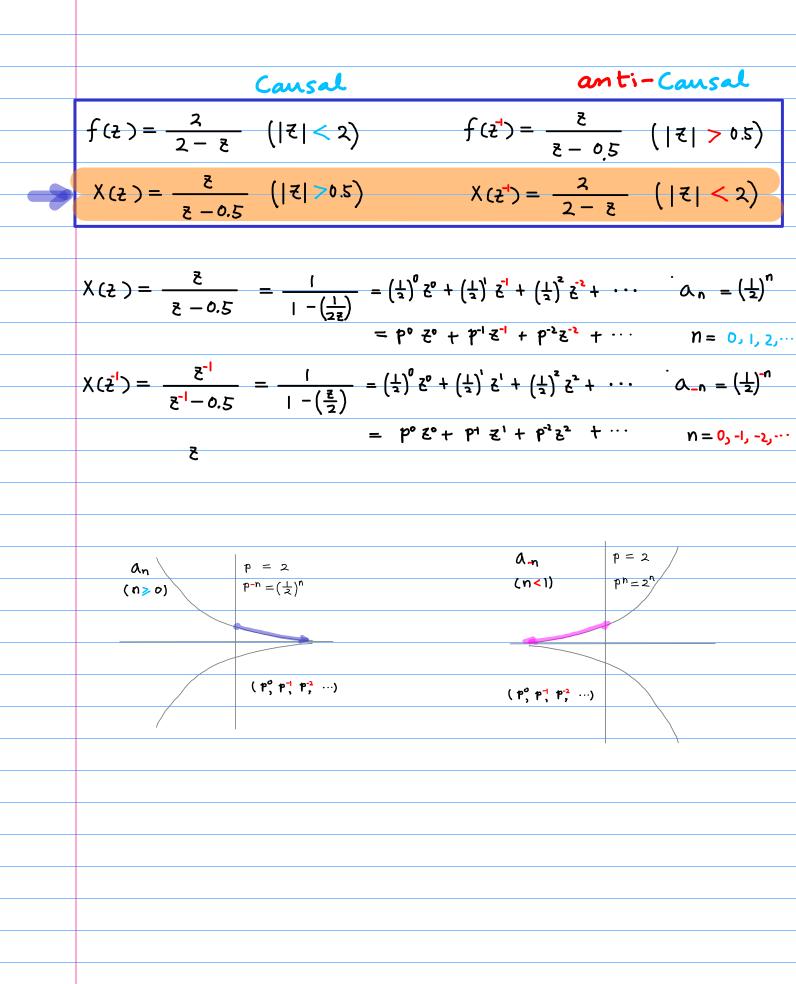
$$\begin{array}{c} f(z^{-1}) = \frac{2}{z-z} & (|z| > 0.5) \\ X(z^{-1}) = \frac{2}{z-z} & (|z| > 0.5) \end{array} \quad X(z^{-1}) = f(z) = \frac{2}{z-z} & (|z| < 2) \end{array}$$

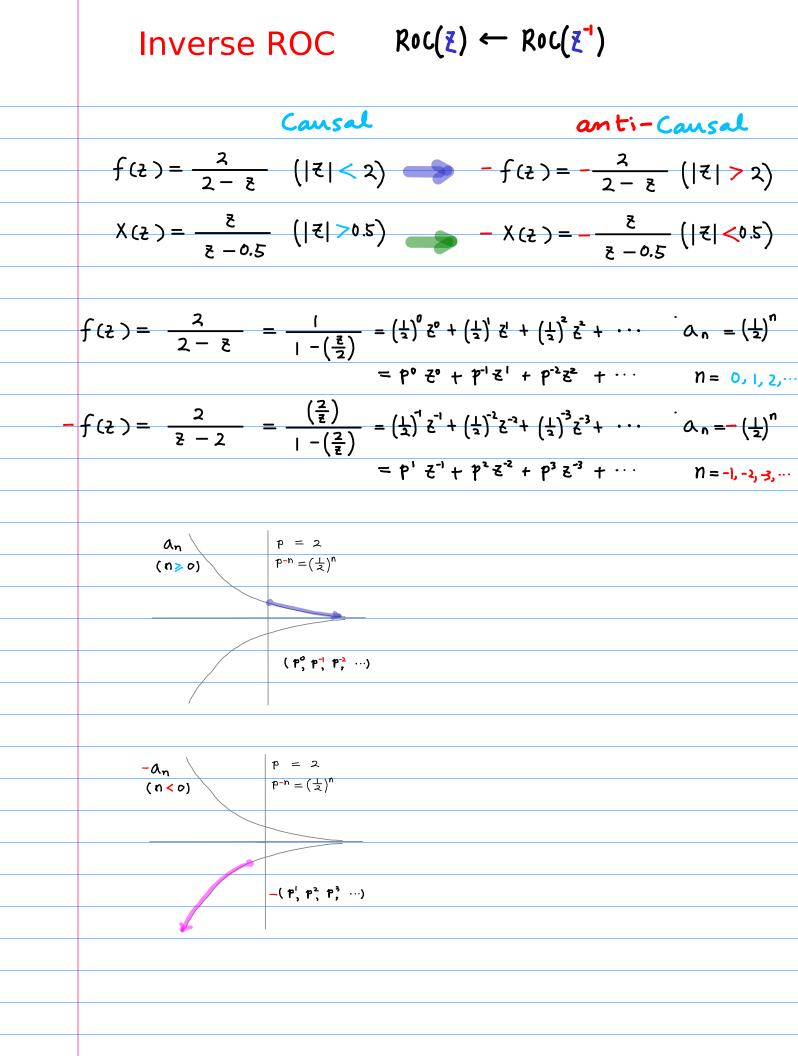
$$\begin{array}{c} f(z^{-1}) = x_{(2)} & \text{Laurent Series (anti-causal signal)} \\ \text{with the same formula as causal X(z)} \end{array}$$

$$\begin{array}{c} f(z^{-1}) = x_{(2)} & \text{Laurent Series (anti-causal signal)} \\ \text{with the same formula as causal X(z)} \end{array}$$

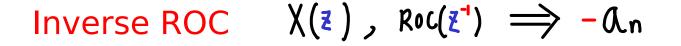
$$\begin{array}{c} f(z^{-1}) = f(z) & z^{-1} \\ \text{Transform (anti-causal signal)} \\ \text{with the same formula as causal f(z)} \end{array}$$

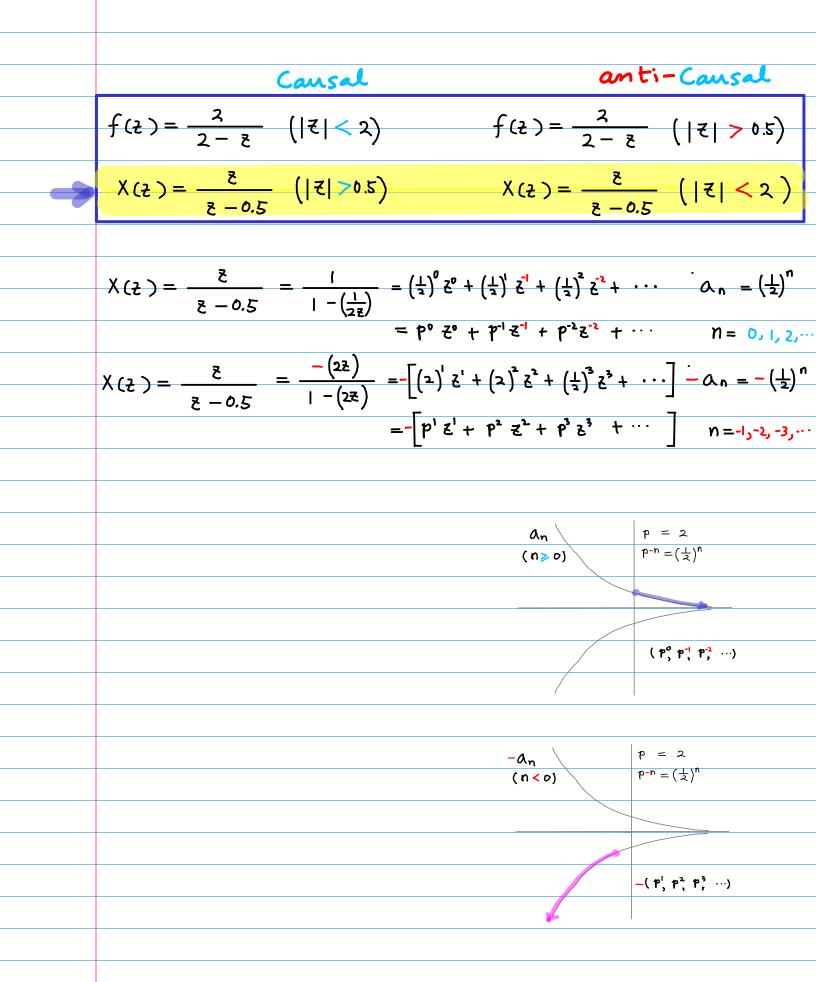





Inverse z $f(z^{-1})$, $Roc(z^{-1}) \Longrightarrow Q_{-n}$

$$\begin{array}{c}
\text{Cansel} \\
\text{f(z)} = \frac{2}{2-z} & (|z| > 2) \\
f(z) = \frac{2}{2-z} & (|z| > 0.5) \\
\chi(z) = \frac{2}{z-z} & (|z| > 0.5) \\
\chi(z) = \frac{2}{z-z} & (|z| > 0.5) \\
\chi(z) = \frac{2}{2-z} & (|z| > 0.5) \\
f(z) = \frac{2}{2-z} & (|z| < 2) \\
\end{array}$$


$$\begin{array}{c}
\text{f(z)} = \frac{2}{2-z} & (|z| > 0.5) \\
= p^{2} z^{2} + p^{3} z^{4} + p^{3} z^{4} + \cdots & n = 0, 1, 2, \cdots \\
f(z^{4}) = \frac{2}{2-z^{4}} & (1-(\frac{1}{2})) \\
= p^{2} z^{2} + p^{3} z^{4} + (\frac{1}{2})^{3} z^{4} + \cdots & n = 0, 1, 2, \cdots \\
f(z^{4}) = \frac{2}{2-z^{4}} & (1-(\frac{1}{2})) \\
= p^{2} z^{2} + p^{3} z^{4} + p^{3} z^{4} + \cdots & n = 0, 1, 2, \cdots \\
\begin{array}{c}
\text{an} & (n > 0) \\
p^{n} = 2 \\
(p^{n}, p^{n}, (\frac{1}{2})^{n} \\
(p^{n}, p^{n}, (\frac{1}{2})^{n} \\
(p^{n}, p^{n}, (\frac{1}{2})^{n} \\
\end{array}$$



Inverse ROC f(z), $Roc(z') \implies -An$

$$f(z) = \frac{1}{1 - (\frac{1}{2z})} (|z| < 2) \qquad A_n = (\frac{1}{2})^n (n < 0)$$

$$f(z) = \frac{1}{1 - (\frac{1}{2z})} (|z| < 2) \qquad f(z) = \frac{(\frac{1}{2})}{1 - (\frac{1}{2z})} (|z| > 2)$$

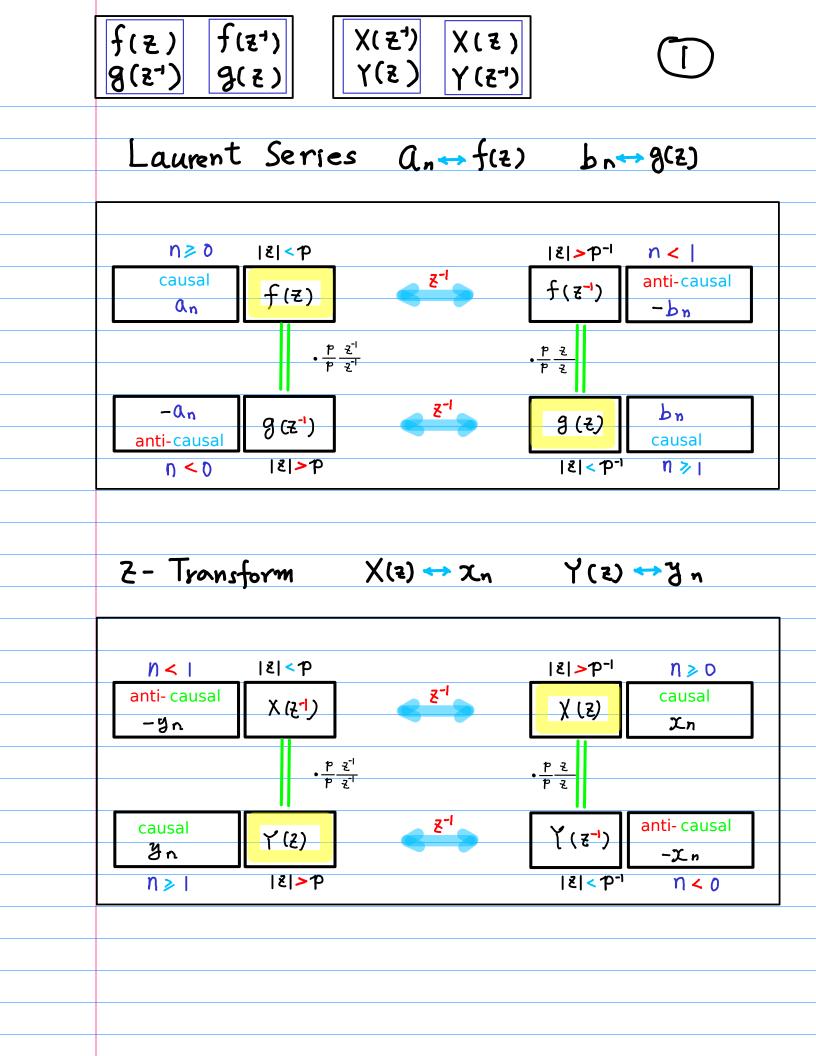
$$\chi(z) = \frac{1}{1 - (\frac{1}{2z})} (|z| < 2) \qquad \chi(z) = \frac{(1z)}{1 - (2z)} (|z| < 0z)$$

$$f(z) = \frac{2}{2 - z} (|z| < 2) \qquad f(z) = \frac{2}{z - 2} (|z| > 2)$$

$$\chi(z) = \frac{z}{z - z} (|z| < 2) \qquad f(z) = \frac{2}{z - 2} (|z| < 2)$$

$$\chi(z) = \frac{z}{z - 0.5} (|z| > 0z) \qquad \chi(z) = \frac{z}{0.5 - z} (|z| < 0z)$$

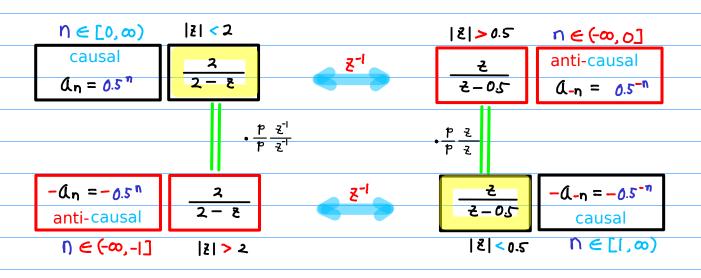
$$f(z) = \frac{1}{1 - (2z)} (|z| < 0z) \qquad f(z) = \frac{z}{0.5 - z} (|z| < 0z)$$


$$f(z) = \frac{1}{1 - (2z)} (|z| < 0z) \qquad f(z) = \frac{(\frac{1}{2z})}{1 - (\frac{1}{2z})} (|z| < 0z)$$

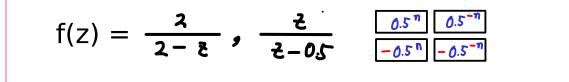
$$f(z) = \frac{1}{1 - (2z)} (|z| < 2) \qquad \chi(z) = \frac{(\frac{z}{2})}{1 - (\frac{z}{2})} (|z| < 0z)$$

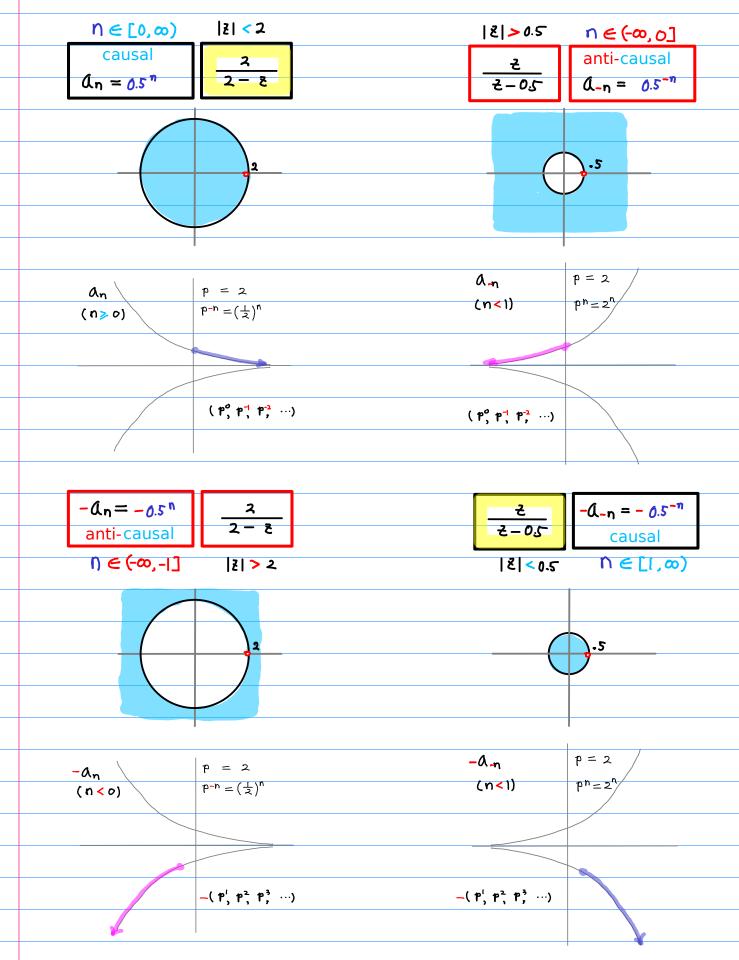
$$f(z) = \frac{1}{1 - (2z)} (|z| < 0z) \qquad f(z) = \frac{(z)^n}{1 - (\frac{z}{2})} (|z| < 2)$$

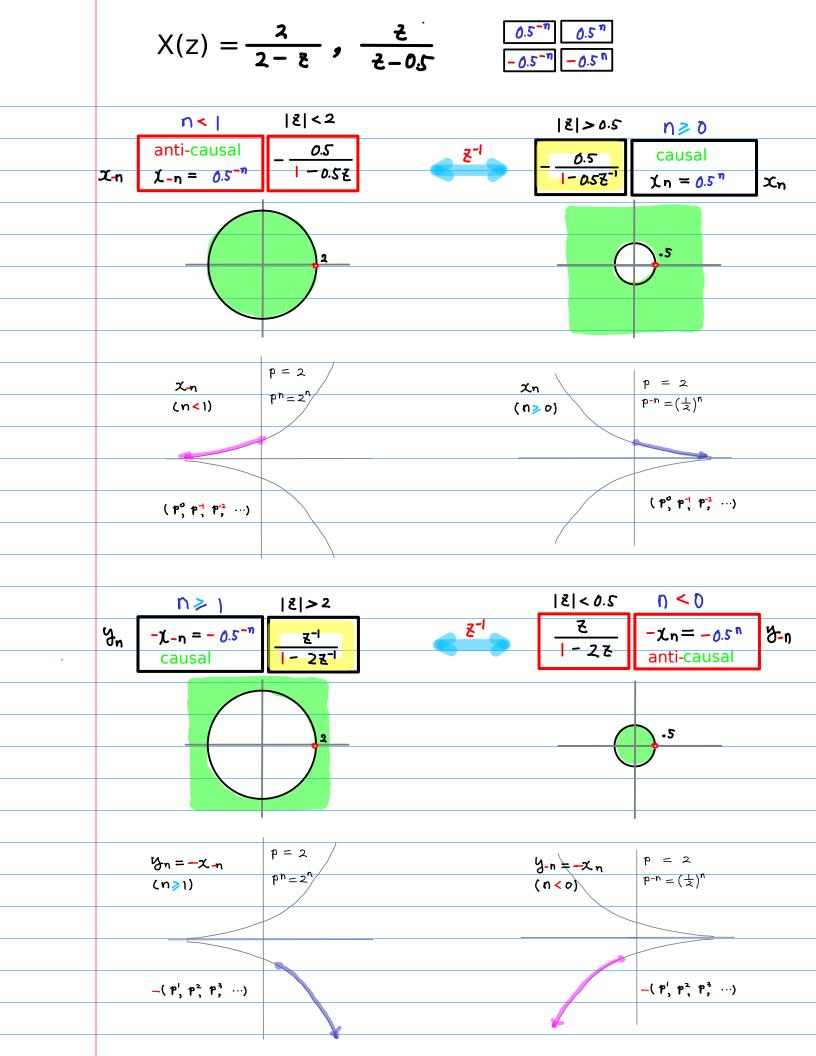
$$f(z) = \frac{z}{0.5 - z} (|z| < 0z) \qquad f(z) = \frac{z}{0.5 - z} (|z| < 0z)$$

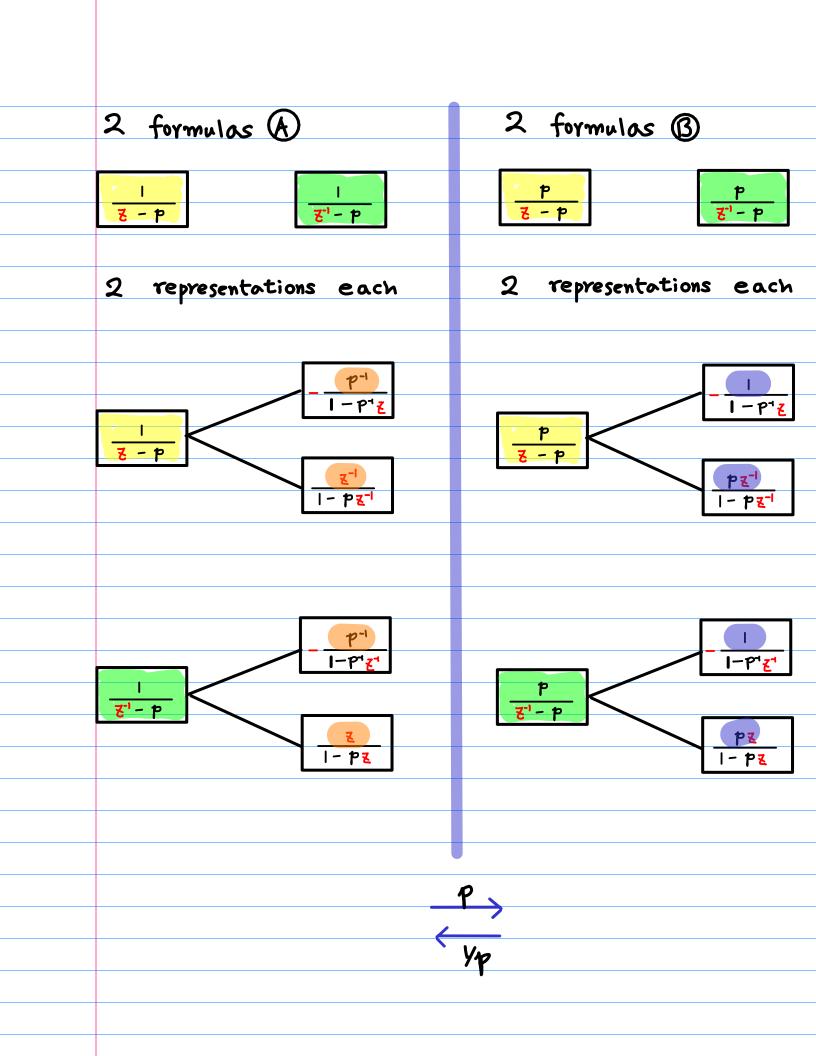

$$f(z) = \frac{z}{z - z} (|z| < 0z) \qquad f(z) = \frac{z}{z - z} (|z| < 2)$$

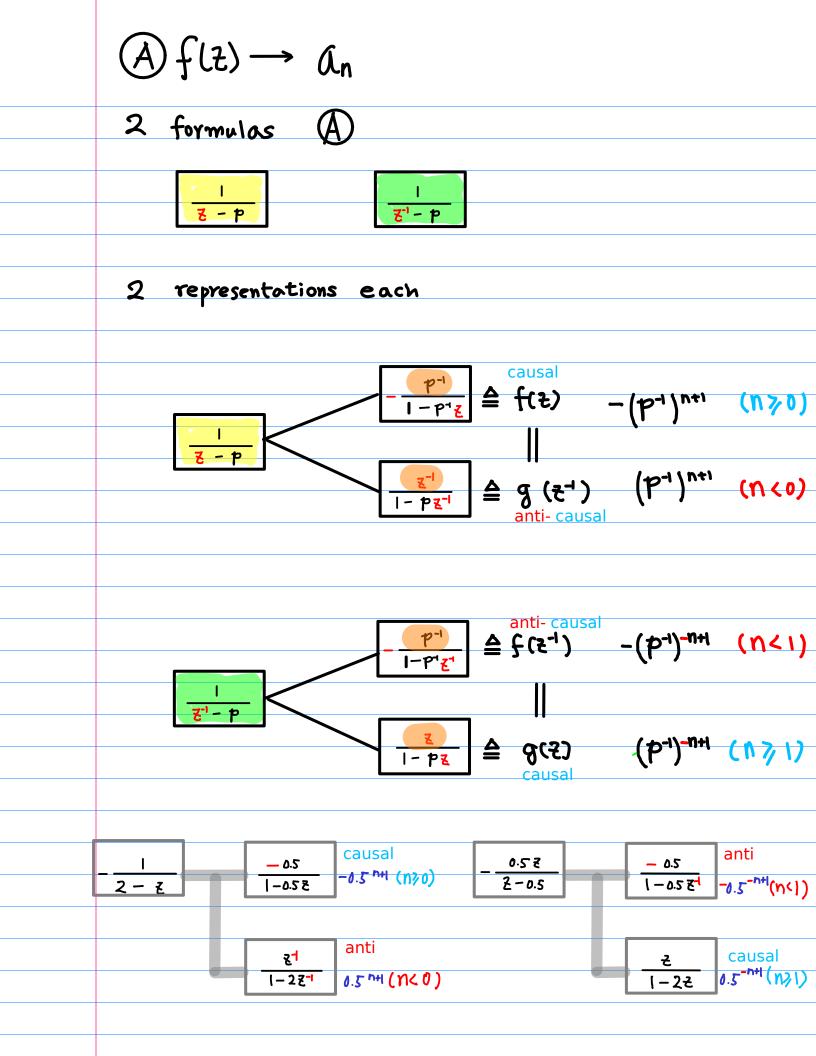
f(z) f(z g(z') g(ε ⁻¹)	モ ¹) X(そ) (そ) Y(そ ¹)		2	
Laurent	Series	Qn ↔ f(2)	-U-4=	:p v ↔ ð(5)	
Causal An		Z-!		anti-causal Q_n	
- anti-causal		2-1		-0-n causal	
Z- Transf	orm X	((z) 🕶 Xn	¥ (٤) ٩	→ Zn = -Z-	
anti- causal X-n		<u>z</u> -1		causal Xn	
causal -X-n		2-1		anti- causal -X n	

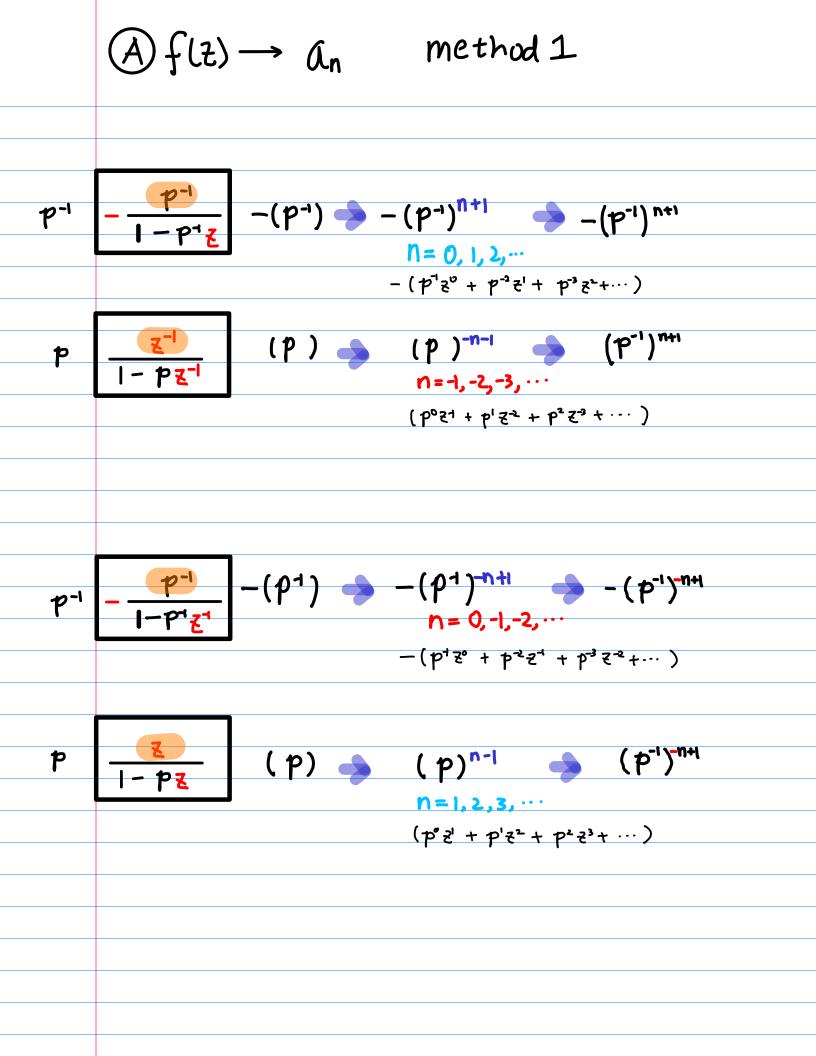


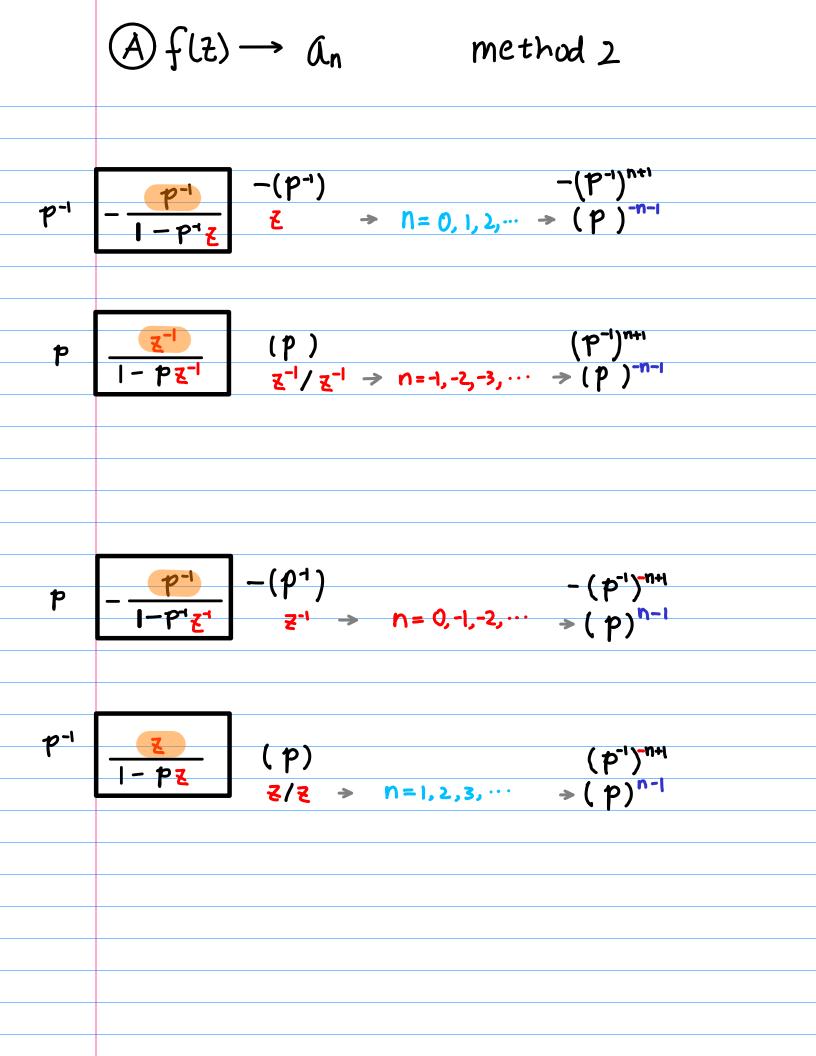


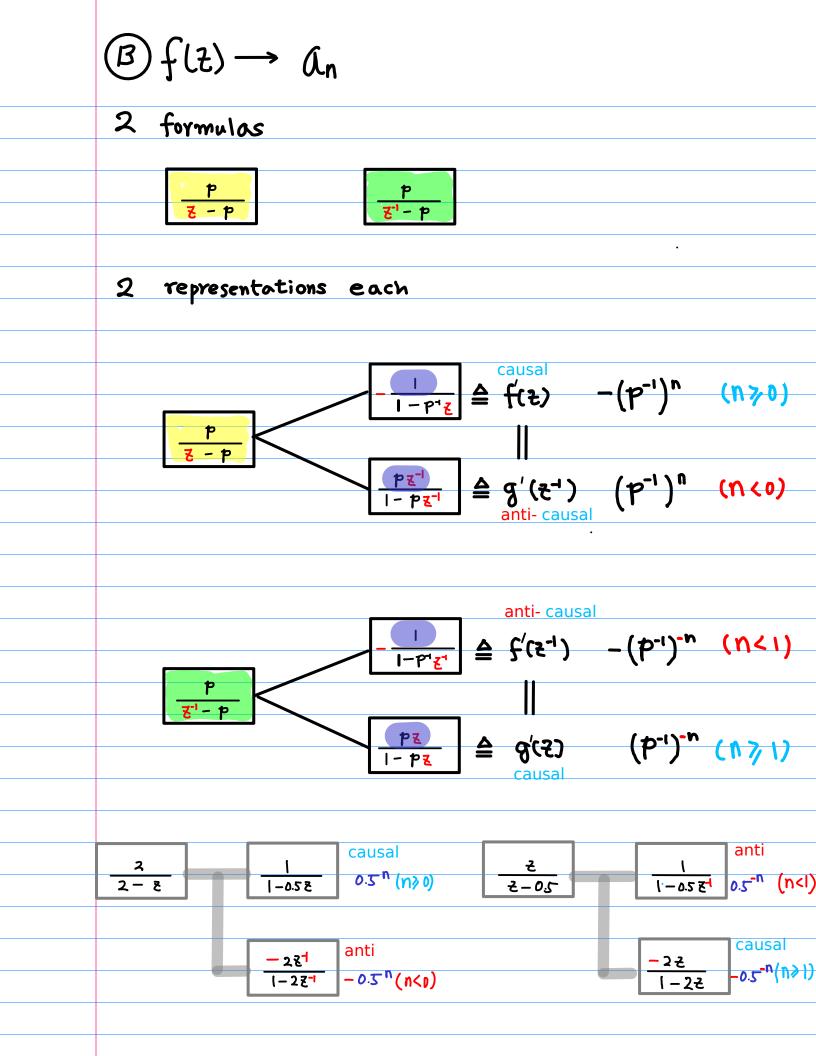

X(z) z-Transform

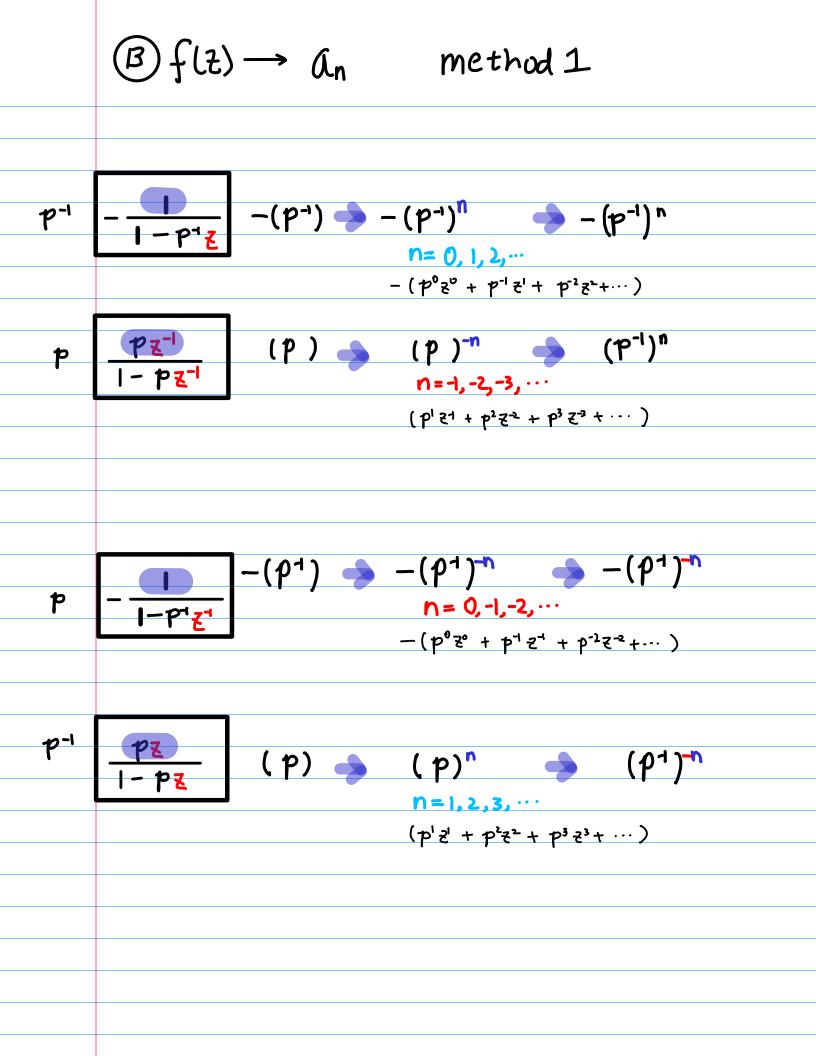

•

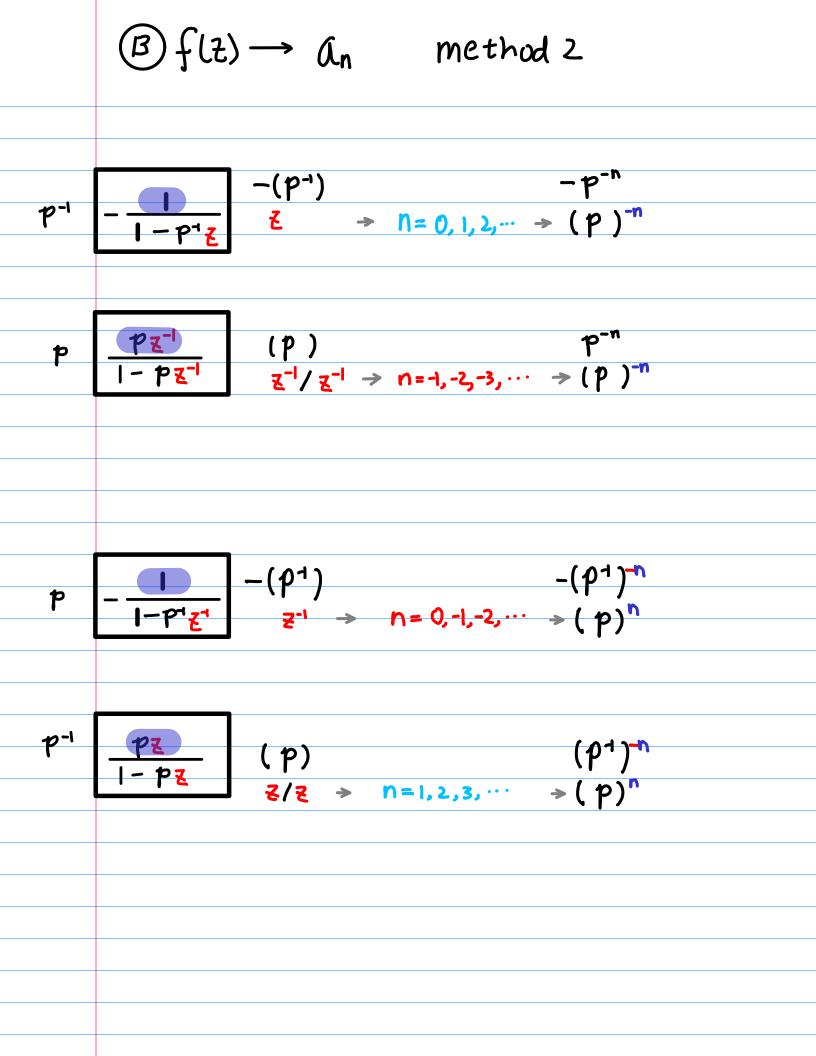


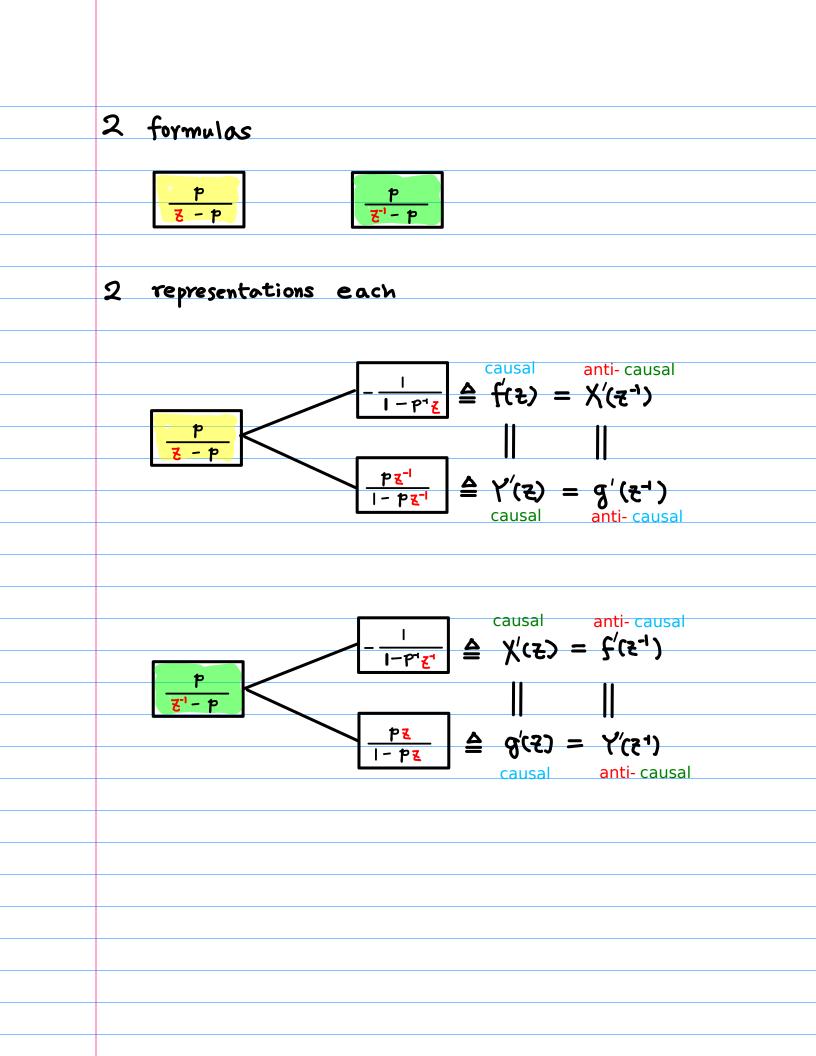


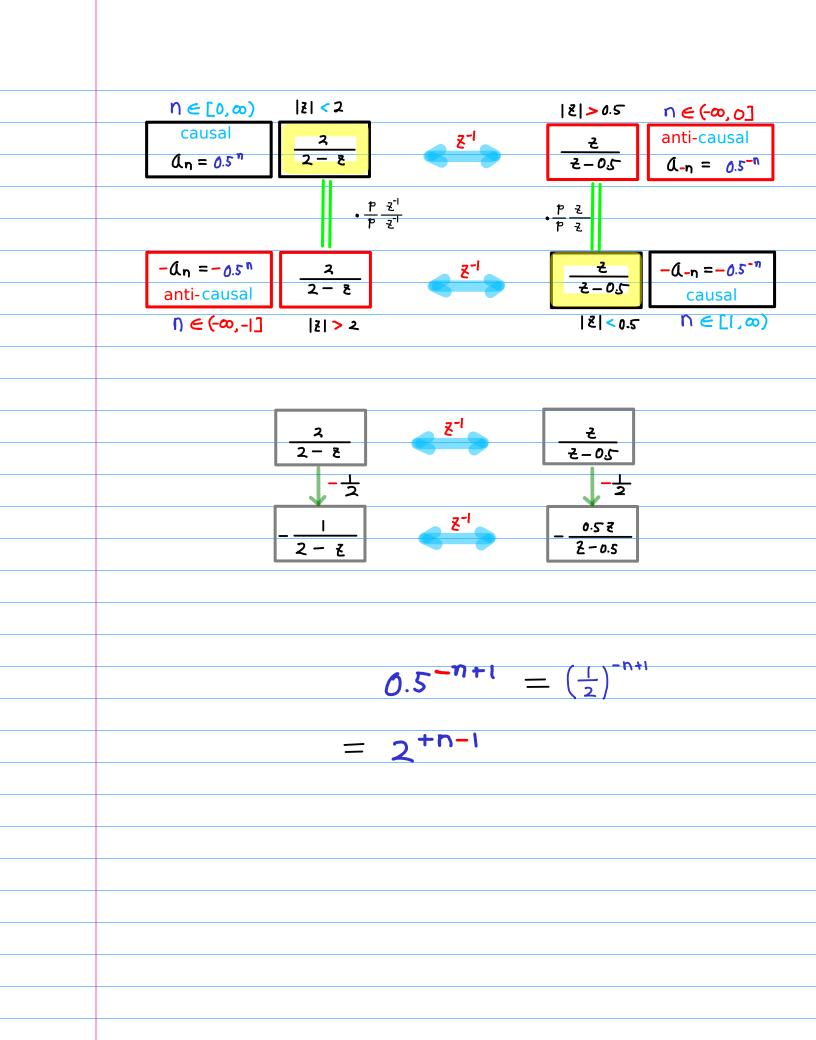


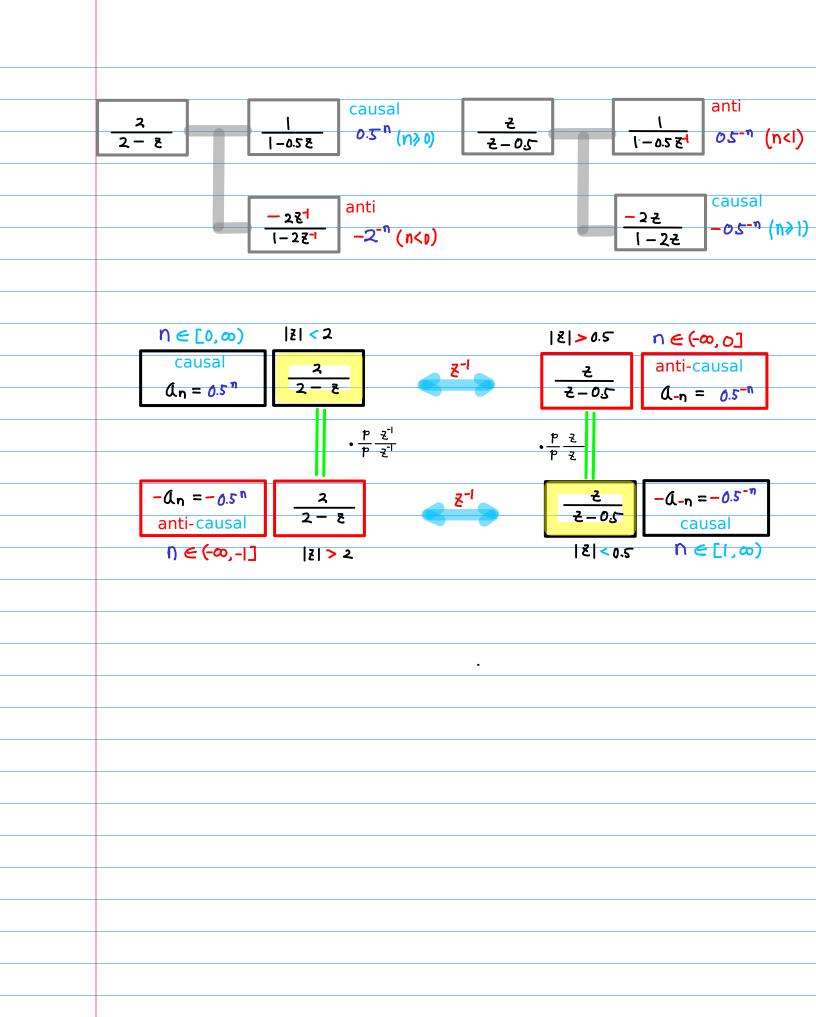












2 2- E	 -0.5 E	causal 0.5ⁿ (n} 0)	<u>そ</u> そ-05	<u>ا</u> ۱ – ۵۰۶ ک ^{ور}	anti 0.5 ⁻ⁿ (n<1)
		anti – 0.5 ⁿ (n<0)		<u>-2そ</u> し-2そ	causal −o.5 ⁻ⁿ (ħ≥)
$-\frac{1}{2-\xi}$	<u> </u>	causal -0.5 ht (n70)	<u>- 0.5 2</u> 2-0.5	<u> </u>	anti -0.5 ⁻ⁿ⁺¹ (n<1)
	₹ <mark>1</mark> 1-2₹1	anti 0.5 "+1 (N< 0)		<u>-</u> -22	causal ∂.5 ^{-n+l} (n≩l)

-	<u>ス</u> <u>そ</u> 2-を)そ-0	<u></u> , √ <i>S</i> .	- <u>0.5</u> -05E]	<u>ह</u> - २ह		
	$h \in [0, \infty)$ causal $a_n = 0.5^n$	$ \xi < 2$ $\frac{2}{2-\xi}$ $\frac{p}{p} \frac{\xi^{-1}}{\xi}$	Z-1	$ \mathcal{E} > 0.5$ $\frac{\mathcal{E}}{\mathcal{E} - 0.5}$ $\frac{\mathcal{P}}{\mathcal{E}}$	$n \in (-\infty, o]$ anti-causal anti-causal	
	$-a_n = -0.5^n$ anti-causal $(n) \in (-\infty, -1]$	2- E 2 > 2	Z-1	<u>-</u> - <u>२</u> -05 १ <0.5	$-a_{-n} = -0.5^{-n}$ causal $n \in [1, \infty)$	
- An	N ∈ [0,∞) causal -0.5 ⁿ⁺¹	2 < 2 - <u>0.5</u> -0.5 <u>2</u>	<u>z</u> -1	$ \mathcal{E} > 0.5$ $-\frac{0.5}{1-0.5 \mathcal{E}^{-1}}$	$n \in (-\infty, 0]$ anti-causal -0.5^{-n+1} -2^{+n-1}	
b.	o.s ⁿ⁺¹ anti-causal Ŋ ∈ (-∞,-]	<u>र</u> -। - २ ह ^{-।} १ > २	2-1	<u>ट</u> - २ट १ <0.5	$\frac{2^{+n-l}}{0 \cdot s^{-n+1}}$ causal $h \in [1, \infty)$	

$\frac{1}{2-\frac{2}{2}} = \frac{-0.5}{1-0.5 \epsilon} = \frac{-0.5}{-0.5 \epsilon} = \frac{-0.5 \epsilon}{-0.5 \epsilon} = \frac{-0.5 \epsilon}{1-0.5 \epsilon} = \frac{-0.5}{1-0.5 \epsilon} = \frac{-0.5}{-0.5 \epsilon} = \frac{-0.5}{1-0.5 \epsilon} = \frac{-0.5}{1-0$
$\frac{z^{1}}{1-2z^{-1}} \xrightarrow{\text{anti}} 0.5^{-n+1} (n < 0) \qquad $
$\begin{array}{c c} n \in [0, \infty) & \xi < 2 & \xi > 0.5 & n \in (-\infty, 0] \\ \hline causal & -0.5^{n+1} & -0.5 \xi & -\frac{z^{-1}}{1-0.5 \xi^{-1}} & -\frac{0.5}{1-0.5 \xi^{-1}} & -0.5^{-n+1} \end{array}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c} n \in [0, \infty) & \xi < 2 & \xi > 0.5 & n \in (-\infty, 0] \\ \hline causal \\ d_n & -0.5^{n+1} & -0.5 \xi & \hline & -\frac{2^{-1}}{1-0.5 \xi^{-1}} & -\frac{0.5}{1-0.5 \xi^{-1}} & -2^{+n-1} \end{array}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $

	Time Shift	P=2
()	-	$f(z) = -\frac{2}{2-z} \qquad \chi(z) = -\frac{z}{z-0.5}$ $f(z) = -\frac{2}{2-z} \qquad \chi(z) = -\frac{z}{z-0.5}$
5		$f(z) = \frac{2z}{2-z} \qquad \chi(z) = \frac{1}{z-0.5}$ $f(z) = \frac{2z}{2-z} \qquad \chi(z) = -\frac{1}{z-0.5}$
(I)	· .	$f(z) = \frac{2}{(2-z)z} \qquad \chi(z) = \frac{z^2}{z-0.5}$ $f(z) = -\frac{2}{(2-z)z} \qquad \chi(z) = -\frac{z^2}{z-0.5}$
		$(\mathcal{A} - \epsilon) \epsilon$

	Time Shift	1 =
2	$(n \ge 0)$ $(l_n = (2)^n$ $(n < 0)$ $(l_n = (2)^n$	
6		$f(z) = \frac{0.5z}{0.5-z} \qquad \chi(z) = \frac{1}{z-2}$ $f(z) = -\frac{0.5z}{0.5-z} \qquad \chi(z) = -\frac{1}{z-2}$
	$(n \ge -1)$ $(l_{n+1} = (2)^{n+1}$ $(n < -1)$ $(l_{n+1} = (2)^{n+1}$, -

 $2 \leftrightarrow \frac{1}{2}$ **Time Shift** $f(t) = \frac{2}{2-t}$ (n >> 0) $(l_n = (\frac{1}{2})^n$ $\chi(s) = \frac{5}{5} - 0.2$ (1) $(n \ge 0) \quad a_n = (2)^n$ $f(z) = \frac{5}{5-2} = (z) \chi \qquad \chi(z) = \frac{5}{5-2} f(z) f(z)$ (2) (n < 0) $(l_n = (\frac{1}{2})^n$ $f(z) = -\frac{2}{2-z}$ $\chi(z) = -\frac{2}{z-0.5}$ 3 $(n < 0) \quad (l_n = (2)^n)$ $f(z) = -\frac{0.5}{0.5-z}$ $\chi(z) = -\frac{z}{z-z}$ (4) $f(z) = \frac{2z}{2-z} \qquad \chi(z) = \frac{1}{z-0.5}$ (5) $(N \ge I)$ $(I_{n-1} = (\frac{I}{2})^{n-1}$ $(n \ge 1) \quad (l_{n-1} = (2)^{n-1})$ $f(z) = \frac{0.5z}{0.5-z}$ $\chi(z) = \frac{1}{z-2}$ 6 (n < 1) $(l_{n-1} = \left(\frac{1}{2}\right)^{n-1}$ \bigcirc $f(z) = -\frac{2z}{2-z}$ $\chi(z) = -\frac{1}{z-0.5}$ $(n < 1) \quad (l_{n-1} = (2)^{n-1})$ 8 $f(z) = -\frac{0.5z}{0.5-z}$ $\chi(z) = -\frac{1}{z-z}$ $\left(\hat{J}_{n+1} = \left(\frac{1}{2}\right)^{n+1}\right)$ $\chi(s) = \frac{\frac{5}{5} - 0.2}{\frac{5}{5}}$ (9) (n≥-I) $f(t) = \frac{2}{(2-t)t}$ $(n \ge -1) \quad (l_{n+1} = (2)^{n+1})$ $\chi(z) = \frac{z^2}{z^2-2}$ $f(z) = \frac{0.5}{(5-2.0)^2}$ (10) (n < -1) $(l_{n+1} = (\frac{1}{2})^{n+1}$ $f(z) = -\frac{z}{(2-z)z}$ $\chi(z) = -\frac{z^2}{z-0.5}$ (I) $\left(l_{n+1} = (2)^{n+1} \right)$ (n<-1) (12) $f(z) = -\frac{0.5}{(0.5-z)^2}$ $\chi(z) = -\frac{z^2}{z-z}$

Shift to the right
$$\rightarrow$$
 sg sg^{4}
Jutet A_{0}
() $(n \ge 0) \ A_{n} = \left(\frac{1}{2}\right)^{n}$ $f(s) = \frac{2}{\lambda - \varepsilon}$ $\chi(s) = \frac{\varepsilon}{\varepsilon - s.5}$
(s) $(n \ge 1) \ A_{n-1} = \left(\frac{1}{2}\right)^{n-1}$ $f(s) = \frac{2\varepsilon}{\lambda - \varepsilon}$ $\chi(s) = \frac{1}{\varepsilon - s.5}$
(a) $(n \ge 1) \ A_{n-1} = \left(\frac{2}{2}\right)^{n-1}$ $f(s) = \frac{\delta.5}{\delta.5 - 2}$ $\chi(s) = \frac{1}{\varepsilon - 2}$
(b) $(n \ge 1) \ A_{n-1} = \left(\frac{2}{2}\right)^{n-1}$ $f(s) = \frac{\delta.5}{\delta.5 - 2}$ $\chi(s) = -\frac{1}{\varepsilon - 2}$
(c) $(n \ge 1) \ A_{n-1} = \left(\frac{2}{2}\right)^{n-1}$ $f(s) = -\frac{2\varepsilon}{\lambda - 2}$ $\chi(s) = -\frac{1}{\varepsilon - 2}$
(c) $(n < 0) \ A_{n} = \left(\frac{1}{2}\right)^{n}$ $f(s) = -\frac{2\varepsilon}{\lambda - 2}$ $\chi(s) = -\frac{1}{\varepsilon - 2}$
(c) $(n < 1) \ A_{n-1} = \left(\frac{1}{2}\right)^{n-1}$ $f(s) = -\frac{2\varepsilon}{\lambda - 2}$ $\chi(s) = -\frac{1}{\varepsilon - 2}$
(c) $(n < 1) \ A_{n-1} = \left(\frac{1}{2}\right)^{n-1}$ $f(s) = -\frac{\delta.5}{\delta.5 - 1}$ $\chi(s) = -\frac{1}{\varepsilon - 1}$
(c) $(n < 1) \ A_{n-1} = \left(\frac{2}{2}\right)^{n-1}$ $f(s) = -\frac{\delta.5}{\delta.5 - 1}$ $\chi(s) = -\frac{1}{\varepsilon - 1}$
(c) $(n < 1) \ A_{n-1} = \left(\frac{2}{2}\right)^{n-1}$ $f(s) = -\frac{\delta.5}{\delta.5 - 1}$ $\chi(s) = -\frac{1}{\varepsilon - 1}$

Shift to the left
Shift to the left
$$\leftarrow$$
 $*g^{-1}$ $*\overline{g}$
dutate Δ_{0}
($n \ge 0$) $\Delta_{n} = (\frac{1}{2})^{n}$ $f(z) = \frac{2}{2 - z}$ $X(z) = \frac{2}{z - vS}$
($n \ge 0$) $\Delta_{n} = (\frac{1}{2})^{n+1}$ $f(z) = \frac{2}{(2 - z)\overline{z}}$ $X(z) = \frac{z}{z - vS}$
($n \ge 0$) $\Delta_{n} = (2)^{n}$ $f(z) = \frac{0.5}{0.5 - z}$ $X(z) = \frac{z}{z - 2}$
($n \ge 0$) $\Delta_{n} = (2)^{n+1}$ $f(z) = \frac{0.5}{(2s - z)\overline{z}}$ $X(z) = \frac{z}{z - 2}$
($n \ge -1$) $\Delta_{n+1} = (2)^{n+1}$ $f(z) = -\frac{2}{2 - 2}$ $X(z) = -\frac{z}{z - 2}$
($n < 0$) $\Delta_{n} = (\frac{1}{2})^{n}$ $f(z) = -\frac{2}{2 - 2}$ $X(z) = -\frac{z}{z - 2}$
($n < 0$) $\Delta_{n} = (\frac{1}{2})^{n+1}$ $f(z) = -\frac{2}{(2 - z)\overline{z}}$ $X(z) = -\frac{z}{z - 2}$
($n < 0$) $\Delta_{n} = (\frac{1}{2})^{n+1}$ $f(z) = -\frac{2}{(2 - z)\overline{z}}$ $X(z) = -\frac{z}{z - v\overline{z}}$
($n < 0$) $\Delta_{n} = (2)^{n}$ $f(z) = -\frac{0.5}{-b5-z}$ $X(z) = -\frac{z}{z - v\overline{z}}$
($n < -1$) $\Delta_{n+1} = (2)^{n+1}$ $f(z) = -\frac{0.5}{(b5-z)\overline{z}}$ $X(z) = -\frac{z}{z - 1}$

								
n= -4	n=-3	N=-2	N=-1	U= 0	n=1	N=2		
p3	b²	Ъ'	b°	Ь'	b	Б		
6n+	⁾	-3,-4,		b ⁿ⁺¹	n = -j) ر م		
	n=-3	N=-2	Ŋ=-1	n= 0	n=1	N=2	N=3	
	ۍ ل	Ъř	6	b°	b'	b	6	
	6n	n=-1,-	۰۰ - ۲٫		Ь"	n =0,	,] , 2, · · -	
	,							
	n=-3	N=-2	Ŋ=-1	N= 0	n=1	N=2	N=3	
		ۍ ل	۶	6	b°	b'	b	Ъ
	Ł) ⁿ⁻¹ N=	0, ٦, -٢,		b	^۱ ۳=	ر3, ۲٫ ۲٫ =	

$$I \longleftrightarrow \frac{1}{1}$$
(1) $(n \ge 0)$ $\mathcal{A}_{n} = (1)^{n}$ $f^{(2)} = \frac{1}{1-2}$ $X_{(2)} = \frac{2}{z-1}$
(2) $(n \ge 0)$ $\mathcal{A}_{n} = (1^{n})^{n}$ $f^{(2)} = \frac{1}{1-2}$ $X_{(2)} = \frac{2}{z-1}$
(3) $(n < 0)$ $\mathcal{A}_{n} = (1^{n})^{n}$ $f^{(2)} = -\frac{1}{1-2}$ $X_{(2)} = -\frac{2}{z-1}$
(4) $(n < 0)$ $\mathcal{A}_{n} = (1^{n})^{n}$ $f^{(2)} = -\frac{1}{1-2}$ $X_{(2)} = -\frac{2}{z-1}$
(5) $(n < 0)$ $\mathcal{A}_{n} = (1^{n})^{n-1}$ $f^{(2)} = -\frac{2}{1-2}$ $X_{(2)} = -\frac{2}{z-1}$
(6) $(n < 1)$ $\mathcal{A}_{n-1} = (1^{n})^{n-1}$ $f^{(2)} = -\frac{2}{1-2}$ $X_{(2)} = \frac{1}{z-1}$
(7) $(n < 1)$ $\mathcal{A}_{n-1} = (1^{n})^{n-1}$ $f^{(2)} = -\frac{2}{1-2}$ $X_{(2)} = -\frac{1}{z-1}$
(8) $(n < 1)$ $\mathcal{A}_{n-1} = (1^{n})^{n-1}$ $f^{(2)} = -\frac{2}{1-z}$ $X_{(2)} = -\frac{1}{z-1}$
(9) $(n < 1)$ $\mathcal{A}_{n-1} = (1^{n})^{n-1}$ $f^{(2)} = -\frac{1}{1-z}$ $X_{(2)} = -\frac{1}{z-1}$
(9) $(n < 1)$ $\mathcal{A}_{n-1} = (1^{n})^{n-1}$ $f^{(2)} = -\frac{1}{1-z}$ $X_{(2)} = -\frac{1}{z-1}$
(9) $(n < 1)$ $\mathcal{A}_{n-1} = (1^{n})^{n+1}$ $f^{(2)} = -\frac{1}{(1-2)z}$ $X_{(2)} = \frac{z}{z-1}$
(10) $(n > 1)$ $\mathcal{A}_{n+1} = (1^{n})^{n+1}$ $f^{(2)} = -\frac{1}{(1-2)z}$ $X_{(2)} = -\frac{z}{z-1}$
(11) $(n < 1)$ $\mathcal{A}_{n+1} = (1^{n})^{n+1}$ $f^{(2)} = -\frac{1}{(1-2)z}$ $X_{(2)} = -\frac{z}{z-1}$
(12) $(n < 1)$ $\mathcal{A}_{n+1} = (1^{n})^{n+1}$ $f^{(2)} = -\frac{1}{(1-2)z}$ $X_{(2)} = -\frac{z}{z-1}$
(13) $(n < 1)$ $\mathcal{A}_{n+1} = (1^{n})^{n+1}$ $f^{(2)} = -\frac{1}{(1-2)z}$ $X_{(2)} = -\frac{z}{z-1}$
(14) $(n < -1)$ $\mathcal{A}_{n+1} = (1^{n})^{n+1}$ $f^{(2)} = -\frac{1}{(1-2)z}$ $X_{(2)} = -\frac{z}{z-1}$
(15) $(n < -1)$ $\mathcal{A}_{n+1} = (1^{n})^{n+1}$ $f^{(2)} = -\frac{1}{(1-2)z}$ $X_{(2)} = -\frac{z}{z-1}$
(16) $(n < -1)$ $\mathcal{A}_{n+1} = (1^{n})^{n+1}$ $f^{(2)} = -\frac{1}{(1-2)z}$ $X_{(2)} = -\frac{z}{z-1}$
(17) $\mathcal{A}_{n+1} = (1^{n})^{n+1}$ $f^{(2)} = -\frac{1}{(1-2)z}$ $X_{(2)} = -\frac{z}{z-1}$
(18) $(n < -1)$ $\mathcal{A}_{n+1} = (1^{n})^{n+1}$ $f^{(2)} = -\frac{1}{(1-2)z}$ $X_{(2)} = -\frac{z}{z-1}$

(i)
$$(n \ge 0)$$
 $\mathcal{A}_{n} = (1)^{n}$ $f(z) = \frac{1}{1-z}$ $X(z) = \frac{z}{z-1}$
(2) $(n \ge 0)$ $\mathcal{A}_{n} = (1^{n})^{n}$ $f(z) = \frac{1}{1-z}$ $X(z) = \frac{z}{z-1}$
Shift to the right \rightarrow $z = \frac{z}{1-z}$ $X(z) = \frac{z}{z-1}$
(5) $(n \ge 1)$ $\mathcal{A}_{n+} = (1)^{n-1}$ $f(z) = -\frac{z}{1-z}$ $X(z) = \frac{1}{z-1}$
(6) $(n \ge 1)$ $\mathcal{A}_{n+} = (1^{n})^{n-1}$ $f(z) = -\frac{z}{1-z}$ $X(z) = -\frac{z}{z-1}$
(3) $(n < 0)$ $\mathcal{A}_{n} = (1^{n})^{n}$ $f(z) = -\frac{1}{1-z}$ $X(z) = -\frac{z}{z-1}$
(4) $(n < 0)$ $\mathcal{A}_{n} = (1^{n})^{n}$ $f(z) = -\frac{1}{1-z}$ $X(z) = -\frac{z}{z-1}$
(5) $(n < 1)$ $\mathcal{A}_{n+} = (1^{n})^{n-1}$ $f(z) = -\frac{1}{1-z}$ $X(z) = -\frac{z}{z-1}$
(6) $(n < 1)$ $\mathcal{A}_{n+} = (1^{n})^{n-1}$ $f(z) = -\frac{1}{1-z}$ $X(z) = -\frac{z}{z-1}$
(7) $(n < 1)$ $\mathcal{A}_{n+} = (1^{n})^{n-1}$ $f(z) = -\frac{z}{1-z}$ $X(z) = -\frac{1}{z-1}$
(8) $(n < 1)$ $\mathcal{A}_{n+1} = (1^{n})^{n-1}$ $f(z) = -\frac{z}{1-z}$ $X(z) = -\frac{1}{z-1}$
(9) $(n < 1)$ $\mathcal{A}_{n+1} = (1^{n})^{n-1}$ $f(z) = -\frac{z}{1-z}$ $X(z) = -\frac{1}{z-1}$

Causality

f(z) (|z| < p) \leftrightarrow A_n ($n \ge 0$) $-(p^n, p^n, p^n, \cdots)$ $\chi(z^{-1}) (|z| < P) \iff \chi_{-n} (n < |) - (p^{-1}, p^{-2}, p^{-3}, \cdots)$ $f(\mathcal{E}^{\mathsf{I}})(|\mathcal{E}| > p^{\mathsf{I}}) \iff \mathcal{A}_{-n}(n < |) - (p^{\mathsf{I}}, p^{\mathsf{I}}, p^{\mathsf{I}}, p^{\mathsf{I}}, \cdots)$ $X(\mathcal{E})(|\mathcal{E}| > p^{\mathsf{I}}) \iff \mathcal{X}_{n}(n \ge 0) - (p^{\mathsf{I}}, p^{\mathsf{I}}, p^{\mathsf{I}}, \cdots)$ $f(z)(|z|>p) \leftrightarrow -\alpha_n (n < 0) (p^0, p^1, p^2, ...)$ X(z') (|z| > P) $\leftrightarrow -z_n$ ($n \ge 1$) (p^0, p', p^2, \cdots) $f(z^{-1})(|z| < p^{-1}) \leftrightarrow -A_{-n}(n \ge 1) (p^{\circ}, p^{\circ}, p^{\circ}, \cdots)$ X(z)(|z| < p^{-1}) \leftrightarrow -r_n(n < 0) (p^{\circ}, p^{\circ}, p^{\circ}, \cdots)

g(z-1) g(.Ξ ¹) (Ξ ¹) (Ξ) Υ(Ξ)	X(Z) An b-n	a-n X-n Xn bn Yn Y-n
f(z) f(f(z) f(.モ゙) X(モ゙) .モ゙) X(モ゙)		
$-(p^{i}, p^{2}, p^{3},) - (p^{i}, p^{i}, p^{i}, p^{2},) - (p^{i}, p^{i}, p^{i}, p^{i}, p^{i},) - (p^{i}, p^{i}, p^{i}$		-(p ¹ , p ² , p ³ ,) (p ⁸ , p ¹ , p ² ,)	
<u></u>	^{5¹} p ¹ ξ ⁻¹ 2 τ ² τ ² τ ² 1 - ρ ¹ ξ - ^{2⁻¹} 1 - ρ ² ξ - ^{2⁻¹} 1 - ρ ² ξ	- <mark> + + + + + + + + + + + + + + + + + + +</mark>	

f(z) g(z) Y(z) X(z)	An An	Xn Xr
f(z) g(z) Y(z) X(z)	-an-a-n	-X-n -Xr
8 <1P 8 >1P ⁻¹ 8 <1P 8 >1P ⁻¹		
& >P & <p<sup>-1 & >P & <p<sup>-1</p<sup></p<sup>		
[0, \omega) (-\omega, 0] [0, \omega)		
$(-\infty, -] [1, \infty) [1, \infty) (-\infty, -]$		
_ (40 ⁻¹ 40 ⁻² 40 ⁻³)		
$-(p_{1}^{e_{1}}, p_{2}^{e_{1}}, p_{3}^{e_{3}}, \cdots) -(p_{1}^{e_{1}}, p_{2}^{e_{1}}, p_{3}^{e_{1}}, \cdots) -(p_{2}^{e_{1}}, p_{3}^{e_{1}}, p_{3}^{e_{2}}, \cdots) -(p_{2}^{e_{1}}, p_{3}^{e_{2}}, \cdots) -(p_{2}^{e_{1}}, p_{3}^{e_{1}}, p_{3}^{e_{1}}, p_{3}^{e_{2}}, \cdots) -(p_{2}^{e_{1}}, p_{3}^{e_{1}}, p_{3}^{e_{1}}, \cdots) -(p_{2}^{e_{1}}, p_{3}^{e_{1}}, p_{3}^{e_{1}}, \cdots) -(p_{2}^{e_{1}}, p_{3}^{e_{1}}, p_{3}^{e_{1}}, \cdots) -(p_{2}^{e_{1}}, p_{3}^{e_{1}}, p_{3}^{e_{1}}, \cdots) -(p_{2}^{e_{1}}, p_{3}^{e_{1}}, p_{3}^{e_{1}$		

an am	$2^n 2^n \qquad \alpha_n = -2^n$
$-\alpha_n - \alpha_{-n}$	$\frac{2^{n}}{-2^{n}} = \frac{2^{n}}{-2^{n}}$
X-n Xn	$2^{-n} 2^{n} \chi_{n} = -2^{n}$ $-2^{-n} - 2^{n}$
-X-n-Xn	-2 - 2
$-(p^{1}, p^{2}, p^{3},) - (p^{1}, p^{2}, p^{3},)$	$-(-2^{2}, -2^{2}, -2^{3}, \cdots) -(-2^{2}, -2^{2}, -2^{3}, \cdots)$
$(p^{\flat}, p^{\flat}, p^{\flat}, p^{\flat}, \cdots)$ $(p^{\flat}, p^{\flat}, p^{\flat}, \cdots)$	$(2^{\circ}, 2^{\circ}, 2^{\circ}, 2^{\circ}, \cdots)$ $(2^{\circ}, 2^{\circ}, 2^{\circ}, 2^{\circ}, \cdots)$
p ⁻¹ p ⁻¹	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
<u>ड</u> - ड्- ड्- - इन-	$\frac{1-2z^{-1}}{1-2z} = \frac{1-2z}{1-(\frac{2}{z})} = \frac{1-2z}{1-2z}$
₺ <1P ₺ >1P ⁻¹	ɛ̃ <2 ɛ̃ >2 ⁻¹
E >P E <p<sup>-1</p<sup>	ɛ >2 ɛ <2 ⁻¹
[0,∞) (-∞, 0]	[0,∞) (-∞, 0]
<u>(-∞,-] [,∞)</u>	(-∞,-I] [I,∞)